The enzyme protein:geranylgeranyl transferase-1 (PGGT-1 or GGTase-I) catalyzes the geranylgeranylation of cysteine residues near the C-termini of a variety of proteins, including most monomeric GTP binding precursor proteins belonging to the Rho, Rac and Rap subfamilies. These proteins are involved in signaling pathways controlling important processes such as cell differentiation and growth. In the framework of the development of therapeutics against disorders associated with aberrant cell proliferation, the interference with these signal transduction cascades has been a major focus of investigation. For instance, PGGT-1 inhibitors have shown promise in the treatment of cancer, smooth muscle hyperplasia as well as parasitic infections, such as malaria. In this chapter, we discuss the structural and mechanistic aspects of the protein:geranylgeranyl transferases and their importance with respect to the terpene metabolism. In view of the latter, several terpene based proteomic probes have been developed and applied. An extensive summary of reported inhibitors of PGGT-1, classified as natural products, peptide substrate (Ca1a2L box), terpene substrate (geranylgeranyl pyrophosphate) and others, is presented. The few known inhibitors of the other geranylgeranylating enzyme, protein:geranylgeranyl transferase-2 (PGGT-2) also known as Rab geranylgeranyl transferase are also included.
Keywords: Protein: geranylgeranyl transferase-1 and -2, peptidomimetics, Ca1a2L box, small GTP binding proteins, signal transduction, aberrant cell proliferation, anti-cancer agents, functional proteomics