Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Encapsulation of Plant-derived Bioactive Ingredients through Electrospraying for Nutraceuticals and Functional Foods Applications

Author(s): Laura G. Gómez-Mascaraque and Amparo Lopez-Rubio*

Volume 27, Issue 17, 2020

Page: [2872 - 2886] Pages: 15

DOI: 10.2174/0929867326666191010115343

Price: $65

Open Access Journals Promotions 2
Abstract

The electrospraying technique, which consists of electrohydrodynamic atomization of polymeric fluids, can be used to generate dry nano- and microparticles by subjecting a polymer solution, suspension or melt to a high voltage (typically in the range of 7-20 kV) electric field. This potential can be exploited for developing nano- and microencapsulation structures under mild temperature conditions. Thus, it constitutes a promising alternative to conventional microencapsulation techniques for sensitive ingredients, like most plant-derived bioactive compounds, especially for their application in the food sector. Given the importance of plants as one of the major sources of dietary bioactive compounds, significant attention has been recently paid to research the encapsulation of phytochemicals through novel techniques such as electrospraying, aiming to provide new tools for the development of innovative functional food products and nutraceuticals. In this review, the latest advances in the application of electrospraying for nano- and microencapsulation of phytochemicals are discussed, with a focus on their potential use in the food sector.

Keywords: Electrospraying, Nutraceuticals, encapsulation, nano- and microencapsulation, electrospraying technique, phytochemicals.

[1]
Rhodes, M.; Price, K. Phytochemicals: classification and occurrence in: Encyclopedia of Human Nutrition; Caballero, B.; Sadler, M.J; Strain, J.J., Ed.; Elsevier Science B. V: Amsterdam, 1999, pp. 1539-1549.
[2]
Ozen, A.E.; Pons, A.; Tur, J.A. Worldwide consumption of functional foods: a systematic review. Nutr. Rev., 2012, 70(8), 472-481.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00492.x] [PMID: 22835140]
[3]
Gómez-Mascaraque, L.G.; Lagarón, J.M.; López-Rubio, A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll., 2015, 49(Suppl. C), 42-52.
[http://dx.doi.org/10.1016/j.foodhyd.2015.03.006]
[4]
Deng, X.X.; Chen, Z.; Huang, Q.; Fu, X.; Tang, C.H. Spray‐drying microencapsulation of β‐carotene by soy protein isolate and/or OSA‐modified starch. J. Appl. Polym. Sci., 2014, 131(12), 40399.
[http://dx.doi.org/10.1002/app.40399]
[5]
Gómez-Mascaraque, L.G.; López-Rubio, A. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J. Colloid Interface Sci., 2016, 465, 259-270.
[http://dx.doi.org/10.1016/j.jcis.2015.11.061] [PMID: 26674243]
[6]
Lafarga, T.; Hayes, M. Bioactive protein hydrolysates in the functional food ingredient industry: overcoming current challenges. Food Rev. Int., 2017, 33(3), 217-246.
[http://dx.doi.org/10.1080/87559129.2016.1175013]
[7]
Jiménez-Martín, E.; Gharsallaoui, A.; Pérez-Palacios, T.; Carrascal, J.; Rojas, T. Suitability of using monolayered and multilayered emulsions for microencapsulation of ω-3 fatty acids by spray drying: effect of storage at different temperatures. Food Bioprocess Technol., 2014, 8(1), 100-111.
[http://dx.doi.org/10.1007/s11947-014-1382-y]
[8]
Jafari, S.M. Nanoencapsulation technologies for the food and nutraceutical industries; Academic Press, 2017.
[9]
Ye, A.; Cui, J.; Taneja, A.; Zhu, X.; Singh, H. Evaluation of processed cheese fortified with fish oil emulsion. Food Res. Int., 2009, 42(8), 1093-1098.
[http://dx.doi.org/10.1016/j.foodres.2009.05.006]
[10]
Đorđević, V.; Balanč, B.; Belščak-Cvitanović, A.; Lević, S.; Trifković, K.; Kalušević, A.; Kostić, I.; Komes, D.; Bugarski, B.; Nedović, V. Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng. Rev., 2015, 7(4), 452-490.
[http://dx.doi.org/10.1007/s12393-014-9106-7]
[11]
Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res. Int., 2007, 40(9), 1107-1121.
[http://dx.doi.org/10.1016/j.foodres.2007.07.004]
[12]
Nedović, V.; Kalušević, A.; Manojlović, V.; Petrović, T.; Bugarski, B. Encapsulation systems in the food industry. In: Advances in food process engineering research and applications; Yanniotis, s.; Taoukis, P.; STOFOROS, N.; Karathanos, V.T., Eds.; Springer, 2013; pp. 229-253.
[http://dx.doi.org/10.1007/978-1-4614-7906-2_13]
[13]
Zuidam, N.J.; Shimoni, E. Overview of microencapsulates for use in food products or processes and methods to make them. In: Encapsulation technologies for active food ingredients and food processing; Zuidam, N.J.; Viktor, N., Eds.; Springer, 2010; pp. 3-29.
[http://dx.doi.org/10.1007/978-1-4419-1008-0_2]
[14]
Kwak, H-S. Overview of nano- and microencapsulation for foods. In: Nano-and Microencapsulation for Foods; Kwak, H-S., Ed.; Wiley, 2014; pp. 1-14.
[http://dx.doi.org/10.1002/9781118292327]
[15]
Silva, D.; Favaro‐Trindade, C.; Rocha, G.; Thomazini, M. Microencapsulation of lycopene by gelatin-pectin complex coacervation. J. Food Process. Preserv., 2012, 36(2), 185-190.
[http://dx.doi.org/10.1111/j.1745-4549.2011.00575.x]
[16]
Leclercq, S.; Harlander, K.R.; Reineccius, G.A. Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour Fragrance J., 2009, 24(1), 17-24.
[http://dx.doi.org/10.1002/ffj.1911]
[17]
Tapia-Hernández, J.A.; Torres-Chávez, P.I.; Ramírez-Wong, B.; Rascón-Chu, A.; Plascencia-Jatomea, M.; Barreras-Urbina, C.G.; Rangel-Vázquez, N.A.; Rodríguez-Félix, F. Micro- and nanoparticles by electrospray: advances and applications in foods. J. Agric. Food Chem., 2015, 63(19), 4699-4707.
[http://dx.doi.org/10.1021/acs.jafc.5b01403] [PMID: 25938374]
[18]
Gómez-Mascaraque, L.G.; Ambrosio-Martín, J.; Fabra, M.J.; Masia, R.P.; Lopez-Rubio, A. Novel nanoencapsulation structures for functional foods and nutraceutical applications in: Nanotechnology in Nutraceuticals; Sen, S; Pathak, Y., Ed.; CRC Press, 2016, pp. 373-395.
[19]
Chakraborty, S.; Liao, I.C.; Adler, A.; Leong, K.W. Electrohydrodynamics: A facile technique to fabricate drug delivery systems. Adv. Drug Deliv. Rev., 2009, 61(12), 1043-1054.
[http://dx.doi.org/10.1016/j.addr.2009.07.013] [PMID: 19651167]
[20]
Jaworek, A.; Sobczyk, A.T. Electrospraying route to nanotechnology: an overview. J. Electrost., 2008, 66(3-4), 197-219.
[http://dx.doi.org/10.1016/j.elstat.2007.10.001]
[21]
Bhushani, J.A.; Anandharamakrishnan, C. Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci. Technol., 2014, 38(1), 21-33.
[http://dx.doi.org/10.1016/j.tifs.2014.03.004]
[22]
Rosell-Llompart, J.; Grifoll, J.; Loscertales, I.G. Electrosprays in the cone-jet mode: from Taylor cone formation to spray development. J. Aerosol Sci., 2018.
[http://dx.doi.org/10.1016/j.jaerosci.2018.04.008]
[23]
Bhardwaj, N.; Kundu, S.C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv., 2010, 28(3), 325-347.
[http://dx.doi.org/10.1016/j.biotechadv.2010.01.004] [PMID: 20100560]
[24]
Alehosseini, A.; Ghorani, B.; Sarabi-Jamab, M.; Tucker, N. Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit. Rev. Food Sci. Nutr., 2018, 58(14), 2346-2363.
[http://dx.doi.org/10.1080/10408398.2017.1323723] [PMID: 28609112]
[25]
Kriegel, C.; Arecchi, A.; Kit, K.; McClements, D.J.; Weiss, J. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr., 2008, 48(8), 775-797.
[http://dx.doi.org/10.1080/10408390802241325] [PMID: 18756399]
[26]
Dumitriu, R.P.; Mitchell, G.R.; Davis, F.J.; Vasile, C. Functionalized coatings by electrospinning for anti-oxidant food packaging. Procedia Manufacturing, 2017, 12, 59-65.
[http://dx.doi.org/10.1016/j.promfg.2017.08.008]
[27]
Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocoll., 2016, 55, 11-18.
[http://dx.doi.org/10.1016/j.foodhyd.2015.10.026]
[28]
Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R.; Tromp, R.H. Electrospray assisted fabrication of hydrogel microcapsules by single-and double-stage procedures for encapsulation of probiotics. Food Bioprod. Process., 2017, 102, 250-259.
[http://dx.doi.org/10.1016/j.fbp.2017.01.004]
[29]
Doshi, J.; Reneker, D.H. Electrospinning process and applications of electrospun fibers. J. Electrost., 1995, 35(2-3), 151-160.
[http://dx.doi.org/10.1016/0304-3886(95)00041-8]
[30]
Gómez-Mascaraque, L.G.; Sanchez, G.; López-Rubio, A. Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr. Polym., 2016, 150(Suppl. C), 121-130.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.012] [PMID: 27312621]
[31]
Gómez-Estaca, J.; Gavara, R.; Hernández-Muñoz, P. Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov. Food Sci. Emerg. Technol., 2015, 29, 302-307.
[http://dx.doi.org/10.1016/j.ifset.2015.03.004]
[32]
Ramakrishna, S. An introduction to electrospinning and nanofibers; World Sci, 2005.
[http://dx.doi.org/10.1142/5894]
[33]
Pérez-Masiá, R.; Lagaron, J.M.; López-Rubio, A. Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food Bioprocess Technol., 2014, 7(11), 3236-3245.
[http://dx.doi.org/10.1007/s11947-014-1304-z]
[34]
Khoshakhlagh, K.; Mohebbi, M.; Koocheki, A.; Allafchian, A. Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 43-52.
[http://dx.doi.org/10.1016/j.bcdf.2018.03.001]
[35]
Eltayeb, M.; Stride, E.; Edirisinghe, M.; Harker, A. Electrosprayed nanoparticle delivery system for controlled release. Mater. Sci. Eng. C, 2016, 66, 138-146.
[http://dx.doi.org/10.1016/j.msec.2016.04.001] [PMID: 27207047]
[36]
Gómez-Estaca, J.; Balaguer, M.P.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll., 2017, 70, 313-320.
[http://dx.doi.org/10.1016/j.foodhyd.2017.04.019]
[37]
Gómez-Mascaraque, L.G.; Tordera, F.; Fabra, M.J.; Martínez-Sanz, M.; Lopez-Rubio, A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innov. Food Sci. Emerg. Technol., 2019, 51, 2-11.
[http://dx.doi.org/10.1016/j.ifset.2018.03.023]
[38]
Gomez-Mascaraque, L.G.; Morfin, R.C.; Pérez-Masiá, R.; Sanchez, G.; Lopez-Rubio, A. Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in vitro digestion. Lebensm. Wiss. Technol., 2016, 69, 438-446.
[http://dx.doi.org/10.1016/j.lwt.2016.01.071]
[39]
López-Rubio, A.; Lagaron, J.M. Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innov. Food Sci. Emerg. Technol., 2012, 13, 200-206.
[http://dx.doi.org/10.1016/j.ifset.2011.10.012]
[40]
Pérez-Masiá, R.; Lagaron, J.M.; López-Rubio, A. Surfactant-aided electrospraying of low molecular weight carbohydrate polymers from aqueous solutions. Carbohydr. Polym., 2014, 101, 249-255.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.032] [PMID: 24299771]
[41]
Ma, J-J.; Mao, X-Y.; Wang, Q.; Yang, S.; Zhang, D.; Chen, S-W.; Li, Y-H. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. Lebensm. Wiss. Technol., 2014, 56(2), 296-302.
[http://dx.doi.org/10.1016/j.lwt.2013.12.019]
[42]
Malaki Nik, A.; Wright, A.J.; Corredig, M. Interfacial design of protein-stabilized emulsions for optimal delivery of nutrients. Food Funct., 2010, 1(2), 141-148.
[http://dx.doi.org/10.1039/c0fo00099j] [PMID: 21776464]
[43]
Livney, Y.D. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci., 2010, 15(1), 73-83.
[http://dx.doi.org/10.1016/j.cocis.2009.11.002]
[44]
McClements, D.J. Protein-stabilized emulsions. Curr. Opin. Colloid Interface Sci., 2004, 9(5), 305-313.
[http://dx.doi.org/10.1016/j.cocis.2004.09.003]
[45]
Torres-Giner, S.; Martinez-Abad, A.; Ocio, M.J.; Lagaron, J.M. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J. Food Sci., 2010, 75(6), N69-N79.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01678.x] [PMID: 20722943]
[46]
Gómez-Mascaraque, L.G.; Perez-Masiá, R.; González-Barrio, R.; Periago, M.J.; López-Rubio, A. Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of β-carotene. Food Hydrocoll., 2017, 73, 1-12.
[http://dx.doi.org/10.1016/j.foodhyd.2017.06.019]
[47]
Bhushani, J.A.; Kurrey, N.K.; Anandharamakrishnan, C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J. Food Eng., 2017, 199, 82-92.
[http://dx.doi.org/10.1016/j.jfoodeng.2016.12.010]
[48]
Costamagna, M.S.; Gómez-Mascaraque, L.G.; Zampini, I.C.; Alberto, M.R.; Pérez, J.; López-Rubio, A.; Isla, M.I. Microencapsulated chañar phenolics: A potential ingredient for functional foods development. J. Funct. Foods, 2017, 37(Suppl. C), 523-530.
[http://dx.doi.org/10.1016/j.jff.2017.08.018]
[49]
Gomez-Estaca, J.; Balaguer, M.; Gavara, R.; Hernandez-Munoz, P. Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll., 2012, 28(1), 82-91.
[http://dx.doi.org/10.1016/j.foodhyd.2011.11.013]
[50]
Liu, Z-P.; Zhang, Y-Y.; Yu, D-G.; Wu, D.; Li, H-L. Fabrication of sustained-release zein nanoparticles via modified coaxial electrospraying. Chem. Eng. J., 2018, 334, 807-816.
[http://dx.doi.org/10.1016/j.cej.2017.10.098]
[51]
Zhang, L.; Huang, J.; Si, T.; Xu, R.X. Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev. Med. Devices, 2012, 9(6), 595-612.
[http://dx.doi.org/10.1586/erd.12.58] [PMID: 23249155]
[52]
Zhang, C.; Yao, Z-C.; Ding, Q.; Choi, J.J.; Ahmad, Z.; Chang, M-W.; Li, J-S. Tri-needle coaxial electrospray engineering of magnetic polymer yolk-shell particles possessing dual-imaging modality, multiagent compartments, and trigger release potential. ACS Appl. Mater. Interfaces, 2017, 9(25), 21485-21495.
[http://dx.doi.org/10.1021/acsami.7b05580] [PMID: 28589726]
[53]
Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem., 2015, 168, 124-133.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.051] [PMID: 25172691]
[54]
Pérez-Masiá, R.; Lagaron, J.M.; Lopez-Rubio, A. Morphology and stability of edible lycopene-containing micro-and nanocapsules produced through electrospraying and spray drying. Food Bioprocess Technol., 2015, 8(2), 459-470.
[http://dx.doi.org/10.1007/s11947-014-1422-7]
[55]
López-Rubio, A.; Sanchez, E.; Wilkanowicz, S.; Sanz, Y.; Lagaron, J.M. Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll., 2012, 28(1), 159-167.
[http://dx.doi.org/10.1016/j.foodhyd.2011.12.008]
[56]
Gómez-Mascaraque, L.G.; Casagrande Sipoli, C.; de La Torre, L.G.; López-Rubio, A. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin. Food Chem., 2017, 233, 343-350.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.133] [PMID: 28530583]
[57]
Gómez-Mascaraque, L.G.; Sipoli, C.C.; de La Torre, L.G.; López-Rubio, A. A step forward towards the design of a continuous process to produce hybrid liposome/protein microcapsules. J. Food Eng., 2017, 214, 175-181.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.07.003]
[58]
Gómez-Mascaraque, L.G.; Llavata-Cabrero, B.; Martínez-Sanz, M.; Fabra, M.J.; López-Rubio, A. Self-assembled gelatin-ι-carrageenan encapsulation structures for intestinal-targeted release applications. J. Colloid Interface Sci., 2018, 517, 113-123.
[http://dx.doi.org/10.1016/j.jcis.2018.01.101] [PMID: 29421671]
[59]
Erencia, M.; Cano, F.; Tornero, J.A.; Macanás, J.; Carrillo, F. Resolving the electrospinnability zones and diameter prediction for the electrospinning of the gelatin/water/acetic acid system. Langmuir, 2014, 30(24), 7198-7205.
[http://dx.doi.org/10.1021/la501183f] [PMID: 24870557]
[60]
Okutan, N.; Terzi, P.; Altay, F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll., 2014, 39, 19-26.
[http://dx.doi.org/10.1016/j.foodhyd.2013.12.022]
[61]
Gómez-Mascaraque, L.G.; Ambrosio-Martín, J.; Perez-Masiá, R.; Lopez-Rubio, A. Impact of acetic acid on the survival of L. plantarum upon microencapsulation by coaxial electrospraying. J. Healthc. Eng., 2017, 20174698079
[http://dx.doi.org/10.1155/2017/4698079] [PMID: 29065607]
[62]
Gómez-Mascaraque, L.G.; Hernández-Rojas, M.; Tarancón, P.; Tenon, M.; Feuillère, N.; Ruiz, J.F.V.; Fiszman, S.; López-Rubio, A. Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. Lebensm. Wiss. Technol., 2017, 81, 77-86.
[http://dx.doi.org/10.1016/j.lwt.2017.03.041]
[63]
Gómez-Mascaraque, L.G.; Fabra, M.J.; Castro-Mayorga, J.L. Nanostructuring biopolymers for improved food quality and safety. In: Biopolymers for Food Design; Grumezescu, A.M.; Maria, A., Eds.; Elsevier, 2018; pp. 33-64.
[64]
Fathi, M.; Martin, A.; McClements, D.J. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci. Technol., 2014, 39(1), 18-39.
[http://dx.doi.org/10.1016/j.tifs.2014.06.007]
[65]
Mohan, A.; Rajendran, S.R.; He, Q.S.; Bazinet, L.; Udenigwe, C.C. Encapsulation of food protein hydrolysates and peptides: a review. RSC Advances, 2015, 5(97), 79270-79278.
[http://dx.doi.org/10.1039/C5RA13419F]
[66]
Stijnman, A.C.; Bodnar, I.; Tromp, R.H. Electrospinning of food-grade polysaccharides. Food Hydrocoll., 2011, 25(5), 1393-1398.
[http://dx.doi.org/10.1016/j.foodhyd.2011.01.005]
[67]
Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R.; Tromp, R.H. Electrospray-assisted drying of live probiotics in acacia gum microparticles matrix. Carbohydr. Polym., 2018, 183, 183-191.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.001] [PMID: 29352873]
[68]
Sun, K.; Li, Z. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym. Lett., 2011, 5(4), 342-361.
[http://dx.doi.org/10.3144/expresspolymlett.2011.34]
[69]
Gómez-Mascaraque, L.G.; Méndez, J.A.; Fernández-Gutiérrez, M.; Vázquez, B.; San Román, J. Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan. Acta Biomater., 2014, 10(2), 798-811.
[http://dx.doi.org/10.1016/j.actbio.2013.10.003] [PMID: 24121253]
[70]
Moreno, J.A.S.; Mendes, A.C.; Stephansen, K.; Engwer, C.; Goycoolea, F.M.; Boisen, A.; Nielsen, L.H.; Chronakis, I.S. Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydr. Polym., 2018, 190, 240-247.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.062] [PMID: 29628244]
[71]
Zhang, S.; Kawakami, K. One-step preparation of chitosan solid nanoparticles by electrospray deposition. Int. J. Pharm., 2010, 397(1-2), 211-217.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.007] [PMID: 20637272]
[72]
Neha, A.; Syandan, C.; Nikhil, D.S. K.D. Electrospraying: A facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 88B(1), 17-31.
[http://dx.doi.org/10.1002/jbm.b.31085]
[73]
Atay, E.; Fabra, M.J.; Martínez-Sanz, M.; Gomez-Mascaraque, L.G.; Altan, A.; Lopez-Rubio, A. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocoll., 772018, , 699-710.
[http://dx.doi.org/10.1016/j.foodhyd.2017.11.011]
[74]
García-Moreno, P.J.; Pelayo, A.; Yu, S.; Busolo, M.; Lagaron, J.M.; Chronakis, I.S.; Jacobsen, C. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: combined use of whey protein and carbohydrates as wall materials. J. Food Eng., 2018, 231, 42-53.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.03.005]
[75]
Maki, K. Investigating the health benefits of phytochemicals: the use of clinical trials. In: Phytochemical Functional Foods; Johnson, I.; Williamson, G., Eds.; Woodhead Publishing, 2003; pp. 238-252.
[http://dx.doi.org/10.1533/9781855736986.2.238]
[76]
Andersen, M.L.; Lauridsen, R.K.; Skibsted, L.H. Optimising the use of phenolic compounds in foods. In: Phytochemical Functional Foods; Johnson, I.; Williamson, G., Eds.; Woodhead Publishing, 2003; pp. 315-346.
[http://dx.doi.org/10.1533/9781855736986.2.315]
[77]
Xiao, J.; Cao, Y.; Huang, Q. Edible nanoencapsulation vehicles for oral delivery of phytochemicals: a perspective paper. J. Agric. Food Chem., 2017, 65(32), 6727-6735.
[http://dx.doi.org/10.1021/acs.jafc.7b02128] [PMID: 28737908]
[78]
Lee, S.J.; Wong, M. Nano‐and microencapsulation of phytochemicals. In: Nano‐and Microencapsulation for Foods; Kwak, H.S., Ed.; , 2014; pp. 117-165.
[http://dx.doi.org/10.1002/9781118292327.ch6]
[79]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[80]
Crowe, K.M. Designing functional foods with bioactive polyphenols: Highlighting lessons learned from original plant matrices. Journal of Human Nutrition and Food Science, 2013, 1(3), 1018.
[81]
Faridi Esfanjani, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces, 2016, 146, 532-543.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.053] [PMID: 27419648]
[82]
Barras, A.; Mezzetti, A.; Richard, A.; Lazzaroni, S.; Roux, S.; Melnyk, P.; Betbeder, D.; Monfilliette-Dupont, N. Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int. J. Pharm., 2009, 379(2), 270-277.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.054] [PMID: 19501139]
[83]
Peña, C.; de la Caba, K.; Eceiza, A.; Ruseckaite, R.; Mondragon, I. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour. Technol., 2010, 101(17), 6836-6842.
[http://dx.doi.org/10.1016/j.biortech.2010.03.112] [PMID: 20400296]
[84]
Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct., 2012, 3(6), 592-605.
[http://dx.doi.org/10.1039/c2fo00006g] [PMID: 22465955]
[85]
Gómez-Mascaraque, L.G.; Soler, C.; Lopez-Rubio, A. Stability and bioaccessibility of EGCG within edible micro-hydrogels. Chitosan vs. gelatin, a comparative study. Food Hydrocoll., 2016, 61, 128-138.
[http://dx.doi.org/10.1016/j.foodhyd.2016.05.009]
[86]
Ursin, V.M. Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J. Nutr., 2003, 133(12), 4271-4274.
[http://dx.doi.org/10.1093/jn/133.12.4271] [PMID: 14652387]
[87]
Nettleton, J.A. Omega-3 fatty acids: comparison of plant and seafood sources in human nutrition. J. Am. Diet. Assoc., 1991, 91(3), 331-337.
[PMID: 1825498]
[88]
Sanders, T.A.B. DHA status of vegetarians. Prostaglandins Leukot. Essent. Fatty Acids, 2009, 81(2-3), 137-141.
[http://dx.doi.org/10.1016/j.plefa.2009.05.013] [PMID: 19500961]
[89]
Khoshakhlagh, K.; Koocheki, A.; Mohebbi, M.; Allafchian, A. Development and characterization of electrosprayed Alyssum homolocarpum seed gum nanoparticles for encapsulation of d-limonene. J. Colloid Interface Sci., 2017, 490, 562-575.
[http://dx.doi.org/10.1016/j.jcis.2016.11.067] [PMID: 27923141]
[90]
Maiani, G.; Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; Böhm, V.; Mayer-Miebach, E.; Behsnilian, D.; Schlemmer, U. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res., 2009, 53(Suppl. 2), S194-S218.
[http://dx.doi.org/10.1002/mnfr.200800053] [PMID: 19035552]
[91]
Johnson, E.J. The role of carotenoids in human health. Nutr. Clin. Care, 2002, 5(2), 56-65.
[http://dx.doi.org/10.1046/j.1523-5408.2002.00004.x] [PMID: 12134711]
[92]
Miller, J.A.; Thompson, P.A.; Hakim, I.A.; Chow, H-H.S.; Thomson, C.A. d-Limonene: a bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev., 2011, 5(1), 31-42.
[http://dx.doi.org/10.4081/oncol.2011.31]
[93]
Zhang, C.; Chang, M-W.; Ahmad, Z.; Hu, W.; Zhao, D.; Li, J-S. Stable single device multi-pore electrospraying of polymeric microparticles via controlled electrostatic interactions. RSC Advances, 2015, 5(107), 87919-87923.
[http://dx.doi.org/10.1039/C5RA18482G]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy