Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

QSAR of SARS-CoV-2 Main Protease Inhibitors Utilizing Theoretical Molecular Descriptors

Author(s): Sisir Nandi*, Mohit Kumar and Anil Kumar Saxena*

Volume 21, Issue 1, 2024

Published on: 29 December, 2022

Page: [116 - 132] Pages: 17

DOI: 10.2174/1570180820666221214151614

Price: $65

Abstract

Background: COVID-19 is caused by a novel strain of severe acute respiratory syndrome coronaviruses (SARS-CoV-2). It has claimed casualties around the world since the end of 2019 due to its high virulence and quick multiplicity in the human body. Hence, there has been a requirement to develop effective remedial measures to mitigate the mortality. Scientists have been able to develop corona vaccines to provide immunity, but there are no specific small-molecule chemotherapeutics to combat the novel coronavirus which has spread to the whole world due to its contagiousness. In the viral genome exploration, it has been found that the main protease, also known as chymotrypsin-like cysteine protease ([Mpro] or 3C-like protease [3CLpro]) is responsible for the novel coronavirus replication, transcription, and host immunity destruction.

Objectives: Therefore, the main protease has been selected as one of the major targets for the design of new inhibitors. The protein crystallographic and molecular docking studies on SARS-CoV-2 Mpro inhibitors and some quantitative structure-activity relationship (QSAR) studies have been carried out on SARSCoV main protease inhibitors to get some lead molecules for SARS-CoV-2 inhibition. However, there is hardly any QSAR done on the diverse data of SARS-CoV-2 main protease inhibitors. In view of it, QSAR studies have been attempted on SARS-CoV-2 Mpro inhibitors utilizing theoretical molecular descriptors solely computed from the structures of novel corona viral main protease inhibitors.

Methods: As the number of structural descriptors is more than the observations, a genetic algorithm coupled with multiple linear methods has been applied for the development of QSAR models taking diverse SARS-CoV-2 Mpro inhibitors.

Results: The developed best QSAR model showing R2, Q2 Loo, and R2 pred values of 0.7389, 0.6666, and 0.6453 respectively has been further validated on an external data set where a good correlation (r = 0.787) has been found.

Conclusion: Therefore, this model may be useful for the design of new SARS-CoV-2 main protease inhibitors.

Keywords: SARS-CoV-2, Mpro or 3CLpro main protease inhibitors, computed structural descriptors, QSAR, Anti-COVID-19 drug design, molecular descriptors.

Graphical Abstract
[1]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[2]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[3]
Available from: https://wwwworldometersinfo/coronavirus/(accessed on March 10, 2022,)
[4]
Chen, P.L.; Lee, N.Y.; Cia, C.T.; Ko, W.C.; Hsueh, P.R. A review of treatment of coronavirus disease 2019 (COVID-19): Therapeutic repurposing and unmet clinical needs. Front. Pharmacol., 2020, 11, 584956.
[http://dx.doi.org/10.3389/fphar.2020.584956] [PMID: 33364959]
[5]
Li, L.; Guo, P.; Zhang, X.; Yu, Z.; Zhang, W.; Sun, H. SARS-CoV-2 vaccine candidates in rapid development. Hum. Vaccin. Immunother., 2021, 17(3), 644-653.
[6]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[7]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[8]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[9]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[10]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[11]
Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T.D.; Dunnett, L.; Fairhead, M.; Firth, J.D.; Jones, S.P.; Keeley, A.; Keserü, G.M.; Klein, H.F.; Martin, M.P.; Noble, M.E.M.; O’Brien, P.; Powell, A.; Reddi, R.N.; Skyner, R.; Snee, M.; Waring, M.J.; Wild, C.; London, N.; von Delft, F.; Walsh, M.A. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease. Nat. Commun., 2020, 11(1), 5047.
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]
[12]
Noske, G.D.; Nakamura, A.M.; Gawriljuk, V.O.; Fernandes, R.S.; Lima, G.M.A.; Rosa, H.V.D.; Pereira, H.D.; Zeri, A.C.M.; Nascimento, A.F.Z.; Freire, M.C.L.C.; Fearon, D.; Douangamath, A.; von Delft, F.; Oliva, G.; Godoy, A.S. A crystallographic snapshot of SARS-CoV-2 main protease maturation process. J. Mol. Biol., 2021, 433(18), 167118.
[http://dx.doi.org/10.1016/j.jmb.2021.167118] [PMID: 34174328]
[13]
Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat covid-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2021, 24(7), 1055-1068.
[http://dx.doi.org/10.2174/1386207323999200824115536] [PMID: 32838713]
[14]
Alves, V.M.; Bobrowski, T.; Melo-Filho, C.C.; Korn, D.; Auerbach, S.; Schmitt, C.; Muratov, E.N.; Tropsha, A. QSAR modeling of SARS‐CoV Mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS‐CoV‐2. Mol. Inform., 2021, 40(1), 2000113.
[http://dx.doi.org/10.1002/minf.202000113] [PMID: 33405340]
[15]
Kumar, V.; Roy, K. Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases. SAR QSAR Environ. Res., 2020, 31(7), 511-526.
[http://dx.doi.org/10.1080/1062936X.2020.1776388] [PMID: 32543892]
[16]
Masand, V.H.; Akasapu, S.; Gandhi, A.; Rastija, V.; Patil, M.K. Structure features of peptide-type SARS-CoV main protease inhibitors: Quantitative structure activity relationship study. Chemom. Intell. Lab. Syst., 2020, 206, 104172.
[http://dx.doi.org/10.1016/j.chemolab.2020.104172] [PMID: 33518858]
[17]
Masand, V.H.; Rastija, V.; Patil, M.K.; Gandhi, A.; Chapolikar, A. Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modelling. SAR QSAR Environ. Res., 2020, 31(9), 643-654.
[http://dx.doi.org/10.1080/1062936X.2020.1784271] [PMID: 32847369]
[18]
Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[19]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[20]
Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; Wang, J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res., 2020, 30(8), 678-692.
[http://dx.doi.org/10.1038/s41422-020-0356-z] [PMID: 32541865]
[21]
Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-23CL protease in vitro. BioRxiv, 2020.
[22]
Li, G.; Sun, J.; Li, Y.; Shi, Y.; Zhao, J.; Zhang, T.Y.; Zhang, X. Enantiomers of chloroquine and hydroxychloroquine exhibit different activities against SARS-CoV-2 in vitro, evidencing S-Hydroxychloroquine as a potentially superior drug for COVID-19. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.26.114033]
[23]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[24]
Sacco, M.D.; Ma, C.; Lagarias, P.; Gao, A.; Townsend, J.A.; Meng, X.; Dube, P.; Zhang, X.; Hu, Y.; Kitamura, N.; Hurst, B.; Tarbet, B.; Marty, M.T.; Kolocouris, A.; Xiang, Y.; Chen, Y.; Wang, J. Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L. Sci. Adv., 2020, 6(50), eabe0751.
[http://dx.doi.org/10.1126/sciadv.abe0751] [PMID: 33158912]
[25]
Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C.H.; Cabeza de Vaca, I.; Liosi, M.E.; Anderson, K.S.; Jorgensen, W.L. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett., 2020, 11(12), 2526-2533.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00521] [PMID: 33324471]
[26]
Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100 Cambridge- Park Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. J. Am. Chem. Soc., 2006, 128(41), 13649-13650.
[http://dx.doi.org/10.1021/ja0697875]
[27]
Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17(5-6), 553-586.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553:AID-JCC3>3.0.CO;2-T]
[28]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[29]
Ballabio, D.; Consonni, V.; Mauri, A.; Claeys-Bruno, M.; Sergent, M.; Todeschini, R. A novel variable reduction method adapted from space-filling designs. Chemom. Intell. Lab. Syst., 2014, 136, 147-154.
[http://dx.doi.org/10.1016/j.chemolab.2014.05.010]
[30]
Ambure, P.; Aher, R.B.; Gajewicz, A.; Puzyn, T.; Roy, K. “NanoBRIDGES” software: Open access tools to perform QSAR and nano-QSAR modeling. Chemom. Intell. Lab. Syst., 2015, 147, 1-13.
[http://dx.doi.org/10.1016/j.chemolab.2015.07.007]
[31]
Broadhurst, D.; Goodacre, R.; Jones, A.; Rowland, J.J.; Kell, D.B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta, 1997, 348(1-3), 71-86.
[http://dx.doi.org/10.1016/S0003-2670(97)00065-2]
[32]
Hoffman, B.T.; Kopajtic, T.; Katz, J.L.; Newman, A.H. 2D QSAR modeling and preliminary database searching for dopamine transporter inhibitors using genetic algorithm variable selection of Molconn Z descriptors. J. Med. Chem., 2000, 43(22), 4151-4159.
[http://dx.doi.org/10.1021/jm990472s] [PMID: 11063611]
[33]
Saxena, M.; Nandi, S.; Saxena, A.K. QSAR and molecular docking studies of lethal factor protease inhibitors against Bacillus anthracis. SAR QSAR Environ. Res., 2019, 30(10), 715-731.
[http://dx.doi.org/10.1080/1062936X.2019.1658219] [PMID: 31556709]
[34]
Nandi, S.; Ahmed, S.; Saxena, A.K. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ. Res., 2018, 29(2), 151-170.
[http://dx.doi.org/10.1080/1062936X.2017.1419375] [PMID: 29347843]
[35]
Saxena, A.K.; Prathipati, P. Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR QSAR Environ. Res., 2003, 14(5-6), 433-445.
[http://dx.doi.org/10.1080/10629360310001624015] [PMID: 14758986]
[36]
de Campos, L.J.; de Melo, E.B. Modeling structure–activity relationships of prodiginines with antimalarial activity using GA/MLR and OPS/PLS. J. Mol. Graph. Model., 2014, 54, 19-31.
[http://dx.doi.org/10.1016/j.jmgm.2014.08.004] [PMID: 25244636]
[37]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11(1), 137-148.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[38]
Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model., 2002, 20(4), 269-276.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[39]
Jaworska, J.; Nikolova-Jeliazkova, N.; Aldenberg, T. QSAR applicabilty domain estimation by projection of the training set descriptor space: A review. Altern. Lab. Anim., 2005, 33(5), 445-459.
[http://dx.doi.org/10.1177/026119290503300508] [PMID: 16268757]
[40]
Vuong, W.; Khan, M.B.; Fischer, C.; Arutyunova, E.; Lamer, T.; Shields, J.; Saffran, H.A.; McKay, R.T.; van Belkum, M.J.; Joyce, M.A.; Young, H.S.; Tyrrell, D.L.; Vederas, J.C.; Lemieux, M.J. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun., 2020, 11(1), 4282.
[http://dx.doi.org/10.1038/s41467-020-18096-2] [PMID: 32855413]
[41]
Rathnayake, A.D.; Zheng, J.; Kim, Y.; Perera, K.D.; Mackin, S.; Meyerholz, D.K.; Kashipathy, M.M.; Battaile, K.P.; Lovell, S.; Perlman, S.; Groutas, W.C.; Chang, K.O. 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV–infected mice. Sci. Transl. Med., 2020, 12(557), eabc5332.
[http://dx.doi.org/10.1126/scitranslmed.abc5332] [PMID: 32747425]
[42]
Zhu, W.; Xu, M.; Chen, C.Z.; Guo, H.; Shen, M.; Hu, X.; Shinn, P.; Klumpp-Thomas, C.; Michael, S.G.; Zheng, W. Identification of SARS-CoV-2 3CL protease inhibitors by aquantitative high-throughput screening. ACS Pharmacol. Transl. Sci., 2020, 3(5), 1008-1016.
[http://dx.doi.org/10.1021/acsptsci.0c00108] [PMID: 33062953]

© 2024 Bentham Science Publishers | Privacy Policy