Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

LC-MS/MS Profiling of 37 Fingerprint Phytochemicals in Oenanthe fistulosa L. and its Biological Activities

Author(s): Nabila Souilah, Hamdi Bendif*, Zain Ullah, Mohamed Djamel Miara, Messaoud Laib, Mehmet Öztürk, Salah Akkal, Kamel Medjroubi and Ahmed M. Mustafa*

Volume 11, Issue 1, 2021

Published on: 11 November, 2019

Page: [63 - 73] Pages: 11

DOI: 10.2174/2210315509666191111102557

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Oenanthe fistulosa L. (Apiaceae) is often associated with damp soils. Its underground parts and the young leaves are mainly cooked with other vegetables.

Objective: The aim of the current work was to investigate the chemical profile of dichloromethane (DCM), Ethyl Acetate (EA) and n-butanol (BuOH) fractions of O. fistulosa through analysis of 37 phytochemicals by LC-MS/MS and to evaluate their biological activities such as antioxidant, anticholinesterase and antityrosinase for the first time.

Methods: Analysis of 37 phytochemicals was performed by Liquid Chromatography-Mass Spectrometry (LC-MS/MS). Antioxidant activity was evaluated using five in vitro assays, while anticholinesterase and anti-tyrosinase activities were performed using Ellman and Dopachrome methods, respectively.

Results: The number of phenolic compounds detected in DCM, EA and BuOH fractions was found to be 9, 15, and 12; respectively. More specifically, 9 phenolic acids were detected and among them, chlorogenic, tr-ferulic and p-coumaric acids were the most abundant. While 8 flavonoids were detected and apigetrin, rutin, and quercitrin were the most abundant. In addition, 3 non-phenolic organic acids (quinic, malic and fumaric acids) were detected in large quantities. Furthermore, the tested plant fractions demonstrated a noteworthy and strong antioxidant action. The plant displayed very strong action against Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes; and BuOH fraction was the most potent one. Finally, BuOH and DCM fractions showed good tyrosinase inhibitory activity.

Conclusion: According to the obtained results, O. fistulosa might be a promising candidate for the alleviation of oxidative stress, neurodegenerative (such as Alzheimer’s disease) and hyperpigmentation disorders.

Keywords: Oenanthe fistulosa, apiaceae, polyhenolics, LC-MS/MS, antioxidant, anticholinesterase, antityrosinase.

Graphical Abstract
[1]
Leurquin, J. Etude du genre Oenanthe (Apiaceae) de la Belgique et des régions voisines, Clés de détermination, Données morphologiques, stationne/les et socio- écologiques. Lotissement Coputienne, 10- 6920 Wellin Janvier. 2007, 26.
[2]
Appendino, G.; Pollastro, F.; Verotta, L.; Ballero, M.; Romano, A.; Wyrembek, P.; Szczuraszek, K.; Mozrzymas, J.W.; Taglialatela-Scafati, O.; Taglialatela-Scafati, O. Polyacetylenes from sardinian Oenanthe fistulosa: A molecular clue to Risus sardonicus. J. Nat. Prod., 2009, 72(5), 962-965.
[http://dx.doi.org/10.1021/np8007717] [PMID: 19245244]
[3]
Stroh, P.A. Tubular Water Dropwort., Species Account. Botanical Society of Britain and Ireland,2015. Available from:. https://bsbi.org/wp-content/uploads/dlm_ uploads/Oenanthe_ fistulosa_species_account.pdf
[4]
Lu, C.L.; Li, X.F. A review of Oenanthe javanica (Blume) DC. as traditional medicinal plant and its therapeutic potential. Evid. Based Complement. Alternat. Med., 2019, 20196495819
[http://dx.doi.org/10.1155/2019/6495819] [PMID: 31057651]
[5]
Valente, J.; Zuzarte, M.; Gonçalves, M.J.; Lopes, M.C.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food Chem. Toxicol., 2013, 62, 349-354.
[http://dx.doi.org/10.1016/j.fct.2013.08.083] [PMID: 24012643]
[6]
Savo, V.; Salomone, F.; Bartoli, F.; Caneva, G. When the local cuisine still incorporates wild food plants: The unknown traditions of the Monti Picentini Regional Park (Southern Italy). Econ. Bot., 2019, 73(1), 1-19.
[http://dx.doi.org/10.1007/s12231-018-9432-4]
[7]
Yilmaz, M.A.; Ertas, A.; Yener, I.; Akdeniz, M.; Cakir, O.; Altun, M.; Demirtas, I.; Boga, M.; Temel, H. A comprehensive LC-MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. J. Pharm. Biomed. Anal., 2018, 154, 413-424.
[http://dx.doi.org/10.1016/j.jpba.2018.02.059] [PMID: 29602084]
[8]
Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants fractions containing phenolic compounds. Food Chem., 2006, 97, 654-660.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.028]
[9]
Öztürk, M.; Duru, M.E.; Kivrak, S.; Mercan-Doğan, N.; Türkoglu, A.; Özler, M.A. in vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: A comparative study on the three most edible mushrooms. Food Chem. Toxicol., 2011, 49(6), 1353-1360.
[http://dx.doi.org/10.1016/j.fct.2011.03.019] [PMID: 21419821]
[10]
Marco, G.J. A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc., 1968, 45, 594-598.
[http://dx.doi.org/10.1007/BF02668958]
[11]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[12]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3 PMID: 10381194]
[13]
Ramalakshmi, K.; Kubra, I.R.; Rao, L.J.M. Antioxidant potential of low-grade coffee beans. Food Res. Int., 2008, 41, 96-103.
[http://dx.doi.org/10.1016/j.foodres.2007.10.003]
[14]
Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[15]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[16]
Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Chalcones as potent tyrosinase inhibitors: the importance of a 2,4-substituted resorcinol moiety. Bioorg. Med. Chem., 2005, 13(2), 433-441.
[http://dx.doi.org/10.1016/j.bmc.2004.10.010] [PMID: 15598564]
[17]
Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem., 2015, 173, 501-513.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057] [PMID: 25466052]
[18]
Tripoli, E.; La Guardia, M.; Giammanco, S.; Di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem., 2007, 104, 466-479.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.054]
[19]
Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int., 2014, 64, 171-181.
[http://dx.doi.org/10.1016/j.foodres.2014.06.022] [PMID: 30011637]
[20]
Sochor, J.; Zitka, O.; Skutkova, H.; Pavlik, D.; Babula, P.; Krska, B.; Horna, A.; Adam, V.; Provaznik, I.; Kizek, R. Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules, 2010, 15(9), 6285-6305.
[http://dx.doi.org/10.3390/molecules15096285] [PMID: 20877223]
[21]
Koffi, E.; Sea, T.; Dodehe, Y.; Soro, S. Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. J. Anim. Plant Sci., 2010, 5, 550-558.
[22]
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
[http://dx.doi.org/10.1021/jf0502698] [PMID: 15884874]
[23]
Mustafa, A.M.; Eldahmy, S.I.; Caprioli, G.; Bramucci, M.; Quassinti, L.; Lupidi, G.; Beghelli, D.; Vittori, S.; Maggi, F. Chemical composition and biological activities of the essential oil from Pulicaria undulata (L.) C. A. Mey. Growing wild in Egypt. Nat. Prod. Res., 2018, 34(16), 2358-2362.
[PMID: 30394109]
[24]
Papandreou, M.A.; Dimakopoulou, A.; Linardaki, Z.I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F.N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav. Brain Res., 2009, 198(2), 352-358.
[http://dx.doi.org/10.1016/j.bbr.2008.11.013] [PMID: 19056430]
[25]
Seo, B.; Yun, J.; Lee, S.; Kim, M.; Hwang, K.; Kim, J.; Min, K.R.; Kim, Y.; Moon, D. Barbarin as a new tyrosinase inhibitor from Barbarea orthocerus. Planta Med., 1999, 65(8), 683-686.
[http://dx.doi.org/10.1055/s-1999-14092] [PMID: 10630104]
[26]
Si, Y.X.; Yin, S.J.; Oh, S.; Wang, Z.J.; Ye, S.; Yan, L.; Yang, J.M.; Park, Y.D.; Lee, J.; Qian, G.Y. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation. J. Biomol. Struct. Dyn., 2012, 29(5), 999-1012.
[http://dx.doi.org/10.1080/073911012010525028] [PMID: 22292957]
[27]
Xie, L.P.; Chen, Q.X.; Huang, H.; Wang, H.Z.; Zhang, R.Q. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochemistry (Mosc.), 2003, 68(4), 487-491.
[http://dx.doi.org/10.1023/A:1023620501702] [PMID: 12765534]
[28]
Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H.A. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules, 2014, 19(9), 12940-12948.
[http://dx.doi.org/10.3390/molecules190912940] [PMID: 25157464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy