Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In Silico Elucidation of the Molecular Recognition of Phenol Derivative Compounds and Hippuryl-histidyl-leucine as an Artificial Substrate with the Experimental Target: Angiotensin-converting Enzyme

Author(s): Víctor Hugo Vázquez-Valaldez*, Manuel Alejandro Hernández S, Ivonne Carrillo Cedillo, Ana María Velázquez Sanchez, Mildred Sauce Guevara, Rafael López Castañares and Enrique Ángeles

Volume 17, Issue 4, 2020

Page: [445 - 466] Pages: 22

DOI: 10.2174/1570180816666190906155034

Abstract

Background: An elucidation study was carried out to evaluate 19 different methylthiomorpholine, methylmorpholine and piperidine compounds as possible inhibitors of the Angiotensin Converter Enzyme (ACE) using as a positive blank: Captopril, drug used as an antihypertensive agent and known for its biological effect over ACE. Also, the interaction using Hippuryl-histidyl-leucine (HHL) as an artificial substrate was simulated.

Methods: The study was made using the Molecular Operating Environment (MOE), SYBYL and Gaussian software.

Results: All the molecular recognition process was performed under the conditions reported for such interaction, in order to emulate the experimental parameters as close as is possible to a real system.

Conclusion: After the calculations the best candidates for the ACE inhibition were determined.

Keywords: Antihypertensive, angiotensin converting enzyme, inhibition, molecular modeling, molecular recognition, hybrid QM/MM.

Graphical Abstract
[1]
Boyd, D.B.; Parril, A.L.; Reddy, M.R. Rational Drug Design: Novel Methodology and Practical Applications, ACS Symposium Series 719, 1999, 347-356.
[2]
Tropsha, A.; Zheng, W.; Becker, O. M.; Mackerell, A. D., Jr; Roux, B.; Watanabe, M.; Marcel, D. Computational Biochemistry and Biophysics, 2001, 351-369.
[3]
Kumar, A.; Jha, A. Drug Development Strategies; Anticandidal Agents, 2016, pp. 63-71.
[4]
Hopfinger, A.J. Computer-assisted drug design. J. Med. Chem., 1985, 28(9), 1133-1139.
[http://dx.doi.org/10.1021/jm00147a001] [PMID: 2993608]
[5]
Duncia, J.V.; Chiu, A.T.; Carini, D.J.; Gregory, G.B.; Johnson, A.L.; Price, W.A.; Wells, G.J.; Wong, P.C.; Calabrese, J.C.; Timmermans, P.B.M.W.M. The discovery of potent nonpeptide angiotensin II receptor antagonists: A new class of potent antihypertensives. J. Med. Chem., 1990, 33(5), 1312-1329.
[http://dx.doi.org/10.1021/jm00167a007] [PMID: 2329553]
[6]
Stout, D.M.; Matier, W.L.; Barcelon-Yang, C.; Reynolds, R.D.; Brown, B.S. Synthesis and antiarrhythmic and parasympatholytic properties of substituted phenols. 1. Heteroarylamine derivatives. J. Med. Chem., 1983, 26(6), 808-813.
[http://dx.doi.org/10.1021/jm00360a005] [PMID: 6854583]
[7]
Stout, D.M.; Matier, W.L.; Barcelon-Yang, C.; Reynolds, R.D.; Brown, B.S. Synthesis and antiarrhythmic and parasympatholytic properties of substituted phenols. 3. Modifications to the linkage region (region 3). J. Med. Chem., 1985, 28(3), 295-298.
[http://dx.doi.org/10.1021/jm00381a006] [PMID: 3973901]
[8]
Główka, M.L.; Dargie, R.L.; Codding, P.W. Spatial requirements of the Na channel binding site for class I antiarrhythmics as derived from the crystal structures of 4-substituted 2,6-bis(1-pyrrolidinylmethyl)phenols. J. Med. Chem., 1991, 34(9), 2678-2684.
[http://dx.doi.org/10.1021/jm00113a003] [PMID: 1654426]
[9]
Martínez, I.T. Análisis Conformacional Teórico y Síntesis dederivados 4-sutituidos-2,6- bis 4-morfolínmetil fenoles conpotencial actividad antiarrítmica Master Thesis.. 2004.
[10]
Velázquez, A. Ma.; Torres, L. A.; Díaz, G.; Ramírez, A.; Hernández, R.; Santillán, H.; Martínez, L.; Martínez, I.; Díaz-Barriga, S.; Ávrego, V.; Balboa, M. A.; Camacho, B.; López, C. R.; Dueñas-González, A.; Cabrera, G.; Ángeles, E. A novel one pot Mannich synthesis of methylpiperidin phenols, methylphenylmorfolin phenols and methyltiophenylmorpholin phenols solvent-free and using infrared light irradiation. ARKIVOC, 2006, ii, 150-161.
[11]
Martínez, L. 12º Congreso Nacional de Hipertensión Arterial, Cd. de México, 2004. V Congreso Internacional de Química e Ingeniería QuímicaHabana
[12]
Evaluation of the inhibition of new thiomorpholin compounds and the Angiotensin Converting Enzyme through Capillary Zone Electrophoresis., 2018.
[13]
Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2018.
[14]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K. Gaussian 16, Revision B.01 2018.
[15]
Van Dyck, S.; Vissers, S.; Van Schepdael, A.; Hoogmartens, J. Kinetic study of angiotensin converting enzyme activity by capillary electrophoresis after in-line reaction at the capillary inlet. J. Chromatogr. A, 2003, 986(2), 303-311.
[http://dx.doi.org/10.1016/S0021-9673(02)01995-7] [PMID: 12597637]
[16]
Martínez, A. L.; Velázquez, S. A.; Diaz-Barriga, S.; Romero, R. A.; Posada, G.; María, E.; Ángeles, A. E. Synthesis of phenolderivative novel methyl-thiomorpholine compounds for treating cardiovascular diseases. Universidad Nacional Autónoma de México, Mex. Mex. Pat. Appl., 2012. CODEN: MXXXA3 MX 2005PA12635 A 20070522 Patent written in Spanish. Application: MX 2005-12635 20051123 Title 298633 2012.
[17]
Certara, L.P. SYBYL®-X 2.1.1 2011-2018 Molecular modeling and simulation suite, 2018.
[18]
Mukherjee, S.; Balius, T.E.; Rizzo, R.C. Docking validation resources: Protein family and ligand flexibility experiments. J. Chem. Inf. Model., 2010, 50(11), 1986-2000.
[http://dx.doi.org/10.1021/ci1001982] [PMID: 21033739]
[19]
Stumpfe, D.; Bajorath, J. Exploring activity cliffs in medicinal chemistry. J. Med. Chem., 2012, 55(7), 2932-2942.
[http://dx.doi.org/10.1021/jm201706b] [PMID: 22236250]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy