Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

A Green and Efficient Synthesis of Substituted 2-(4-(2-Oxo-2H-chromen-3- yl)thiazol-2-yl)-3-phenylacrylonitriles Under Environmentally Benign Conditions

Author(s): Kotthireddy Kavitha, Devulapally Srikrishna, Pramod Kumar Dubey and Pasula Aparna*

Volume 16, Issue 8, 2019

Page: [637 - 642] Pages: 6

DOI: 10.2174/1570178616666181224112851

Price: $65

Abstract

An efficient and convenient method for the condensation of various aldehydes with 2-(4-(2- oxo-2H-chromen-3-yl)thiazol-2-yl)acetonitrile has been demonstrated via triphenylphosphinecatalyzed Knoevenagel condensation in good to excellent yields. The effect of solvent on this reaction was studied. In addition, a tandem method for the synthesis of 2-(4-(2-oxo-2H-chromen-3-yl)thiazol-2- yl)acetonitrile has been outlined using tetrabutylammonium tribromide as an efficient, green and ecofriendly reagent. Subsequently, the latter was reacted with various aromatic aldehydes in the presence of PEG-600 as reaction media to afford the title compounds. These reactions have widened the scope and applicability of the use of tetrabutylammonium tribromide, triphenylphosphine in organic synthesis. All these synthesized compounds were characterized by IR, 1H-NMR, Mass and 13C-NMR spectral data.

Keywords: Triphenylphosphine, PEG-600, tetrabutylammonium tribromide, environmentally benign, green synthesis, aldehyde.

Graphical Abstract
[1]
Katsori, A.M.; Litina, D.H. Expert Opin. Ther. Pat., 2014, 24, 1323-1347.
[2]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. Bioorg. Med. Chem., 2013, 21, 2434-2450.
[3]
Cabaleiro, N.; Calle, I.D.L.; Bendicho, C.; Lavilla, I. Talanta, 2014, 129, 113-118.
[4]
Wisneski, H.H. J. AOAC Int., 2001, 84, 689-692.
[5]
Azagarsamy, M.A.; Makinnon, D.D.; Alge, D.L.; Anseth, K.S. ACS Macro Lett., 2014, 3, 515-519.
[6]
Lalitha, K.; Nagarajan, S. J. Mater. Chem. B., 2015, 3, 5690-5701.
[7]
Kun, L.; Hao-Ran, X.; Kang-Kang, Y.; Ji-Ting, H.; Xiao-Qi, Y. Anal. Methods, 2013, 5, 2653-2656.
[8]
Becker, R.S.; Chakravorti, S.; Gartner, C.A.; Miguel, M.D.G. J. Chem. Soc., Faraday Trans., 1993, 89, 1007-1019.
[9]
Wagner, B.D. Molecules, 2009, 14, 210-237.
[10]
Curini, M.; Cravotto, G.; Epifano, F.; Giannone, G. Curr. Med. Chem., 2006, 13, 199-222.
[11]
Jae-Chul, J.; Oee-Sook, P. Molecules, 2009, 14, 4790-4803.
[12]
Moaz, M.A.; Rasha, A.E.; Samir, B. Arabian. J. Chem., 2015, 1, 88-121.
[13]
Gambari, R.; Lampronti, I.; Bianchi, N.; Zuccato, C.; Viola, G.; Vedaldi, D.; Dall, F. Top. Heterocycl. Chem., 2007, 9, 265-276.
[14]
Riveiro, M.E.; Kimpe, N.D.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Curr. Med. Chem., 2010, 17, 1325-1338.
[15]
Najmanova, I.; Dosedel, M.; Hrdina, R.; Anzenbacher, P.; Filipsky, T.; Riha, M.; Mladenka, P. Curr. Top. Med. Chem., 2015, 15, 830-849.
[16]
Bubols, G.B.; Vianna, R.D.; Ramon, A.M.; Poser, G.V.; Ramentos, R.M.L.; Lima, V.L.E.; Garcia, S.C. Mini Rev. Med. Chem., 2013, 13, 318-334.
[17]
Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Eur. J. Med. Chem., 2015, 100, 257-269.
[18]
Venkatasairam, K.; Gurupadayya, B.M.; Chandan, R.S.; Nagesha, D.K.; Vishwanathan, B. Curr. Drug Deliv., 2015, 12, 186-201.
[19]
Emami, S.; Dadashpour, S. Eur. J. Med. Chem., 2015, 102, 611-630.
[20]
Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Anticancer. Agents Med. Chem., 2015, 15, 1032-1046.
[21]
Thakur, A.; Singla, R.; Jaitak, V. Eur. J. Med. Chem., 2015, 101, 476-495.
[22]
Grover, J.; Jachak, S.M. RSC Adv, 2015, 5, 38892-28905.
[23]
Kayal, G.; Jain, K.; Malviya, S.; Kharia, A. Int. J. Pharm. Sci. Res., 2014, 5, 3577-3583.
[24]
Eustaquio, A.S.; Gust, B.; Luft, T.; Shu-Ming, L.; Chater, K.F.; Heide, L. Chem. Biol., 2003, 10, 279-288.
[25]
Kharb, R.; Kaur, M.; Sharma, A.K. Int. J. Pharm. Sci. Rev. Res., 2013, 20, 87-94.
[26]
Hutchinson, I.; Chua, M.S.; Browne, H.L.; Trapani, V.; Bradshaw, T.D.; Westwell, A.D. J. Med. Chem., 2001, 44, 1446-1455.
[27]
Racane, L.; Tralic‐Kulenovic, V.; Fiser‐Jakic, L.; Boykin, D.W.; Karminski‐Zamola, G. Heterocycles, 2001, 55, 2085-2098.
[28]
Holla, B.S.; Malini, K.V.; Rao, B.S.; Sarojini, B.K.; Kumari, N.S. Eur. J. Med. Chem., 2003, 38, 313-318.
[29]
Raeymaekers, A.H.M.; Allewijn, F.T.N.; Vandenberk, J.; Demoen, P.J.A.; Van, T.T.T.; Janssen, P.A. J. Med. Chem., 1966, 9, 545-551.
[30]
Tsuruoka, A.; Kaku, Y.; Kakinuma, H.; Tsukada, I.; Yanagisawa, M.; Nara, K.; Naito, T. Chem. Pharm. Bull. (Tokyo), 1998, 46, 623-630.
[31]
Siddiqui, N.; Ahsan, W. Eur. J. Med. Chem., 2010, 45, 1536-1543.
[32]
Saeed, A.S.A.; Shehzad, M.; Hassan, S.; Rashida, M.; Lecka, J.; Sevigny, J. RSC Adv, 2016, 6, 21026-21036.
[33]
Venkatanarayana, M.; Dubey, P.K. Heteroatom Chem., 2012, 23, 41-48.
[34]
Mohamed, H.M.; Abd El-Wahab, A.H.F.; Ahmed, K.A.; El-Agrody, A.M.; Bedair, A.H.; Eid, F.A.; Khafagy, M.M. Molecules, 2012, 17, 971-988.
[35]
Dyachenko, V.D.; Litvinov, V.P. Russ. J. Org. Chem., 1998, 34, 557-563.
[36]
Belokon, Y.V.; Kovalenko, S.N.; Silin, A.V.; Nikitchenko, V.M. Chem. Heterocycl. Comp., 1997, 33, 1167-1176.
[37]
Kavitha, K.; Srikrishna, D.; Sridhar, B.; Aparna, P. Mol. Divers., 2018. In press
[http://dx.doi.org/10.1007/s11030-018-9880-x]
[38]
Kavitha, K.; Srikrishna, D.; Dubey, P.K.; Aparna, P. Arkivoc, 2018, vii, 172-185.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy