Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Response Surface Methodology Towards Optimization of Calotropis Procera Essential Oil Extraction by Using Supercritical CO2

Author(s): Hossein Zaeri, Bahareh Kamyab Moghadas*, Bijan Honarvar and Ali Shokuhi Rad*

Volume 11, Issue 1, 2021

Published on: 22 November, 2019

Page: [97 - 107] Pages: 11

DOI: 10.2174/2210315509666191122095706

Price: $65

Open Access Journals Promotions 2
Abstract

Aim: In this research, we aim to investigation on the extraction of essential oil from Calotropis Procera with the family name of Asclepiadaceae, by supercritical carbon dioxide (CO2) solvent.

Objective: The comparison of the yield and chemical profile of the extracts achieved by this method with those resulted by the conventional Hydro distillation method.

Methods: The extraction experiments were carried out in a bench-scale SC-CO2 unit. The effects of temperature, pressure, and extraction time on the oil yield are considered for investigation. The Response Surface Methodology (RSM) with Central Composite Design (CCD) was employed to optimize the process parameters of CO2 supercritical extraction (SCE) of the Calotropis Procera. In this experimental design, the design was required 19 experiments with eight (23) factorial points and five replications of the center.

Results: Results showed that the data were sufficiently fitted into the second-order polynomial model. The extraction conditions, including pressure, temperature, and extraction time, were studied between 150-200 bar, 40-50 ºC, and 50-100 min, respectively.

Conclusion: The optimal conditions are achieved as the temperature of 47.19ºC, the pressure of 172.2 bar, and time of 86 minutes with the retrieval rate of 31.39%.

Keywords: Calotropis Procera, supercritical CO2 extraction, response surface methodology, optimization, Hydro distillation, central composite design.

Graphical Abstract
[1]
Mako, G.A.; Memon, A.H.; Mughal, U.R.; Pirzado, A.J.; Bhatti, S.A. Antibacterial effects of leaves and root extract of Calotropis procera Linn. Pak. J. Agric. Agric. Eng. Vet. Sci., 2012, 28, 141-149.
[2]
Poralijan, V.; Rad, A.S. Extraction of eugenol from carnation: A quantitative and qualitative analysis by aqueous and ethanolic solvents. J. Essent. Oil Bearing Plants, 2016, 19(6), 1495-1502.
[http://dx.doi.org/10.1080/0972060X.2016.1211962]
[3]
Mohseni, S.; Rad, A.S. Determination of compositions of Thymus pubescens; The comparison of different solvents towards extraction Iranian J. Sci. Technol., Transacti. A. Science, 2018, 42(4), 1923-1928.
[4]
Doshi, H.; Satodiya, H.; Thakur, M.C.; Parabia, F.; Khan, A. Phytochemical screening biological activity of Calotropis Procera (Ait). R. Br. (Asclepiadaceae) against selected bacteria and Anopheles stephansi larvae. Proteins, 2011, 3(15), 22.
[5]
Kawo, A.; Mustapha, A.; Abdullahi, B.; Rogo, L.; Gaiya, Z.; Kumurya, A. Phytochemical properties and antibacterial activities of the leaf and latex extracts of Calotropis procera (ait.f.) ait.f. Bayero J. Pure Appl. Sci., 2009, 2(1), 34-40.
[6]
Ahmad, N.; Anwar, F.; Hameed, S.; Boyce, M.C. Antioxidant and antimicrobial attributes of different Solvent extracts from leaves and flowers of akk. J. Med. Plants Res., 2011, 5(19), 4879-4887.
[7]
Durrani, A.Z.; Maqbool, A.; Mahmood, N.; Kamal, N.; Shakoori, A.R. Chemotherapeutic trials with Calotropis procera against experimental infection with theileriaannulata in cross bred cattle in pakistan. Pak. J. Zool., 2009, 41(5)
[8]
Moghadas, B.K.; Safekordi, A.A.; Honarvar, B.; Kaljahi, J.F.; Yazdi, S.A.V. Experimental study of Dorema aucheri extraction with supercritical carbon dioxide. Asian J. Chem., 2012, 24(8)
[9]
Sureshkumar, P.; Senthilraja, P.; Kalavathy, S. In-silico-docking analysis of Calotropis gigantea (L.) R.br derived compound against anti-cervical cancer activity. World Res. J. Comp.-. Aided Drug Des., 2012, 1(1), 9-12.
[10]
Nenaah, G.E. Potential of using flavonoids, latex, and extracts from Calotropis procera (Ait.)As grain protectants against two coleopteran pests of stored rice. Ind. Crops Prod., 2013, 45, 327-334.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.043]
[11]
Ibrahim, S.R.; Mohamed, G.A.; Shaala, L.A.; Banuls, L.M.Y.; Van Goietsenoven, G.; Kiss, R.; Youssef, D.T. New ursane-type triterpenes from the root bark of Calotropis procera. Phytochem. Lett., 2012, 5(3), 490-495.
[http://dx.doi.org/10.1016/j.phytol.2012.04.012]
[12]
Akindele, P. O.; Fatunla, O. A.; Ibrahim, K. A.; Afolayan, C. O. Antibacterial and phytochemical screening of Calotropis procera leaf extracts against vancomycin and methicillin-resistant bacteria isolated from wound samples in hospital patients. J. Complem. Alt. Med. Res, 2017, pp 1-14.
[13]
Sharma, P.; Madhyastha, H.; Madhyastha, R.; Nakajima, Y.; Maruyama, M.; Verma, K.S.; Verma, S.; Prasad, J.; Kothari, S.L.; Gour, V.S. An appraisal of cuticular wax of Calotropis procera (Ait.) R. Br.: Extraction, chemical composition, biosafety and application. J. Hazard. Mater., 2019, 368, 397-403.
[http://dx.doi.org/10.1016/j.jhazmat.2019.01.067 PMID: 30690392]
[14]
Moustafa, A.M.Y.; Ahmed, S.H.; Nabil, Z.I.; Hussein, A.A.; Omran, M.A. Extraction and phytochemical investigation of Calotropis procera: Effect of plant extracts on the activity of diverse muscles. Pharm. Biol., 2010, 48(10), 1080-1190.
[http://dx.doi.org/10.3109/13880200903490513 PMID: 20690894]
[15]
Chaiwut, P.; Rawdkuen, S.; Benjakul, S. Extraction of protease from Calotropis procera latex by polyethylene glycol–salts biphasic system. Process Biochem., 2010, 45(7), 1148-1155.
[http://dx.doi.org/10.1016/j.procbio.2010.04.007]
[16]
AWORH. O.C.; Nakai, S. Extraction of milk clotting enzyme from Sodom Apple (Calotropis procera). J. Food Sci., 1986, 51(6), 1569-1570.
[http://dx.doi.org/10.1111/j.1365-2621.1986.tb13865.x]
[17]
Chhouk, K.; Kanda, H.; Kawasaki, S.I.; Goto, M. Micronization of curcumin with the biodegradable polymer by supercritical anti-solvent using micro swirl mixer. Front. Chem. Sci. Eng., 2018, 12(1), 184-193.
[18]
Wang, W.; Zhou, S.; Xin, Z.; Shi, Y.; Zhao, S. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene. Front. Chem. Sci. Eng., 2016, 10(3), 396-404.
[http://dx.doi.org/10.1007/s11705-016-1577-z]
[19]
Chiu, K.L.; Cheng, Y.C.; Chen, J.H.; Chang, C.J.; Yang, P.W. Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids. J. Supercrit. Fluids, 2002, 24(1), 77-87.
[http://dx.doi.org/10.1016/S0896-8446(02)00014-1]
[20]
Rudyk, S.; Spirov, P.; Al-Hajri, R.; Vakili-Nezhaad, G. Supercritical carbon dioxide extraction of oil sand enhanced by water and alcohols as Co-solvents J. CO2 Utiliz, 2017, 1(17), 90-98.
[21]
Kamyab Moghadas, B.; Safekordi, A.; Honarvar, B.; Fathi Kaljahi, J.; Vaziri Yazdi, S.A. Supercritical extraction of flavonoid compounds from Dorema aucheri Boiss. experimental and modeling using CH2Cl2 as co-solvent. Asian J. Chem., 2012, 24(8)
[22]
Haghayegh, M.; Zabihi, F.; Eikani, M. H.; Kamyab Moghadas, B.; Vaziri Yazdi, S. A. Supercritical fluid extraction of flavonoids and terpenoids from herbal compounds: Experiments and mathematical modeling J. Essent. Oil Bearing plants, 2015, 318(5), 1253-1265.
[23]
Kamyab Moghadas, B. Azadi.M. Fabrication of nanocomposite foam by supercritical CO2 technique for application in tissue engineering. J. Tiss. Mater., 2019, 2, 23-32.
[24]
Baş, D.; Boyacı, I.H. Modeling, and optimization I: Usability of response surface methodology. J. Food Eng., 2007, 78(3), 836-845.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.11.024]
[25]
Giovanni, M. Response surface methodology and product optimization. Food Technol., 1983, 37, 41-45.
[26]
Myers, R.H.; Montgomery, D.C. Response surface methodology: Process and product optimization using designed experiments, 1st ed; Wiley: New York, 1995.
[27]
Hossain, M. S.; Norulaini, N. N.; Naim, A. A.; Zulkhairi, A. M.; Bennama, M. M.; Omar, A. M. Utilization of the supercritical carbon dioxide extraction technology for the production of deoiled palm kernel cake J. CO2 Utiliz., 2016, 116, 121-129.
[28]
Dashtianeh, M.; Vatanara, A.; Fatemi, S.; Sefidkon, F. Optimization of supercritical extraction of Pimpinella affinis Ledeb. using response surface methodology. J. CO2 Utiliz., 2013, 3, 1-6.
[29]
Liu, G.; Xu, X.; Hao, Q.; Gao, Y. Supercritical CO2 extraction optimization of pomegranate (Punica granatum L.) seed oil using response surface methodology. Lebensm. Wiss. Technol., 2009, 42(9), 1491-1495.
[http://dx.doi.org/10.1016/j.lwt.2009.04.011]
[30]
Zahedi, G.; Azarpour, A. Optimization of supercritical carbon dioxide extraction of Passiflora seed oil. J. Supercrit. Fluids, 2011, 58(1), 40-48.
[http://dx.doi.org/10.1016/j.supflu.2011.04.013]
[31]
Ghafoor, K.; Park, J.; Choi, Y.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. Technol., 2010, 11(3), 485-490.
[http://dx.doi.org/10.1016/j.ifset.2010.01.013]
[32]
Lee, W.Y.; Cho, Y.J.; Oh, S.L.; Park, J.H.; Cha, W.S.; Jung, J.Y. Extraction of grapeseed oil by supercritical CO2 and ethanol modifier. Food Sci. Biotechnol., 2000, 9(3), 174-178.
[33]
Bernardo-Gil, G.; Oneto, C.; Antunes, P.; Rodrigues, M.F.; Empis, J.M. Extraction of lipids from cherry seed oil using supercritical carbon dioxide. Eur. Food Res. Technol., 2001, 212(2), 170-174.
[http://dx.doi.org/10.1007/s002170000228]
[34]
Oliveira, R.; Fátima Rodrigues, M.; Gabriela Bernardo‐Gil, M. Characterization and supercritical CO2 extraction of walnut oil. J. Am. Oil Chem. Soc., 2002, 79(3), 225-230.
[http://dx.doi.org/10.1007/s11746-002-0465-y]
[35]
Özkal, S.G.; Yener, M.E.; Salgın, U.; Mehmetoğlu, Ü. Response surfaces of hazelnut oil yield in supercritical carbon dioxide. Eur. Food Res. Technol., 2005, 220(1), 74-78.
[http://dx.doi.org/10.1007/s00217-004-1013-3]
[36]
Özkal, S.G.; Yener, M.E.; Bayındırlı, L. Response surfaces of apricot kernel oil yield in supercritical carbon dioxide. Lebensm. Wiss. Technol., 2005, 38(6), 611-616.
[http://dx.doi.org/10.1016/j.lwt.2004.08.003]
[37]
Bhattacharjee, P.; Singhal, R.S.; Tiwari, S.R. Supercritical CO2 extraction of cottonseed oil. J. Food Eng., 2007, 79(3), 892-898.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.03.009]
[38]
Moldao-Martins, M.; Palavra, A.; Da Costa, M.B.; Bernardo-Gil, M.G. Supercritical CO2 extraction of Thymus zygis L. subsp. sylvestris aroma. J. Supercrit. Fluids, 2000, 18(1), 25-34.
[http://dx.doi.org/10.1016/S0896-8446(00)00047-4]
[39]
Adaşoğlu, N.; Dinçer, S.; Bolat, E. Supercritical fluid extraction of essential oil from Turkish lavender flowers. J. Supercrit. Fluids, 1994, 7(2), 93-99.
[http://dx.doi.org/10.1016/0896-8446(94)90045-0]
[40]
Okiei, W.O.; Ogunlesi, M.; Ofor, E.; Osibote, E.A. Analysis of essential oil constituent in hydro distillates of Calotropis procera (Ait). R. Br. Res. J. Phytochem., 2009, 3, 44-53.
[http://dx.doi.org/10.3923/rjphyto.2009.44.53]
[41]
Banerjee, S.H.; Kaushik, S.H.; Tomar, R.S. Effect of different solvents on antioxidant activity of leaf extracts of Calotropis Procera and Azadirachta Indica. Asian J. Pharmaceut. Clin. Res.,, 2016, 10(1)
[http://dx.doi.org/10.22159/ajpcr.2017.v10i1.15145]
[42]
Ahmad, N.; Bukhari, M.S.; Akhtar, N. Extraction efficiency and estrogen or alike activity of ethanolic and aqueous extracts of different parts of Calotropis procera. Int. J. Agricul.e Biol.: Pak.,, 2009, pp 621-625.
[43]
Moronkola, D.O.; Ogukwe, C.; Awokoya, K.N. Chemical compositions of leaf and stem essential oils of Calotropis procera Ait R. Br. Der Chemica Sinica., 2011, 2(2), 255-260.
[44]
Bozorgi Pouya, M.H.; Kamyab Moghadas, B.; Shokouhi Rad, A. Supercritical extraction of Heracleum persicum plant and mathematical modeling. Nat. Prod. J., 2019, 9, 1-14.
[45]
Hatami, T.; Meireles, M.A.A.; Ciftci, O.N. Supercritical carbon dioxide extraction of lycopene from tomato processing by-products: Mathematical modeling and optimization. J. Food Eng., 2019, 241, 18-25.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.07.036]
[46]
Hatami, T.; Moura, L.S.; Khamforoush, M.; Meireles, M.A.A. Supercritical fluid extraction from Priprioca: Extraction yield and mathematical modeling based on phase equilibria between solid and supercritical phases. J. Supercrit. Fluids, 2014, 85, 62-67.
[http://dx.doi.org/10.1016/j.supflu.2013.10.012]
[47]
Lin, L.; Yang, J.; Zhang, G.; Zhang, X.; Zou, C.; Wang, T.; Zeng, J. Extraction optimization of insecticidal compounds from Lysurus mokusin by response surface methodology. J. For. Res., 2020, 31(5), 1985-1993.
[48]
Pham, V.T.; Nguyen, H.T.T.; Nguyen, D.T.C.; Le, H.T.; Nguyen, T.T.; Le, N.T.H.; Lim, K.T.; Nguyen, T.D.; Van Tran, T.; Bach, L.G. Process optimization by a response surface methodology for adsorption of congo red dye onto exfoliated graphite-decorated MnFe2O4 nanocomposite: The pivotal role of surface chemistry. Processes (Basel), 2019, 7(5), 305.
[http://dx.doi.org/10.3390/pr7050305]
[49]
Mustapha, F.A.; Jai, J.; Raikhan, N.N.; Sharif, Z.I.M.; Yusof, N.M. Response surface methodology analysis towards biodegradability and antimicrobial activity of biopolymer film containing turmeric oil against Aspergillus niger. Food Control, 2019, 99, 106-113.
[http://dx.doi.org/10.1016/j.foodcont.2018.12.042]
[50]
Yu, Q.; Zhao, H.; Zhao, H.; Sun, S.; Ji, X.; Li, M.; Wang, Y. Preparation of tobacco-stem activated carbon from using response surface methodology and its application for water vapor adsorption in solar drying system. Sol. Energy, 2019, 177, 324-336.
[http://dx.doi.org/10.1016/j.solener.2018.11.029]
[51]
Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ., 2019, 668, 668-677.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.055]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy