Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

The Anticancer Potentials of Substituted Indeno[1,2-b]quinoline Amines against HT29 and SW620: Experimental and In silico Approach

Author(s): Salih Ökten*, Ali Aydın, Sultan Erkan and Ahmet Tutar

Volume 21, Issue 1, 2024

Published on: 22 February, 2023

Page: [143 - 151] Pages: 9

DOI: 10.2174/1570180820666230201144615

Price: $65

Abstract

Background: This study aimed the determination of the antiproliferative and cytotoxic activities of recently prepared indeno [1,2-b]quinoline amines against colon carcinoma, HT29 and SW620 cell lines by using cell proliferation and cytotoxicity assays.

Methods: In vitro inhibition of cell proliferation of indenoquinoline derivatives was determined with an MTT cell proliferation assay. On the other hand, their cell cytotoxicities and apoptotic potential were investigated by LDH cytotoxicity and DNA laddering assays. Moreover, molecular docking studies were performed between the compounds and PDB ID: 1OLG and 4LVT target proteins using virtual scanning techniques.

Results: Most of the compounds (1, 3, and 7-9) exhibit much more potent antiproliferative activity than positive controls against HT29 and SW620 cell lines (IC50 values 1.1 - 4.1 μg/mL) and show slightly toxic properties (percent cytotoxicity 9.8% to 33.5%) to cells compared to positive control. On the other hand, it was determined that effective compounds 1, 2, 3 and 9 stimulated apoptosis on HT29 and SW620. Moreover, the anticancer effect of the recent indeno[1,2-b]quinoline amine derivatives was investigated with the help of molecular docking simulations for their pharmacokinetics. The molecular docking results displayed that mono bromo (1-3) and phenyl (7-9) substituted indeno [1,2-b]quinoline amines interact with mutated p53 and protein Blc-2 residues with hydrogen bonding and polar interactions, respectively.

Conclusion: As a result, the preliminary experimental data and in silico studies indicated that the monosubstituted indenoquinoline amine derivatives, especially 1, 3, and 7-9, exhibit effective pharmacological properties.

Keywords: Indenoquinoline amine, anticancer activity, HT29, SW620, molecular docking, apoptosis.

Graphical Abstract
[1]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[2]
Fitzgerald, R.C.; Omary, M.B.; Triadafilopoulos, G. Acid modulation of HT29 cell growth and differentiation. An in vitro model for Barrett’s esophagus. J. Cell Sci., 1997, 110(5), 663-671.
[http://dx.doi.org/10.1242/jcs.110.5.663] [PMID: 9092948]
[3]
Ophir, I.; Cohen, E.; Ben Shaul, Y. Apical polarity in human colon carcinoma cell lines. Tissue Cell, 1995, 27(6), 659-666.
[http://dx.doi.org/10.1016/S0040-8166(05)80021-7] [PMID: 8578556]
[4]
Leibovitz, A.; Wright, W.C.; Pathak, S.; Siciliano, M.J.; Daniels, W.P.; Fogh, H.; Fogh, J. Detection and analysis of a glucose 6-phosphate dehydrogenase phenotype B cell line contamination. J. Natl. Cancer Inst., 1979, 63(3), 635-645.
[http://dx.doi.org/10.1093/jnci/63.3.635] [PMID: 288927]
[5]
Thomas Efferth, ;Yu-jie Fu; Yuan-gang Zu; Gunter Schwarz; Michael Wink; Wink, M. Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr. Med. Chem., 2007, 14(19), 2024-2032.
[http://dx.doi.org/10.2174/092986707781368441] [PMID: 17691944]
[6]
Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[7]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Hamed, M.M.; Noaman, E.; Ghorab, M.M. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6, 7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(24), 6939-6942.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.065] [PMID: 19879135]
[8]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Arafa, R.K.; El-Hossary, E.M. In vitro anticancer screening and radiosensitizing evaluation of some new quinolines and pyrimido[4,5-b]quinolines bearing a sulfonamide moiety. Eur. J. Med. Chem., 2010, 45(9), 3677-3684.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.014] [PMID: 20684857]
[9]
Wang, Y.; Ai, J.; Wang, Y.; Chen, Y.; Wang, L.; Liu, G.; Geng, M.; Zhang, A. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: Identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7-(trifluoromethyl) quinoline as a novel anticancer agent. J. Med. Chem., 2011, 54(7), 2127-2142.
[http://dx.doi.org/10.1021/jm101340q] [PMID: 21405128]
[10]
Ghorab, M.M.; Ragab, F.A.; Heiba, H.I.; Ghorab, W.M. Design and synthesis of some novel quinoline derivatives as anticancer and radiosensitizing agents targeting VEGFR tyrosine kinase. J. Heterocycl. Chem., 2011, 48(6), 1269-1279.
[http://dx.doi.org/10.1002/jhet.749]
[11]
Tseng, C.H.; Chen, Y.L.; Chung, K.Y.; Wang, C.H.; Peng, S.I.; Cheng, C.M.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 2,3-diarylquinoline derivatives. Org. Biomol. Chem., 2011, 9(9), 3205-3216.
[http://dx.doi.org/10.1039/c0ob01225d] [PMID: 21423988]
[12]
Ekiz, M.; Tutar, A.; Ökten, S.; Bütün, B.; Koçyiğit, Ü.M.; Taslimi, P.; Topçu, G. Synthesis, characterization, and SAR of arylated indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Arch. Pharm. (Weinheim), 2018, 351(9), 1800167.
[http://dx.doi.org/10.1002/ardp.201800167] [PMID: 30079554]
[13]
Ishida, K.; Asao, T. Self-association and unique DNA binding properties of the anti-cancer agent TAS-103, a dual inhibitor of topoisomerases I and II. Biochim. Biophys. Acta Mol. Basis Dis., 2002, 1587(2-3), 155-163.
[http://dx.doi.org/10.1016/S0925-4439(02)00078-9] [PMID: 12084457]
[14]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[15]
Chakrabarty, S.; Croft, M.S.; Marko, M.G.; Moyna, G. Synthesis and evaluation as potential anticancer agents of novel tetracyclic indenoquinoline derivatives. Bioorg. Med. Chem., 2013, 21(5), 1143-1149.
[http://dx.doi.org/10.1016/j.bmc.2012.12.026] [PMID: 23357037]
[16]
Aydın, A.; Ökten, S.; Erkan, S.; Bulut, M.; Özcan, E.; Tutar, A.; Eren, T. In vitro anticancer and antibacterial activities of brominated indeno[1, 2‐b]qinoline amines supported with molecular docking and MCDM. ChemistrySelect, 2021, 6(13), 3286-3295.
[http://dx.doi.org/10.1002/slct.202004753]
[17]
Ekiz, M.; Tutar, A.; Ökten, S. Convenient synthesis of disubstituted tacrine derivatives via electrophilic and copper induced reactions. Tetrahedron, 2016, 72(35), 5323-5330.
[http://dx.doi.org/10.1016/j.tet.2016.07.012]
[18]
Gong, J.P.; Traganos, F.; Darzynkiewicz, Z. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal. Biochem., 1994, 218(2), 314-319.
[http://dx.doi.org/10.1006/abio.1994.1184] [PMID: 8074286]
[19]
Ibrahim, M.T.; Uzairu, A.; Shallangwa, G.A.; Uba, S. Structure-based design and activity modeling of novel epidermal growth factor receptor kinase inhibitors; An in silico approach. Sci. Am., 2020, 9, 00503.
[20]
Clore, G.M.; Omichinski, J.G.; Sakaguchi, K.; Zambrano, N.; Sakamoto, H.; Appella, E.; Gronenborn, A.M. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science, 1994, 265(5170), 386-391.
[http://dx.doi.org/10.1126/science.8023159] [PMID: 8023159]
[21]
Ökten, S.; Aydin, A.; Tutar, A. Determination of anticancer and antibacterial activities of disubstituted tacrine derivatives. Sakarya Univ. J. Sci., 2019, 23(5), 824-830.
[http://dx.doi.org/10.16984/saufenbilder.469273]
[22]
Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; Huang, D.C.S.; Hymowitz, S.G.; Jin, S.; Khaw, S.L.; Kovar, P.J.; Lam, L.T.; Lee, J.; Maecker, H.L.; Marsh, K.C.; Mason, K.D.; Mitten, M.J.; Nimmer, P.M.; Oleksijew, A.; Park, C.H.; Park, C.M.; Phillips, D.C.; Roberts, A.W.; Sampath, D.; Seymour, J.F.; Smith, M.L.; Sullivan, G.M.; Tahir, S.K.; Tse, C.; Wendt, M.D.; Xiao, Y.; Xue, J.C.; Zhang, H.; Humerickhouse, R.A.; Rosenberg, S.H.; Elmore, S.W. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med., 2013, 19(2), 202-208.
[http://dx.doi.org/10.1038/nm.3048] [PMID: 23291630]
[23]
Horn, H.F.; Vousden, K.H. Coping with stress: multiple ways to activate p53. Oncogene, 2007, 26(9), 1306-1316.
[http://dx.doi.org/10.1038/sj.onc.1210263] [PMID: 17322916]
[24]
Wang, C.; Chen, J. Phosphorylation and hsp90 binding mediate heat shock stabilization of p53. J. Biol. Chem., 2003, 278(3), 2066-2071.
[http://dx.doi.org/10.1074/jbc.M206697200] [PMID: 12427754]
[25]
Abbasi, M.; Sadeghi-Aliabadi, H.; Hassanzadeh, F.; Amanlou, M. Prediction of dual agents as an activator of mutant p53 and inhibitor of Hsp90 by docking, molecular dynamic simulation and virtual screening. J. Mol. Graph. Model., 2015, 61, 186-195.
[http://dx.doi.org/10.1016/j.jmgm.2015.08.001] [PMID: 26277488]
[26]
Muller, P.A.J.; Vousden, K.H. p53 mutations in cancer. Nat. Cell Biol., 2013, 15(1), 2-8.
[http://dx.doi.org/10.1038/ncb2641] [PMID: 23263379]
[27]
Benci, K.; Mandić, L.; Suhina, T.; Sedić, M.; Klobučar, M.; Kraljević Pavelić, S.; Pavelić, K.; Wittine, K.; Mintas, M. Novel coumarin derivatives containing 1,2,4-triazole, 4,5-dicyanoimidazole and purine moieties: synthesis and evaluation of their cytostatic activity. Molecules, 2012, 17(9), 11010-11025.
[http://dx.doi.org/10.3390/molecules170911010] [PMID: 22971585]
[28]
Leong, S.W.; Chia, S.L.; Abas, F.; Yusoff, K. In-vitro and in-silico evaluations of heterocyclic-containing diarylpentanoids as Bcl-2 inhibitors against lovo colorectal cancer cells. Molecules, 2020, 3877, 26-25.
[http://dx.doi.org/10.3390/molecules25173877]
[29]
Shamas-Din, A.; Kale, J.; Leber, B.; Andrews, D.W. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol., 2013, 5(4), a008714.
[http://dx.doi.org/10.1101/cshperspect.a008714] [PMID: 23545417]
[30]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[31]
Ökten, S.; Çakmak, O.; Tekin, S.; Köprülü, T.K. A SAR Study: Evaluation of bromo derivatives of 8-substituted quinolines as novel anticancer agents. Lett. Drug Des. Discov., 2017, 14(12), 1415-1424.
[http://dx.doi.org/10.2174/1570180814666170504150050]
[32]
Tseng, C.H.; Chen, Y.L.; Lu, P.J.; Yang, C.N.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain indeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2008, 16(6), 3153-3162.
[http://dx.doi.org/10.1016/j.bmc.2007.12.028] [PMID: 18180162]
[33]
Su, T.L.; Chou, T.C.; Kim, J.Y.; Huang, J.T.; Ciszewska, G.; Ren, W.Y.; Otter, G.M.; Sirotnak, F.M.; Watanabe, K.A. 9-Substituted acridine derivatives with long half-life and potent antitumor activity: synthesis and structure-activity relationships. J. Med. Chem., 1995, 38(17), 3226-3235.
[http://dx.doi.org/10.1021/jm00017a006] [PMID: 7650675]
[34]
Aoyagi, Y.; Kobunai, T.; Utsugi, T.; Oh-hara, T.; Yamada, Y. In vitro antitumor activity of TAS-103, a novel quinoline derivative that targets topoisomerases I and II. Jpn. J. Cancer Res., 1999, 90(5), 578-587.
[http://dx.doi.org/10.1111/j.1349-7006.1999.tb00786.x] [PMID: 10391099]
[35]
Tseng, C.H.; Chen, Y.L.; Chung, K.Y.; Cheng, C.M.; Wang, C.H.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2009, 17(21), 7465-7476.
[http://dx.doi.org/10.1016/j.bmc.2009.09.021] [PMID: 19796956]
[36]
Ökten, S.; Erenler, R.; Kul Köprülü, T.; Teki̇n, Ş. In vitro antiproliferative/cytotoxic activity of 2,3ʹ-biindole against various cancer cell lines. Turk. J. Biol., 2015, 39(1), 15-22.
[http://dx.doi.org/10.3906/biy-1402-60]
[37]
Ökten, S.; Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm. (Weinheim), 2020, 353(9), 2000086.
[http://dx.doi.org/10.1002/ardp.202000086] [PMID: 32537757]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy