Review Article

GABA吸收抑制剂的发展、最新成果和当前研究方向

卷 28, 期 4, 2021

发表于: 10 October, 2019

页: [750 - 776] 页: 27

弟呕挨: 10.2174/0929867325666191010120236

价格: $65

conference banner
摘要

神经递质γ-氨基丁酸(GABA)在调节哺乳动物中枢神经系统功能中起主要作用。GABA诱发的神经传递被位于细胞膜上的依赖质膜GABA转运蛋白(GATs)的快速摄取终止。这些GATs的有效抑制剂对于阐明这些靶点的生理功能具有根本的重要性。近年来,广泛的新型gat1选择性抑制剂和较少见的非gat1选择性抑制剂被成功开发。本文综述了GABA再摄取抑制剂的研究进展和近期取得的重要成果。特别关注了它们的药理作用、结构和亚型选择性关系。

关键词: GABA转运体,GAT1,BGT1,GAT2,GAT3,GABA摄取抑制剂

[1]
Lydiard, R.B. The role of GABA in anxiety disorders. J. Clin. Psychiatry, 2003, 64(Suppl. 3), 21-27.
[PMID: 12662130]
[2]
Gong, X.; Shao, Y.; Li, B.; Chen, L.; Wang, C.; Chen, Y. γ-aminobutyric acid transporter-1 is involved in anxiety-like behaviors and cognitive function in knockout mice. Exp. Ther. Med., 2015, 10(2), 653-658.
[http://dx.doi.org/10.3892/etm.2015.2577] [PMID: 26622370]
[3]
Sałat, K.; Podkowa, A.; Kowalczyk, P.; Kulig, K.; Dziubina, A.; Filipek, B.; Librowski, T. Anticonvulsant active inhibitor of GABA transporter subtype 1, tiagabine, with activity in mouse models of anxiety, pain and depression. Pharmacol. Rep., 2015, 67(3), 465-472.
[http://dx.doi.org/10.1016/j.pharep.2014.11.003] [PMID: 25933955]
[4]
Fijałkowski, Ł.; Sałat, K.; Podkowa, A.; Zaręba, P.; Nowaczyk, A. Potential role of selected antiepileptics used in neuropathic pain as human GABA transporter isoform 1 (GAT1) inhibitors-Molecular docking and pharmaco-dynamic studies. Eur. J. Pharm. Sci., 2017, 96, 362-372.
[http://dx.doi.org/10.1016/j.ejps.2016.10.004] [PMID: 27721044]
[5]
Pehrson, A.L.; Sanchez, C. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther., 2015, 9, 603-624.
[http://dx.doi.org/10.2147/DDDT.S62912] [PMID: 25653499]
[6]
Pozdnyakova, N.; Dudarenko, M.; Yatsenko, L.; Himmelreich, N.; Krupko, O.; Borisova, T. Perinatal hypoxia: different effects of the inhibitors of GABA transporters GAT1 and GAT3 on the initial velocity of [3H]GABA uptake by cortical, hippocampal, and thalamic nerve terminals. Croat. Med. J., 2014, 55(3), 250-258.
[http://dx.doi.org/10.3325/cmj.2014.55.250] [PMID: 24891283]
[7]
Bhat, R.; Axtell, R.; Mitra, A.; Miranda, M.; Lock, C.; Tsien, R.W.; Steinman, L. Inhibitory role for GABA in autoimmune inflammation. Proc. Natl. Acad. Sci. USA, 2010, 107(6), 2580-2585.
[http://dx.doi.org/10.1073/pnas.0915139107] [PMID: 20133656]
[8]
Wang, Y.; Feng, D.; Liu, G.; Luo, Q.; Xu, Y.; Lin, S.; Fei, J.; Xu, L. γ-aminobutyric acid transporter 1 negatively regulates T cell-mediated immune responses and ameliorates autoimmune inflammation in the CNS. J. Immunol., 2008, 181(12), 8226-8236.
[http://dx.doi.org/10.4049/jimmunol.181.12.8226] [PMID: 19050239]
[9]
Moldavan, M.; Cravetchi, O.; Williams, M.; Irwin, R.P.; Aicher, S.A.; Allen, C.N. Localization and expression of GABA transporters in the suprachiasmatic nucleus. Eur. J. Neurosci., 2015, 42(12), 3018-3032.
[http://dx.doi.org/10.1111/ejn.13083] [PMID: 26390912]
[10]
Zarrindast, M.R.; Noorbakhshnia, M.; Motamedi, F.; Haeri-Rohani, A.; Rezayof, A. Effect of the GABAergic system on memory formation and state-dependent learning induced by morphine in rats. Pharmacology, 2006, 76(2), 93-100.
[http://dx.doi.org/10.1159/000089934] [PMID: 16319519]
[11]
Zhou, Y.; Danbolt, N.C. GABA and glutamate transporters in brain. Front. Endocrinol. (Lausanne), 2013, 4, 165.
[http://dx.doi.org/10.3389/fendo.2013.00165] [PMID: 24273530]
[12]
Rudnick, G.; Krämer, R.; Blakely, R.D.; Murphy, D.L.; Verrey, F. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Pflugers Arch., 2014, 466(1), 25-42.
[http://dx.doi.org/10.1007/s00424-013-1410-1] [PMID: 24337881]
[13]
Kristensen, A.S.; Andersen, J.; Jørgensen, T.N.; Sørensen, L.; Eriksen, J.; Loland, C.J.; Strømgaard, K.; Gether, U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol. Rev., 2011, 63(3), 585-640.
[http://dx.doi.org/10.1124/pr.108.000869] [PMID: 21752877]
[14]
Kempson, S.A.; Zhou, Y.; Danbolt, N.C. The betaine/GABA transporter and betaine: roles in brain, kidney and liver. Front. Physiol., 2014, 5, 159.
[http://dx.doi.org/10.3389/fphys.2014.00159] [PMID: 24795654]
[15]
Loo, D.D.F.; Eskandari, S.; Boorer, K.J.; Sarkar, H.K.; Wright, E.M. Role of Cl- in electrogenic Na+-coupled cotransporters GAT1 and SGLT1. J. Biol. Chem., 2000, 275(48), 37414-37422.
[http://dx.doi.org/10.1074/jbc.M007241200] [PMID: 10973981]
[16]
Wu, Y.; Wang, W.; Díez-Sampedro, A.; Richerson, G.B. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron, 2007, 56(5), 851-865.
[http://dx.doi.org/10.1016/j.neuron.2007.10.021] [PMID: 18054861]
[17]
Gadea, A.; López-Colomé, A.M. Glial transporters for glutamate, glycine and GABA: II. GABA transporters. J. Neurosci. Res., 2001, 63(6), 461-468.
[http://dx.doi.org/10.1002/jnr.1040] [PMID: 11241581]
[18]
Willford, S.L.; Anderson, C.M.; Spencer, S.R.; Eskandari, S. Evidence for a revised ion/substrate coupling stoichiometry of GABA transporters. J. Membr. Biol., 2015, 248(4), 795-810.
[http://dx.doi.org/10.1007/s00232-015-9797-6] [PMID: 25824654]
[19]
Zhou, Y.; Holmseth, S.; Guo, C.; Hassel, B.; Höfner, G.; Huitfeldt, H.S.; Wanner, K.T.; Danbolt, N.C. Deletion of the γ-aminobutyric acid transporter 2 (GAT2 and SLC6A13) gene in mice leads to changes in liver and brain taurine contents. J. Biol. Chem., 2012, 287(42), 35733-35746.
[http://dx.doi.org/10.1074/jbc.M112.368175] [PMID: 22896705]
[20]
Jørgensen, L.; Al-Khawaja, A.; Kickinger, S.; Vogensen, S.B.; Skovgaard-Petersen, J.; Rosenthal, E.; Borkar, N.; Löffler, R.; Madsen, K.K.; Bräuner-Osborne, H.; Schousboe, A.; Ecker, G.F.; Wellendorph, P.; Clausen, R.P. Structure-activity relationship, pharmacological characteri-zation, and molecular modeling of noncompetitive inhibitors of the betaine/γ-aminobutyric acid transporter 1 (BGT1). J. Med. Chem., 2017, 60(21), 8834-8846.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00924] [PMID: 28991462]
[21]
Alexander, S.P.H.; Davenport, A.P.; Kelly, E.; Marrion, N.; Peters, J.A.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Southan, C.; Davies, J.A. G protein-coupled receptors. Br. J. Pharmacol., 2015, 172(24), 5744-5869.
[http://dx.doi.org/10.1111/bph.13348] [PMID: 26650439]
[22]
Zafar, S.; Jabeen, I. Structure, function and modulation of γ-aminobutyric acid transporter 1 (GAT1) in neurological disorders: a pharmacoinformatic prospective. Front Chem., 2018, 6, 397.
[http://dx.doi.org/10.3389/fchem.2018.00397] [PMID: 30255012]
[23]
Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci., 2014, 8, 161.
[http://dx.doi.org/10.3389/fncel.2014.00161] [PMID: 24987330]
[24]
Jasmin, L.; Wu, M.V.; Ohara, P.T. GABA puts a stop to pain. Curr. Drug Targets CNS Neurol. Disord., 2004, 3(6), 487-505.
[http://dx.doi.org/10.2174/1568007043336716] [PMID: 15578966]
[25]
Kickinger, S.; Hellsberg, E.; Frølund, B.; Schousboe, A.; Ecker, G.F.; Wellendorph, P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019, S0028-3908(19), 30170-30174.
[http://dx.doi.org/10.1016/j.neuropharm.2019.05.021]
[26]
Madsen, K.K.; Hansen, G.H.; Danielsen, E.M.; Schousboe, A. The subcellular localization of GABA transporters and its implication for seizure management. Neurochem. Res., 2015, 40(2), 410-419.
[http://dx.doi.org/10.1007/s11064-014-1494-9] [PMID: 25519681]
[27]
Masuda, N.; Peng, Q.; Li, Q.; Jiang, M.; Liang, Y.; Wang, X.; Zhao, M.; Wang, W.; Ross, C.A.; Duan, W. Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington’s disease. Neurobiol. Dis., 2008, 30(3), 293-302.
[http://dx.doi.org/10.1016/j.nbd.2008.01.014] [PMID: 18395459]
[28]
Liu, J.; Huang, D.; Xu, J.; Tong, J.; Wang, Z.; Huang, L.; Yang, Y.; Bai, X.; Wang, P.; Suo, H.; Ma, Y.; Yu, M.; Fei, J.; Huang, F. Tiagabine protects dopaminergic neurons against neurotoxins by inhibiting microglial activation. Sci. Rep., 2015, 5, 15720.
[http://dx.doi.org/10.1038/srep15720] [PMID: 26499517]
[29]
Sałat, K.; Podkowa, A.; Malikowska, N.; Kern, F.; Pabel, J.; Wojcieszak, E.; Kulig, K.; Wanner, K.T.; Strach, B.; Wyska, E. Novel, highly potent and in vivo active inhibitor of GABA transporter subtype 1 with anticonvulsant, anxiolytic, antidepressant and antinociceptive properties. Neuropharmacology,, 2017, 113(Pt A), 331-342.
[http://dx.doi.org/10.1016/j.neuropharm.2016.10.019] [PMID: 27771379]
[30]
Kern, F.T.; Wanner, K.T. Generation and screening of oxime libraries addressing the neuronal GABA transporter GAT1. ChemMedChem, 2015, 10(2), 396-410.
[http://dx.doi.org/10.1002/cmdc.201402376] [PMID: 25369775]
[31]
Kataoka, K.; Hara, K.; Haranishi, Y.; Terada, T.; Sata, T. The antinociceptive effect of SNAP5114, a gamma-amino-butyric acid transporter-3 inhibitor, in rat experimental pain models. Anesth. Analg., 2013, 116(5), 1162-1169.
[http://dx.doi.org/10.1213/ANE.0b013e318282dda7] [PMID: 23456665]
[32]
Dhar, T.G.M.; Borden, L.A.; Tyagarajan, S.; Smith, K.E.; Branchek, T.A.; Weinshank, R.L.; Gluchowski, C. Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA uptake inhibitors: identification of a ligand with moderate affinity and selectivity for the cloned human GABA transporter GAT-3. J. Med. Chem., 1994, 37(15), 2334-2342.
[http://dx.doi.org/10.1021/jm00041a012] [PMID: 8057281]
[33]
Borden, L.A. GABA transporter heterogeneity: pharma-cology and cellular localization. Neurochem. Int., 1996, 29(4), 335-356.
[http://dx.doi.org/10.1016/0197-0186(95)00158-1] [PMID: 8939442]
[34]
Kvist, T.; Christiansen, B.; Jensen, A.A.; Bräuner-Osborne, H. The four human gamma-aminobutyric acid (GABA) transporters: pharmacological characterization and validation of a highly efficient screening assay. Comb. Chem. High Throughput Screen., 2009, 12(3), 241-249.
[http://dx.doi.org/10.2174/138620709787581684] [PMID: 19275529]
[35]
Madsen, K.K.; Clausen, R.P.; Larsson, O.M.; Krogsgaard-Larsen, P.; Schousboe, A.; White, H.S. Synaptic and extra-synaptic GABA transporters as targets for anti-epileptic drugs. J. Neurochem., 2009, 109(Suppl. 1), 139-144.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05982.x] [PMID: 19393020]
[36]
Pabel, J.; Faust, M.; Prehn, C.; Wörlein, B.; Allmendinger, L.; Höfner, G.; Wanner, K.T. Development of an (S)-1-2-[tris(4-methoxyphenyl)methoxy]ethylpiperidine-3-carboxylic acid [(S)-SNAP-5114] carba analogue inhibitor for murine γ-aminobutyric acid transporter type 4. ChemMedChem, 2012, 7(7), 1245-1255.
[http://dx.doi.org/10.1002/cmdc.201200126] [PMID: 22544452]
[37]
Lie, M.E.K.; Gowing, E.K.; Johansen, N.B.; Dalby, N.O.; Thiesen, L.; Wellendorph, P.; Clarkson, A.N. GAT3 selective substrate l-isoserine upregulates GAT3 expression and increases functional recovery after a focal ischemic stroke in mice. J. Cereb. Blood Flow Metab., 2019, 39(1), 74-88.
[http://dx.doi.org/10.1177/0271678X17744123] [PMID: 29160736]
[38]
Schousboe, A.; Madsen, K.K.; Barker-Haliski, M.L.; White, H.S. The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA trans-porters. Neurochem. Res., 2014, 39(10), 1980-1987.
[http://dx.doi.org/10.1007/s11064-014-1263-9] [PMID: 24627365]
[39]
Schousboe, A.; Wellendorph, P.; Frølund, B.; Clausen, R.P.; Krogsgaard-Larsen, P. Astrocytic GABA trans-porters: pharmacological properties and targets for antiepileptic drugs. Adv. Neurobiol., 2017, 16, 283-296.
[http://dx.doi.org/10.1007/978-3-319-55769-4_14] [PMID: 28828616]
[40]
Clausen, R.P.; Frølund, B.; Larsson, O.M.; Schousboe, A.; Krogsgaard-Larsen, P.; White, H.S. A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochem. Int., 2006, 48(6-7), 637-642.
[http://dx.doi.org/10.1016/j.neuint.2005.12.031] [PMID: 16517017]
[41]
Vogensen, S.B.; Jørgensen, L.; Madsen, K.K.; Borkar, N.; Wellendorph, P.; Skovgaard-Petersen, J.; Schousboe, A.; White, H.S.; Krogsgaard-Larsen, P.; Clausen, R.P. Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J. Med. Chem., 2013, 56(5), 2160-2164.
[http://dx.doi.org/10.1021/jm301872x] [PMID: 23398473]
[42]
Nakada, K.; Yoshikawa, M.; Ide, S.; Suemasa, A.; Kawamura, S.; Kobayashi, T.; Masuda, E.; Ito, Y.; Hayakawa, W.; Katayama, T.; Yamada, S.; Arisawa, M.; Minami, M.; Shuto, S. Cyclopropane-based conformational restriction of GABA by a stereochemical diversity-oriented strategy: identification of an efficient lead for potent inhibitors of GABA transports. Bioorg. Med. Chem., 2013, 21(17), 4938-4950.
[http://dx.doi.org/10.1016/j.bmc.2013.06.063] [PMID: 23886812]
[43]
Kowalczyk, P.; Sałat, K.; Höfner, G.C.; Guzior, N.; Filipek, B.; Wanner, K.T.; Kulig, K. 2-Substituted 4-hydroxybutanamides as potential inhibitors of γ-amino-butyric acid transporters mGAT1-mGAT4: synthesis and biological evaluation. Bioorg. Med. Chem., 2013, 21(17), 5154-5167.
[http://dx.doi.org/10.1016/j.bmc.2013.06.038] [PMID: 23859778]
[44]
Sałat, K.; Kulig, K.; Gajda, J.; Więckowski, K.; Filipek, B.; Malawska, B. Evaluation of anxiolytic-like, anticonvulsant, antidepressant-like and antinociceptive properties of new 2-substituted 4-hydroxybutanamides with affinity for GABA transporters in mice. Pharmacol. Biochem. Behav., 2013, 110, 145-153.
[http://dx.doi.org/10.1016/j.pbb.2013.06.013] [PMID: 23850524]
[45]
Sarup, A.; Larsson, O.M.; Schousboe, A. GABA transporters and GABA-transaminase as drug targets. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(4), 269-277.
[http://dx.doi.org/10.2174/1568007033482788] [PMID: 12871037]
[46]
Damgaard, M.; Al-Khawaja, A.; Vogensen, S.B.; Jurik, A.; Sijm, M.; Lie, M.E.K.; Bæk, M.I.; Rosenthal, E.; Jensen, A.A.; Ecker, G.F.; Frølund, B.; Wellendorph, P.; Clausen, R.P. Identification of the first highly subtype-selective inhibitor of human GABA transporter GAT3. ACS Chem. Neurosci., 2015, 6(9), 1591-1599.
[http://dx.doi.org/10.1021/acschemneuro.5b00150] [PMID: 26154082]
[47]
Petrera, M.; Wein, T.; Allmendinger, L.; Sindelar, M.; Pabel, J.; Höfner, G.; Wanner, K.T. Development of highly potent GAT1 inhibitors: synthesis of nipecotic acid derivatives by suzuki-miyaura cross-coupling reactions. ChemMedChem, 2016, 11(5), 519-538.
[http://dx.doi.org/10.1002/cmdc.201500490] [PMID: 26683881]
[48]
Kragler, A.; Höfner, G.; Wanner, K.T. Synthesis and biological evaluation of aminomethylphenol derivatives as inhibitors of the murine GABA transporters mGAT1-mGAT4. Eur. J. Med. Chem., 2008, 43(11), 2404-2411.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.005] [PMID: 18395300]
[49]
Høg, S.; Greenwood, J.R.; Madsen, K.B.; Larsson, O.M.; Frølund, B.; Schousboe, A.; Krogsgaard-Larsen, P.; Clausen, R.P. Structure-activity relationships of selective GABA uptake inhibitors. Curr. Top. Med. Chem., 2006, 6(17), 1861-1882.
[http://dx.doi.org/10.2174/156802606778249801] [PMID: 17017962]
[50]
Kobayashi, T.; Suemasa, A.; Igawa, A.; Ide, S.; Fukuda, H.; Abe, H.; Arisawa, M.; Minami, M.; Shuto, S. Confor-mationally restricted GABA with Bicyclo[3.1.0]hexane backbone as the first highly selective BGT-1 inhibitor. ACS Med. Chem. Lett., 2014, 5(8), 889-893.
[http://dx.doi.org/10.1021/ml500134k] [PMID: 25147609]
[51]
Yamashita, A.; Singh, S.K.; Kawate, T.; Jin, Y.; Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. Nature, 2005, 437(7056), 215-223.
[http://dx.doi.org/10.1038/nature03978] [PMID: 16041361]
[52]
Penmatsa, A.; Wang, K.H.; Gouaux, E. X-Ray structure of the dopamine transporter in complex with tricyclic antidepressant. Nature, 2013, 503(7474), 85-90.
[http://dx.doi.org/10.1038/nature12533] [PMID: 24037379]
[53]
Coleman, J.A.; Green, E.M.; Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature, 2016, 532(7599), 334-339.
[http://dx.doi.org/10.1038/nature17629] [PMID: 27049939]
[54]
Damgaard, M.; Haugaard, A.S.; Kickinger, S.; Al-khawaja, A.; Lie, M.E.K.; Ecker, G.F. Development of non-GAT1-selective inhibitors: challenges and achievements. Glial Amino Acid Transporters., 2017, 16, 315-332.
[http://dx.doi.org/10.1007/978-3-319-55769-4_16]
[55]
Vogensen, S.B.; Jørgensen, L.; Madsen, K.K.; Jurik, A.; Borkar, N.; Rosatelli, E.; Nielsen, B.; Ecker, G.F.; Schousboe, A.; Clausen, R.P. Structure activity relationship of selective GABA uptake inhibitors. Bioorg. Med. Chem., 2015, 23(10), 2480-2488.
[http://dx.doi.org/10.1016/j.bmc.2015.03.060] [PMID: 25882526]
[56]
Wein, T.; Petrera, M.; Allmendinger, L.; Höfner, G.; Pabel, J.; Wanner, K.T. Different binding modes of small and large binders of GAT1. ChemMedChem, 2016, 11(5), 509-518.
[http://dx.doi.org/10.1002/cmdc.201500534] [PMID: 26804464]
[57]
Quick, M.; Shi, L.; Zehnpfennig, B.; Weinstein, H.; Javitch, J.A. Experimental conditions can obscure the second high-affinity site in LeuT. Nat. Struct. Mol. Biol., 2012, 19(2), 207-211.
[http://dx.doi.org/10.1038/nsmb.2197] [PMID: 22245968]
[58]
Baglo, Y.; Gabrielsen, M.; Sylte, I.; Gederaas, O.A. Homology modeling of human γ-butyric acid transporters and the binding of pro-drugs 5-aminolevulinic acid and methyl aminolevulinic acid used in photodynamic therapy. PLoS One, 2013, 8(6)e65200
[http://dx.doi.org/10.1371/journal.pone.0065200] [PMID: 23762315]
[59]
Zafar, S.; Nguyen, M.E.; Muthyala, R.; Jabeen, I.; Sham, Y.Y. Modeling and simulation of hGAT1: a mechanistic investigation of the GABA transport process. Comput. Struct. Biotechnol. J., 2018, 17, 61-69.
[http://dx.doi.org/10.1016/j.csbj.2018.12.003] [PMID: 30619541]
[60]
Hediger, M.A.; Romero, M.F.; Peng, J. Bin; Rolfs, A.; Takanaga, H.; Bruford, E. A. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch., 2004, 447(5), 465-468.
[http://dx.doi.org/10.1007/s00424-003-1192-y] [PMID: 14624363]
[61]
Zafar, S.; Jabeen, I. GRID-independent molecular descriptor analysis and molecular docking studies to mimic the binding hypothesis of γ-aminobutyric acid transporter 1 (GAT1) inhibitors. PeerJ, 2019, 7e6283
[http://dx.doi.org/10.7717/peerj.6283] [PMID: 30723616]
[62]
Seth, A.; Sharma, P.A.; Tripathi, A.; Choubey, P.K.; Srivastava, P.; Tripathi, P.N.; Shrivastava, S.K. Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med. Chem. Res., 2018, 27(4), 1206-1225.
[http://dx.doi.org/10.1007/s00044-018-2141-9]
[63]
Singh, R.B.; Singh, G.K.; Chaturvedi, K.; Kumar, D.; Singh, S.K.; Zaman, M.K. Design, synthesis, characteri-zation, and molecular modeling studies of novel oxadiazole derivatives of nipecotic acid as potential anticonvulsant and antidepressant agents. Med. Chem. Res., 2018, 27(1), 137-152.
[http://dx.doi.org/10.1007/s00044-017-2047-y]
[64]
Ali, F.E.; Bondinell, W.E.; Dandridge, P.A.; Frazee, J.S.; Garvey, E.; Girard, G.R.; Kaiser, C.; Ku, T.W.; Lafferty, J.J.; Moonsammy, G.I. Orally active and potent inhibitors of gamma-aminobutyric acid uptake. J. Med. Chem., 1985, 28(5), 653-660.
[http://dx.doi.org/10.1021/jm50001a020] [PMID: 2985785]
[65]
Andersen, K.E.; Braestrup, C.; Grønwald, F.C.; Jørgensen, A.S.; Nielsen, E.B.; Sonnewald, U.; Sørensen, P.O.; Suzdak, P.D.; Knutsen, L.J. The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading to the choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. J. Med. Chem., 1993, 36(12), 1716-1725.
[http://dx.doi.org/10.1021/jm00064a005] [PMID: 8510100]
[66]
Knutsen, L.J.S.; Andersen, K.E.; Lau, J.; Lundt, B.F.; Henry, R.F.; Morton, H.E.; Naerum, L.; Petersen, H.; Stephensen, H.; Suzdak, P.D.; Swedberg, M.D.; Thomsen, C.; Sørensen, P.O. Synthesis of novel GABA uptake inhibitors. 3. Diaryloxime and diarylvinyl ether derivatives of nipecotic acid and guvacine as anticonvulsant agents. J. Med. Chem., 1999, 42(18), 3447-3462.
[http://dx.doi.org/10.1021/jm981027k] [PMID: 10479278]
[67]
Andersen, K.E.; Sørensen, J.L.; Huusfeldt, P.O.; Knutsen, L.J.S.; Lau, J.; Lundt, B.F.; Petersen, H.; Suzdak, P.D.; Swedberg, M.D.B. Synthesis of novel GABA uptake inhibitors. 4. Bioisosteric transformation and successive optimization of known GABA uptake inhibitors leading to a series of potent anticonvulsant drug candidates. J. Med. Chem., 1999, 42(21), 4281-4291.
[http://dx.doi.org/10.1021/jm980492e] [PMID: 10543872]
[68]
Carroll, F.I.; Mascarella, S.W.; Kuzemko, M.A.; Gao, Y.; Abraham, P.; Lewin, A.H.; Boja, J.W.; Kuhar, M.J. Synthesis, ligand binding, and QSAR (CoMFA and classical) study of 3 beta-(3′-substituted phenyl)-, 3 beta-(4′-substituted phenyl)-, and 3 beta-(3′,4′-disubstituted phenyl)tropane-2 beta-carboxylic acid methyl esters. J. Med. Chem., 1994, 37(18), 2865-2873.
[http://dx.doi.org/10.1021/jm00044a007] [PMID: 8071935]
[69]
Borden, L.A.; Smith, K.E.; Vaysse, P.J.; Gustafson, E.L.; Weinshank, R.L.; Branchek, T.A. Re-evaluation of GABA transport in neuronal and glial cell cultures: correlation of pharmacology and mRNA localization. Receptors Channels, 1995, 3(2), 129-146.
[PMID: 8581400]
[70]
Schousboe, A.; Thorbek, P.; Hertz, L.; Krogsgaard-Larsen, P. Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J. Neurochem., 1979, 33(1), 181-189.
[http://dx.doi.org/10.1111/j.1471-4159.1979.tb11720.x] [PMID: 458448]
[71]
Madsen, K.K.; White, H.S.; Schousboe, A. Neuronal and non-neuronal GABA transporters as targets for anti-epileptic drugs. Pharmacol. Ther., 2010, 125(3), 394-401.
[http://dx.doi.org/10.1016/j.pharmthera.2009.11.007] [PMID: 20026354]
[72]
Borden, L.A.; Dhar, T.G.; Smith, K.E.; Branchek, T.A.; Gluchowski, C.; Weinshank, R.L. Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Receptors Channels, 1994, 2(3), 207-213.
[PMID: 7874447]
[73]
White, H.S.; Sarup, A.; Bolvig, T.; Kristensen, A.S.; Petersen, G.; Nelson, N.; Pickering, D.S.; Larsson, O.M.; Frølund, B.; Krogsgaard-Larsen, P. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor its N-alkylated analogs. J. Pharmacol. Exp. Ther., 2002, 302(2), 636-644.
[http://dx.doi.org/10.1124/jpet.102.034819] [PMID: 12130726]
[74]
Schousboe, A.; Hertz, L. Dale’s Principle and Commu-nication Between Neurones; Pergamon Press, 1983, pp. 113-141.
[http://dx.doi.org/10.1016/B978-0-08-029789-7.50012-0]
[75]
Krogsgaard-Larsen, P.; Johnston, G.A.R. Inhibition of GABA uptake in rat brain slices by nipecotic acid, various isoxazoles and related compounds. J. Neurochem., 1975, 25(6), 797-802.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb04410.x] [PMID: 1206398]
[76]
Sitka, I.; Allmendinger, L.; Fülep, G.; Höfner, G.; Wanner, K.T. Synthesis of N-substituted acyclic β-amino acids and their investigation as GABA uptake inhibitors. Eur. J. Med. Chem., 2013, 65, 487-499.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.063] [PMID: 23770450]
[77]
Clausen, R.P.; Moltzen, E.K.; Perregaard, J.; Lenz, S.M.; Sanchez, C.; Falch, E.; Frølund, B.; Bolvig, T.; Sarup, A.; Larsson, O.M.; Schousboe, A.; Krogsgaard-Larsen, P. Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg. Med. Chem., 2005, 13(3), 895-908.
[http://dx.doi.org/10.1016/j.bmc.2004.10.029] [PMID: 15653355]
[78]
Andersen, K.E.; Sørensen, J.L.; Lau, J.; Lundt, B.F.; Petersen, H.; Huusfeldt, P.O.; Suzdak, P.D.; Swedberg, M.D. Synthesis of novel gamma-aminobutyric acid (GABA) uptake inhibitors. 5.(1) Preparation and structure-activity studies of tricyclic analogues of known GABA uptake inhibitors. J. Med. Chem., 2001, 44(13), 2152-2163.
[http://dx.doi.org/10.1021/jm990513k] [PMID: 11405652]
[79]
Sindelar, M.; Lutz, T.A.; Petrera, M.; Wanner, K.T. Focused pseudostatic hydrazone libraries screened by mass spectrometry binding assay: optimizing affinities toward γ-aminobutyric acid transporter 1. J. Med. Chem., 2013, 56(3), 1323-1340.
[http://dx.doi.org/10.1021/jm301800j] [PMID: 23336362]
[80]
Zepperitz, C.; Höfner, G.; Wanner, K.T. MS-binding assays: kinetic, saturation, and competitive experiments based on quantitation of bound marker as exemplified by the GABA transporter mGAT1. ChemMedChem, 2006, 1(2), 208-217.
[http://dx.doi.org/10.1002/cmdc.200500038] [PMID: 16892353]
[81]
Sindelar, M.; Wanner, K.T. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1). ChemMedChem, 2012, 7(9), 1678-1690.
[http://dx.doi.org/10.1002/cmdc.201200201] [PMID: 22689508]
[82]
Polley, M.; Höfner, G.; Wanner, K.T. Development and validation of an LC-ESI-MS/MS quantification method for a potential γ-aminobutyric acid transporter 3 (GAT3) marker and its application in preliminary MS binding assays. Biomed. Chromatogr., 2013, 27(5), 641-654.
[http://dx.doi.org/10.1002/bmc.2841] [PMID: 23225341]
[83]
Schmitt, S.; Höfner, G.; Wanner, K.T. Application of MS transport assays to the four human γ-aminobutyric acid transporters. ChemMedChem, 2015, 10(9), 1498-1510.
[http://dx.doi.org/10.1002/cmdc.201500254] [PMID: 26220444]
[84]
Höfner, G.; Wanner, K.T. Competitive binding assays made easy with a native marker and mass spectrometric quantification. Angew. Chem. Int. Ed. Engl., 2003, 42(42), 5235-5237.
[http://dx.doi.org/10.1002/anie.200351806] [PMID: 14601181]
[85]
Li, J.; Nowak, P.; Otto, S. Dynamic combinatorial libraries: from exploring molecular recognition to systems chemistry. J. Am. Chem. Soc., 2013, 135(25), 9222-9239.
[http://dx.doi.org/10.1021/ja402586c] [PMID: 23731408]
[86]
Kern, F.; Wanner, K.T. Screening oxime libraries by means of mass spectrometry (MS) binding assays: Identification of new highly potent inhibitors to optimized inhibitors γ-aminobutyric acid transporter 1. Bioorg. Med. Chem., 2019, 27(7), 1232-1245.
[http://dx.doi.org/10.1016/j.bmc.2019.02.015] [PMID: 30777661]
[87]
Lutz, T.; Wein, T.; Höfner, G.; Wanner, K.T. Development of highly potent GAT1 inhibitors: synthesis of nipecotic acid derivatives with N-arylalkynyl substituents. ChemMedChem, 2017, 12(5), 362-371.
[http://dx.doi.org/10.1002/cmdc.201600599] [PMID: 28125164]
[88]
Tóth, K.; Höfner, G.; Wanner, K.T. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with an alkyne spacer as GABA uptake inhibitors. Bioorg. Med. Chem., 2018, 26(12), 3668-3687.
[http://dx.doi.org/10.1016/j.bmc.2018.05.049] [PMID: 29886082]
[89]
Tóth, K.; Höfner, G.; Wanner, K.T. Synthesis and biological evaluation of novel N-substituted nipecotic acid derivatives with a cis-alkene spacer as GABA uptake inhibitors. Bioorg. Med. Chem., 2019, 27(5), 822-831.
[http://dx.doi.org/10.1016/j.bmc.2019.01.024] [PMID: 30718063]
[90]
Quandt, G.; Höfner, G.; Wanner, K.T. Synthesis and evaluation of N-substituted nipecotic acid derivatives with an unsymmetrical bis-aromatic residue attached to a vinyl ether spacer as potential GABA uptake inhibitors. Bioorg. Med. Chem., 2013, 21(11), 3363-3378.
[http://dx.doi.org/10.1016/j.bmc.2013.02.056] [PMID: 23598250]
[91]
Hellenbrand, T.; Höfner, G.; Wein, T.; Wanner, K.T. Synthesis of 4-substituted nipecotic acid derivatives and their evaluation as potential GABA uptake inhibitors. Bioorg. Med. Chem., 2016, 24(9), 2072-2096.
[http://dx.doi.org/10.1016/j.bmc.2016.03.038] [PMID: 27039250]
[92]
Steffan, T.; Renukappa-Gutke, T.; Höfner, G.; Wanner, K.T. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids. Bioorg. Med. Chem., 2015, 23(6), 1284-1306.
[http://dx.doi.org/10.1016/j.bmc.2015.01.035] [PMID: 25698617]
[93]
Huber, S.K.; Höfner, G.; Wanner, K.T. Identification of pyrrolidine-3-acetic acid derived oximes as potent inhibitors of γ-aminobutyric acid transporter 1 through library screening with MS binding assays. ChemMedChem, 2018, 13(23), 2488-2503.
[http://dx.doi.org/10.1002/cmdc.201800556] [PMID: 30485691]
[94]
Huber, S.K.; Höfner, G.; Wanner, K.T. Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1). Bioorg. Med. Chem., 2019, 27(13), 2753-2763.
[http://dx.doi.org/10.1016/j.bmc.2019.05.001] [PMID: 31097402]
[95]
Quandt, G.; Höfner, G.; Pabel, J.; Dine, J.; Eder, M.; Wanner, K.T. First photoswitchable neurotransmitter transporter inhibitor: light-induced control of γ-aminobutyric acid transporter 1 (GAT1) activity in mouse brain. J. Med. Chem., 2014, 57(15), 6809-6821.
[http://dx.doi.org/10.1021/jm5008566] [PMID: 25025595]
[96]
Lutz, T.; Wein, T.; Höfner, G.; Pabel, J.; Eder, M.; Dine, J.; Wanner, K.T. Development of new photoswitchable azobenzene based γ-aminobutyric acid (GABA) uptake inhibitors with distinctly enhanced potency upon photoactivation. J. Med. Chem., 2018, 61(14), 6211-6235.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00629] [PMID: 29924931]
[97]
Schaarschmidt, M.; Höfner, G.; Wanner, K.T. Synthesis and biological evaluation of nipecotic acid and guvacine derived 1,3-disubstituted allenes as inhibitors of murine GABA transporter mGAT1. ChemMedChem, 2019, 14(12), 1135-1151.
[http://dx.doi.org/10.1002/cmdc.201900170] [PMID: 30957949]
[98]
Hauke, T.J.; Wein, T.; Höfner, G.; Wanner, K.T. Novel allosteric ligands of γ-aminobutyric acid transporter 1 (GAT1) by MS based screening of pseudostatic hydrazone libraries. J. Med. Chem., 2018, 61(22), 10310-10332.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01602] [PMID: 30376325]
[99]
Hauke, T.J.; Höfner, G.; Wanner, K.T. MS-based screening of 5-substituted nipecotic acid derived hydrazone libraries as ligands of the GABA transporter 1. ChemMedChem, 2019, 14(5), 583-593.
[http://dx.doi.org/10.1002/cmdc.201800729] [PMID: 30663849]
[100]
Suemasa, A.; Watanabe, M.; Kobayashi, T.; Suzuki, H.; Fukuda, H.; Minami, M.; Shuto, S. Design and synthesis of cyclopropane-based conformationally restricted GABA analogues as selective inhibitors for betaine/GABA transporter 1. Bioorg. Med. Chem. Lett., 2018, 28(20), 3395-3399.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.031] [PMID: 30177378]
[101]
Al-Khawaja, A.; Petersen, J.G.; Damgaard, M.; Jensen, M.H.; Vogensen, S.B.; Lie, M.E.K.; Kragholm, B.; Bräuner-Osborne, H.; Clausen, R.P.; Frølund, B.; Wellendorph, P. Pharmacological identification of a guanidine-containing β-alanine analogue with low micromolar potency and selectivity for the betaine/GABA transporter 1 (BGT1). Neurochem. Res., 2014, 39(10), 1988-1996.
[http://dx.doi.org/10.1007/s11064-014-1336-9] [PMID: 24852577]
[102]
White, H.S.; Watson, W.P.; Hansen, S.L.; Slough, S.; Perregaard, J.; Sarup, A.; Bolvig, T.; Petersen, G.; Larsson, O.M.; Clausen, R.P.; Frølund, B.; Falch, E.; Krogsgaard-Larsen, P.; Schousboe, A. First demonstration of a functional role for central nervous system betaine/gamma-aminobutyric acid transporter (mGAT2) based on syner-gistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J. Pharmacol. Exp. Ther., 2005, 312(2), 866-874.
[http://dx.doi.org/10.1124/jpet.104.068825] [PMID: 15550575]
[103]
Dalby, N.O. GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology, 2000, 39(12), 2399-2407.
[http://dx.doi.org/10.1016/S0028-3908(00)00075-7] [PMID: 10974324]
[104]
Thomsen, C.; Sørensen, P.O.; Egebjerg, J. 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter. Br. J. Pharmacol., 1997, 120(6), 983-985.
[http://dx.doi.org/10.1038/sj.bjp.0700957] [PMID: 9134205]
[105]
Kragler, A.; Höfner, G.; Wanner, K.T. Novel parent struc-tures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur. J. Pharmacol., 2005, 519(1-2), 43-47.
[http://dx.doi.org/10.1016/j.ejphar.2005.06.053] [PMID: 16111674]
[106]
Kragholm, B.; Kvist, T.; Madsen, K.K.; Jørgensen, L.; Vogensen, S.B.; Schousboe, A.; Clausen, R.P.; Jensen, A.A.; Bräuner-Osborne, H. Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochem. Pharmacol., 2013, 86(4), 521-528.
[http://dx.doi.org/10.1016/j.bcp.2013.06.007] [PMID: 23792119]
[107]
Zhao, X.; Hoesl, C.E.; Hoefner, G.C.; Wanner, K.T. Synthesis and biological evaluation of new GABA-uptake inhibitors derived from proline and from pyrrolidine-2-acetic acid. Eur. J. Med. Chem., 2005, 40(3), 231-247.
[http://dx.doi.org/10.1016/j.ejmech.2004.11.004] [PMID: 15725493]
[108]
Zhao, X.; Pabel, J.; Höfner, G.C.; Wanner, K.T. Synthesis and biological evaluation of 4-hydroxy-4-(4-methoxy-phenyl)-substituted proline and pyrrolidin-2-ylacetic acid derivatives as GABA uptake inhibitors. Bioorg. Med. Chem., 2013, 21(2), 470-484.
[http://dx.doi.org/10.1016/j.bmc.2012.11.015] [PMID: 23245753]
[109]
Kerscher-Hack, S.; Renukappa-Gutke, T.; Höfner, G.; Wanner, K.T. Synthesis and biological evaluation of a series of N-alkylated imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors. Eur. J. Med. Chem., 2016, 124, 852-880.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.012] [PMID: 27654218]
[110]
Hauke, T.J.; Höfner, G.; Wanner, K.T. Generation and screening of pseudostatic hydrazone libraries derived from 5-substituted nipecotic acid derivatives at the GABA transporter mGAT4. Bioorg. Med. Chem., 2019, 27(1), 144-152.
[http://dx.doi.org/10.1016/j.bmc.2018.11.028] [PMID: 30503411]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy