Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Nanosponges-based Drug Delivery System for the Cosmeceutical Applications of Stabilized Ascorbic Acid

Author(s): Sadia Ahmed Zuberi, Muhammad Ali Sheraz*, Syed Abid Ali, Muhammad Raza Shah, Sumbul Mujahid, Sofia Ahmed and Zubair Anwar

Volume 20, Issue 10, 2023

Published on: 02 September, 2022

Page: [1504 - 1524] Pages: 21

DOI: 10.2174/1567201819666220816093123

Price: $65

conference banner
Abstract

Background: L-Ascorbic acid (AA) is a highly unstable compound, thus, limiting its use in pharmaceutical and cosmetic products, particularly at higher concentrations.

Objective: This study aimed to stabilize the highly sensitive molecule (AA) by encapsulating it in β- cyclodextrin nanosponges (β-CD NS) that can be used further in preparing cosmeceuticals products with higher AA concentrations and enhanced stability.

Methods: The NS has been synthesized by the melting method. The AA was encapsulated in β-CD NS by the freeze-drying process. The prepared NS were characterized by FTIR spectrometry, SEM, Atomic Force Microscopy (AFM), zeta sizer, Differential Scanning Calorimetry (DSC), and the physical flow characteristics were also studied. The in vitro drug release was carried out on the Franz apparatus using a combination of two methods: sample & separate and dialysis membrane. The assay was performed using a validated spectrometric method.

Results: The entrapment efficiency of AA in β-CD NS indicated a good loading capacity (83.57±6.35%). The FTIR, SEM, AFM, and DSC results confirmed the encapsulation of AA in β-CD NS. The particle size, polydispersity index, and zeta potential results ascertained the formation of stabilized monodisperse nanoparticles. The physical flow characteristics showed good flow properties. Around 84% AA has been released from the NS in 4 h following the Korsmeyer-Peppas model. The AA-loaded NS remained stable for nine months when stored at 30±2°C/65±5% RH.

Conclusion: It is concluded that the prepared NS can protect the highly sensitive AA from degradation and provide an extended-release of the vitamin. The prepared AA-loaded β-CD NS can be used to formulate other cosmeceutical dosage forms with better stability and effect.

Keywords: Ascorbic acid, melting method, freeze-drying, β-cyclodextrin, korsmeyer-peppas model, nanosponges, stability.

Graphical Abstract
[1]
Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S. A classic assembly of nanobiomaterials. Nat. Biotechnol., 2005, 23(11), 1379-1380.
[http://dx.doi.org/10.1038/nbt1105-1379] [PMID: 16273069]
[2]
Hasirci, V.; Vrana, E.; Zorlutuna, P.; Ndreu, A.; Yilgor, P.; Basmanav, F.B.; Aydin, E. Nanobiomaterials: A review of the existing science and technology, and new approaches. J. Biomater. Sci. Polym. Ed., 2006, 17, 1241-1268.
[3]
Avti, P.K.; Patel, S.C.; Sitharaman, B. Nanobiomaterials: Current status and future prospects. In: Nanobiomaterials Handbook; Sitharaman, B., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 1-24.
[http://dx.doi.org/10.1201/b10970-2]
[4]
Yang, L.; Zhang, L.; Webster, T.J. Nanobiomaterials: State of the art and future trends. Adv. Eng. Mater., 2011, 13(6), B197-B217.
[http://dx.doi.org/10.1002/adem.201080140]
[5]
Christenson, E.M.; Anseth, K.S.; van den Beucken, J.J.; Chan, C.K.; Ercan, B.; Jansen, J.A.; Laurencin, C.T.; Li, W.J.; Murugan, R.; Nair, L.S.; Ramakrishna, S.; Tuan, R.S.; Webster, T.J.; Mikos, A.G. Nanobiomaterial applications in orthopedics. J. Orthop. Res., 2007, 25(1), 11-22.
[http://dx.doi.org/10.1002/jor.20305] [PMID: 17048259]
[6]
Grainger, D.W.; Castner, D.G. Nanobiomaterials and nanoanalysis: Opportunities for improving the science to benefit biomedical technologies. Adv. Mater., 2008, 20(5), 867-877.
[http://dx.doi.org/10.1002/adma.200701760]
[7]
Liu, W.; Li, Y.; Liu, J.; Niu, X.; Wang, Y.; Li, D. Application and performance of 3D printing in nanobiomaterials. J. Nanomater., 2013, 2013, 681050.
[http://dx.doi.org/10.1155/2013/681050]
[8]
Yi, D.K.; Papaefthymiou, G.C. Nanobiomaterials: Development and Applications; CRC Press: Boca Raton, FL, USA, 2013.
[http://dx.doi.org/10.1201/b15362]
[9]
Singh, R.K.; Kim, H.W. Inorganic nanobiomaterial drug carriers for medicine. J. Tissue Eng. Regen. Med., 2013, 10(6), 296-309.
[http://dx.doi.org/10.1007/s13770-013-1092-y]
[10]
Rana, D.; Ramasamy, K.; Leena, M.; Jiménez, C.; Campos, J.; Ibarra, P.; Haidar, Z.S.; Ramalingam, M. Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol. Prog., 2016, 32(3), 554-567.
[http://dx.doi.org/10.1002/btpr.2262] [PMID: 27006260]
[11]
Lee, H.; Kim, Y.H. Nanobiomaterials for pharmaceutical and medical applications. Arch. Pharm. Res., 2014, 37(1), 1-3.
[http://dx.doi.org/10.1007/s12272-013-0310-4] [PMID: 24307061]
[12]
Koutsopoulos, S. Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv. Drug Deliv. Rev., 2012, 64(13), 1459-1476.
[http://dx.doi.org/10.1016/j.addr.2012.08.002] [PMID: 22921596]
[13]
Navarro-Suarez, S.; Flores-Palma, A.; Flores-Ruiz, R.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. Nanobiomaterials in dentistry. In: Nanobiomaterials - Nanostructured Materials for Biomedical Applications; Narayan, R., Ed.; Woodhead Publishing, Elsevier Inc.: Duxford, UK, 2018; pp. 297-318.
[14]
Mookhtiar, H.; Hegde, V.; Ram, S.S.; Memon, K. Nanotechnology in interdisciplinary dentistry. Int. J. Sci. Res., 2020, 8, 4-5.
[15]
Konur, O. Scientometric overview regarding the nanobiomaterials in dentistry. In: Nanobiomaterials in Dentistry - Applications of Nanobiomaterials; Grumezescu, A.M., Ed.; William Andrew Publishing, Elsevier Inc.: Oxford, UK, 2016; pp. 425-453.
[http://dx.doi.org/10.1016/B978-0-323-42867-5.00007-2]
[16]
Cicciù, M.; Cervino, G.; Milone, D.; Risitano, G. FEM investigation of the stress distribution over mandibular bone due to screwed overdenture positioned on dental implants. Materials (Basel), 2018, 11(9), 1512.
[http://dx.doi.org/10.3390/ma11091512] [PMID: 30142897]
[17]
Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev., 2013, 42(12), 5425-5438.
[http://dx.doi.org/10.1039/c3cs35518g] [PMID: 23508125]
[18]
Lanone, S.; Boczkowski, J. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med., 2006, 6(6), 651-663.
[http://dx.doi.org/10.2174/156652406778195026] [PMID: 17022735]
[19]
Narayan, R. Nanobiomaterials: Nanostructured Materials for Biomedical Applications;; Woodhead Publishing: Swaston, Cambridge, UK, 2017.
[20]
Singh, P.; Ren, X.; Guo, T.; Wu, L.; Shakya, S.; He, Y.; Wang, C.; Maharjan, A.; Singh, V.; Zhang, J. Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym., 2018, 190, 23-30.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.044] [PMID: 29628242]
[21]
Wang, X.; Ramalingam, M.; Kong, X.; Zhao, L. Nanobiomaterials: Classification, Fabrication and Biomedical Applications; Wiley‐VCH Verlag, GmbH: Weinheim, Germany, 2018.
[22]
Vaseashta, A.; Erdem, A.; Stamatin, I. Nanobiomaterials for controlled release of drugs and vaccine delivery. MRS Online Proceedings Library, 2006, 920, 920-926.
[http://dx.doi.org/10.1557/PROC-0920-S06-06]
[23]
Torres-Sangiao, E.; Holban, A.M.; Gestal, M.C. Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 2016, 21(7), 867.
[http://dx.doi.org/10.3390/molecules21070867] [PMID: 27376260]
[24]
Hulteen, J.C.; Martin, C.R. A general template-based method for the preparation of nanomaterials. J. Mater. Chem., 1997, 7(7), 1075-1087.
[http://dx.doi.org/10.1039/a700027h]
[25]
Fendler, J.H. Nanoparticles and Nanostructured Films: Preparation,Characterization, and Applications; Wiley-VCH, Verlag,GmbH: Weinheim, Germany, 1998, pp. 1-462.
[26]
Anwar, Z.; Khurshid, A.; Khurshid, A.; Zuberi, S.A.; Baig, Q.E.N.; Ahmad, I. Nanoparticles: Physicochemical properties, characterization, methods of preparation and applications. In: Advances in Nanotechnology; Bartul, Z.; Trenor, J., Eds.; Nova Science Publishers, Inc.: New York, USA, 2017; pp. 1-176.
[27]
Bachkar, B.A.; Gadhe, L.T.; Battase, P.; Mahajan, N.; Wagh, R. Nanosponges: A potential nanocarrier for targeted drug delivery. World J. Pharm. Res., 2015, 4, 751-768.
[28]
Bezawada, S. Charanjitha; Reddy, V.M.; Naveena; Gupta, V.R.M. Nanosponges-a concise review for emerging trends. Int. J. Pharm. Res. Biomed. Anal., 2014, 3, 1-6.
[29]
Yadav, G.V.; Panchory, H.P. Nanosponges: A boon to the targeted drug delivery system. J. Drug Deliv. Ther., 2013, 3(4), 151-155.
[http://dx.doi.org/10.22270/jddt.v3i4.564]
[30]
Jilsha, G.; Viswanad, V. Nanosponges: A novel approach of drug delivery system. Int. J. Pharm. Sci. Rev. Res., 2013, 19, 119-123.
[31]
Osmani, R.A.M.; Thirumaleshwar, M.; Bhosale, R.R.; Kulkarni, P.K. Nanosponges the spanking accession in drug delivery-an updated comprehensive review. Pharm. Sin., 2014, 5, 7-21.
[32]
Trotta, F.; Tumiatti, V.; Cavalli, R.; Roggero, C.; Mognetti, B.; Berta, G. Cyclodextrin-based nanosponges as a vehicle for antitumoraldrugs. W.O. Patent 2009003656A1,, 2009.
[33]
Vishwakarma, A.; Nikam, P.; Mogal, R.; Talele, S. Review on nanosponges: A benefication for novel drug delivery. Int. J. Pharm. Tech. Res., 2014, 6, 11-20.
[34]
Zuberi, S.A.; Sheraz, M.A.; Ahmed, S.; Anwar, Z.; Ali, S.A.; Ahmad, I. Nanosponges: Characteristics, methods of preparation and applications. In: Advances in Nanotechnology; Bartul, Z.; Trenor, J., Eds.; Nova Science Publishers, Inc.: New York, USA, 2017; Vol. 18, pp. 177-226.
[35]
Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem., 2012, 8, 2091-2099.
[http://dx.doi.org/10.3762/bjoc.8.235] [PMID: 23243470]
[36]
Swaminathan, S.; Cavalli, R.; Trotta, F. Cyclodextrin-based nanosponges: A versatile platform for cancer nanotherapeutics development. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(4), 579-601.
[http://dx.doi.org/10.1002/wnan.1384] [PMID: 26800431]
[37]
Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym., 2017, 173, 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[38]
Cavalli, R.; Trotta, F.; Tumiatti, W. Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem., 2006, 56(1-2), 209-213.
[http://dx.doi.org/10.1007/s10847-006-9085-2]
[39]
Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of cyclodextrin nanosponges. Int. J. Pharm., 2017, 531(2), 470-479.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072] [PMID: 28645630]
[40]
Ahmed, R.Z.; Patil, G.; Zaheer, Z. Nanosponges - a completely new nano-horizon: Pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm., 2013, 39(9), 1263-1272.
[http://dx.doi.org/10.3109/03639045.2012.694610] [PMID: 22681585]
[41]
Ahmed, S.; Sheraz, M.A.; Rehman, I.U. Studies on tolfenamic acid-chitosan intermolecular interactions: Effect of pH, polymer concentration and molecular weight. AAPS PharmSciTech, 2013, 14(2), 870-879.
[http://dx.doi.org/10.1208/s12249-013-9974-9] [PMID: 23620261]
[42]
Jain, G.K.; Ahmad, F.J.; Khar, R.K.; Fiese, E.F.; Hagen, T.A. Preformulation. In: Lachman/Lieberman’s The Theory and Practice of Industrial Pharmacy, 4th ed; Khar, Rk.; Vyas, S.P.; Ahmad, F.J.; Jain, G.K., Eds.; CBS Publishers and Distributors Pvt Ltd.: New Delhi, India, 2013; pp. 217-254.
[43]
Kamble, M.; Zaheer, Z.; Mokale, S.; Zainuddin, R. Formulation optimization and biopharmaceutical evaluation of imatinib mesylate loaded β-cyclodextrin nanosponges. Pharm. Nanotechnol., 2019, 7(5), 343-361.
[http://dx.doi.org/10.2174/2211738507666190919121445] [PMID: 31549599]
[44]
Rao, M.; Bajaj, A.; Khole, I.; Munjapara, G.; Trotta, F. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem., 2013, 77(1-4), 135-145.
[http://dx.doi.org/10.1007/s10847-012-0224-7]
[45]
Selvamuthukumar, S.; Anandam, S.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A novel class of drug delivery system--review. J. Pharm. Pharm. Sci., 2012, 15(1), 103-111.
[http://dx.doi.org/10.18433/J3K308] [PMID: 22365092]
[46]
Singh, D.; Soni, G.C.; Prajapati, S.K. Recent advances in nanosponges as drug delivery system: A review article. Eur. J. Pharm. Med. Res., 2016, 3, 364-371.
[47]
Rita, L.; Throat, A.; Gargote, C.S. Current trends in β-cyclodextrin based drug delivery systems. Int. J. Res. Ayurveda Pharm., 2011, 2, 1520-1526.
[48]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Rogero, C.; Vallero, R. Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. C.N Patent 1993380B,, 2010.
[49]
Jain, A.; Prajapati, S.K.; Kumari, A.; Mody, N.; Bajpai, M. Engineered nanosponges as versatile biodegradable carriers: An insight. J. Drug Deliv. Sci. Technol., 2020, 57, 101643.
[http://dx.doi.org/10.1016/j.jddst.2020.101643]
[50]
Trotta, F.; Cavalli, R.; Tumiatti, W.; Zerbinati, O.; Rogero, C.; Vallero, R. Ultrasound assisted synthesis of cyclodextrin-based nanosponges. E.P. Patent 1786 841B1,, 2007.
[51]
Singireddy, A.; Subramanian, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mater., 2014, 21(6), 1015-1023.
[http://dx.doi.org/10.1007/s10934-014-9851-2]
[52]
Torne, S.J.; Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv., 2010, 17(6), 419-425.
[http://dx.doi.org/10.3109/10717541003777233] [PMID: 20429848]
[53]
Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm., 2013, 63(3), 335-358.
[http://dx.doi.org/10.2478/acph-2013-0021] [PMID: 24152895]
[54]
Thakre, A.R.; Gholse, Y.N.; Kasliwal, R.H. Nanosponges: A novel approach of drug delivery system. J. Med. Pharm. Allied Sci., 2016, 5, 78-92.
[55]
Rao, M.R.P.; Chaudhari, J.; Trotta, F.; Caldera, F. Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech, 2018, 19(5), 2358-2369.
[http://dx.doi.org/10.1208/s12249-018-1064-6] [PMID: 29869305]
[56]
Patel, M.R.; Lamprou, D.A.; Vavia, P.R. Synthesis, characterization, and drug delivery application of self-assembling amphiphilic cyclodextrin. AAPS PharmSciTech, 2019, 21(1), 11.
[http://dx.doi.org/10.1208/s12249-019-1572-z] [PMID: 31808011]
[57]
Haley, R.M.; Gottardi, R.; Langer, R.; Mitchell, M.J. Cyclodextrins in drug delivery: Applications in gene and combination therapy. Drug Deliv. Transl. Res., 2020, 10(3), 661-677.
[http://dx.doi.org/10.1007/s13346-020-00724-5] [PMID: 32077052]
[58]
Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin‐based nanosponges for improving solubility and sustainable release of curcumin. ChemistrySelect, 2020, 5(5), 1734-1738.
[http://dx.doi.org/10.1002/slct.201904007]
[59]
Dora, C.P.; Trotta, F.; Kushwah, V.; Devasari, N.; Singh, C.; Suresh, S.; Jain, S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym., 2016, 137, 339-349.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.080] [PMID: 26686138]
[60]
Daga, M.; de Graaf, I.A.M.; Argenziano, M.; Barranco, A.S.M.; Loeck, M.; Al-Adwi, Y.; Cucci, M.A.; Caldera, F.; Trotta, F.; Barrera, G.; Casini, A.; Cavalli, R.; Pizzimenti, S. Glutathione-responsive cyclodextrin-nanosponges as drug delivery systems for doxorubicin: Evaluation of toxicity and transport mechanisms in the liver. Toxicol. In vitro, 2020, 65, 104800.
[http://dx.doi.org/10.1016/j.tiv.2020.104800] [PMID: 32084521]
[61]
Bolmal, U.B.; Manvi, F.V.; Rajkumar, K.; Palla, S.S.; Paladugu, A.; Reddy, K.R. Recent advances in nanosponges as drug delivery system. Int. J. Pharm. Sci. Nanotechnol., 2013, 6(1), 1934-1944.
[http://dx.doi.org/10.37285/ijpsn.2013.6.1.3]
[62]
Cavalli, R.; Akhter, A.K.; Bisazza, A.; Giustetto, P.; Trotta, F.; Vavia, P. Nanosponge formulations as oxygen delivery systems. Int. J. Pharm., 2010, 402(1-2), 254-257.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.025] [PMID: 20888402]
[63]
Eldose, A.; Twinkle, P.; Honey, S.; Twinkle, Z.; Hitesh, J.; Umesh, U. Nanosponge: A novel nano drug carrier. J. Adv. Res. Pharm. Biol. Sci., 2015, 1, 1-7.
[64]
Kaur, G.; Aggarwal, G.; Harikumar, S.L. Nanosponge: New colloidal drug delivery system for topical delivery. Indo. Global J. Pharm. Sci., 2015, 5(1), 53-57.
[http://dx.doi.org/10.35652/IGJPS.2015.23]
[65]
Swaminathan, S.; Trotta, F. Cyclodextrin nanosponges. In: Nanosponges: Synthesis and Applications; Trotta, F.; Mele, A., Eds.; Verlag, GmbH: Weinheim, Germany, 2019; pp. 27-58.
[http://dx.doi.org/10.1002/9783527341009.ch2]
[66]
Trotta, F.; Wander, T. Cross-linked polymers based on cyclodextrins for removing polluting agents W.O. Patent 2003085002,, 2005.
[67]
Desai, D.; Shende, P. Drug-free cyclodextrin-based nanosponges for antimicrobial activity. J. Pharm. Innov., 2021, 16(2), 258-268.
[http://dx.doi.org/10.1007/s12247-020-09442-4]
[68]
Massaro, M.; Cavallaro, G.; Lazzara, G.; Riela, S. Covalently modified nanoclays: Synthesis, properties and applications. In: Micro and Nano Technologies, Clay Nanoparticles; Cavallaro, G.; Fakhrullin, R.; Pasbakhsh, P., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 305-333.
[69]
Ghourab, N.; Gad, S.; Moustafa, Y. Nanosponge as a drug delivery system. Records Pharm. BioMed. Sci., 2020, 4(1), 17-31.
[http://dx.doi.org/10.21608/rpbs.2019.17076.1041]
[70]
Arkas, M.; Allabashi, R.; Tsiourvas, D.; Mattausch, E.M.; Perfler, R. Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ. Sci. Technol., 2006, 40(8), 2771-2777.
[http://dx.doi.org/10.1021/es052290v] [PMID: 16683622]
[71]
Seglie, L.; Martina, K.; Devecchi, M.; Roggero, C.; Trotta, F.; Scariot, V. The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers. Postharvest Biol. Technol., 2011, 59(2), 200-205.
[http://dx.doi.org/10.1016/j.postharvbio.2010.08.012]
[72]
Johnston, C.S.; Steinberg, F.M.; Rucker, R.B. Ascorbic acid. In: Handbook of Vitamins, 4th ed; Zempleni, J.; Rucker, R.B.; McCormick, D.B.; Suttie, J.W., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 489-520.
[73]
Sheraz, M.A.; Khan, M.F.; Ahmed, S.; Ahmad, I. Pharmacological effects of ascorbic acid. In: Vitamin C: Dietary Sources, Technology, Daily Requirements and Symptoms of Deficiency; Guine, R.P.F., Ed.; Nova Science Publishers, Inc.: New York, USA, 2013; pp. 191-208.
[74]
Sheraz, M.A.; Khan, M.F.; Ahmed, S.; Kazi, S.H.; Khattak, S.R.; Ahmad, I. Factors affecting formulation characteristics and stability of ascorbic acid in water-in-oil creams. Int. J. Cosmet. Sci., 2014, 36(5), 494-504.
[http://dx.doi.org/10.1111/ics.12152] [PMID: 25066010]
[75]
Sheraz, M.A.; Ahmed, S.; Ahmad, I.; Shaikh, R.H.; Vaid, F.H.; Iqbal, K. Formulation and stability of ascorbic acid in topical preparations. Syst. Rev. Pharm., 2011, 2(2), 86-90.
[http://dx.doi.org/10.4103/0975-8453.86296]
[76]
Ebrahimi, S.; Dabbagh, H.A. Oxidative and non‐oxidative degradation pathways of L‐ascorbic acid. Int. J. Food Sci. Technol., 2019, 54(9), 2770-2779.
[http://dx.doi.org/10.1111/ijfs.14189]
[77]
Ahmad, I.; Sheraz, M.A.; Ahmed, S.; Bano, R.; Vaid, F.H. Photochemical interaction of ascorbic acid with riboflavin, nicotinamide and alpha-tocopherol in cream formulations. Int. J. Cosmet. Sci., 2012, 34(2), 123-131.
[http://dx.doi.org/10.1111/j.1468-2494.2011.00690.x] [PMID: 22014159]
[78]
Ahmad, I.; Ali Sheraz, M.; Ahmed, S.; Shad, Z.; Vaid, F.H.M. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations. Int. J. Cosmet. Sci., 2012, 34(3), 240-245.
[http://dx.doi.org/10.1111/j.1468-2494.2012.00708.x] [PMID: 22296174]
[79]
Ahmad, I.; Sheraz, M.A.; Ahmed, S.; Shaikh, R.H.; Vaid, F.H.M. Khattak ur Rehman, S.; Ansari, S.A. Photostability and interaction of ascorbic acid in cream formulations. AAPS PharmSciTech, 2011, 12(3), 917-923.
[http://dx.doi.org/10.1208/s12249-011-9659-1] [PMID: 21735345]
[80]
Cho, Y.S.; Douglas, S.E.; Gallant, J.W.; Kim, K.Y.; Kim, D.S.; Nam, Y.K. Isolation and characterization of cDNA sequences of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, from extant primitive fish groups. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2007, 147(2), 178-190.
[http://dx.doi.org/10.1016/j.cbpb.2007.01.001] [PMID: 17317254]
[81]
Drouin, G.; Godin, J.R.; Pagé, B. The genetics of vitamin C loss in vertebrates. Curr. Genomics, 2011, 12(5), 371-378.
[http://dx.doi.org/10.2174/138920211796429736] [PMID: 22294879]
[82]
Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem., 1994, 269(18), 13685-13688.
[http://dx.doi.org/10.1016/S0021-9258(17)36884-9] [PMID: 8175804]
[83]
van Gorkom, G.N.Y.; Lookermans, E.L.; Van Elssen, C.H.M.J.; Bos, G.M.J. The effect of vitamin C (ascorbic acid) in the treatment of patients with cancer: A systematic review. Nutrients, 2019, 11(5), 977.
[http://dx.doi.org/10.3390/nu11050977] [PMID: 31035414]
[84]
Trotta, F.; Dianzani, C.; Caldera, F.; Mognetti, B.; Cavalli, R. The application of nanosponges to cancer drug delivery. Expert Opin. Drug Deliv., 2014, 11(6), 931-941.
[http://dx.doi.org/10.1517/17425247.2014.911729] [PMID: 24811423]
[85]
Shenoy, N.; Creagan, E.; Witzig, T.; Levine, M. Ascorbic acid in cancer treatment: Let the phoenix fly. Cancer Cell, 2018, 34(5), 700-706.
[http://dx.doi.org/10.1016/j.ccell.2018.07.014] [PMID: 30174242]
[86]
Moretti, M.; Fraga, D.B.; Rodrigues, A.L.S. Preventive and therapeutic potential of ascorbic acid in neurodegenerative diseases. CNS Neurosci. Ther., 2017, 23(12), 921-929.
[http://dx.doi.org/10.1111/cns.12767] [PMID: 28980404]
[87]
Akram, N.A.; Shafiq, F.; Ashraf, M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci., 2017, 8, 613.
[http://dx.doi.org/10.3389/fpls.2017.00613] [PMID: 28491070]
[88]
Manela-Azulay, M.; Bagatin, E. Cosmeceuticals vitamins. Clin. Dermatol., 2009, 27(5), 469-474.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.010] [PMID: 19695478]
[89]
Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med., 2020, 159, 37-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.013] [PMID: 32738399]
[90]
Oh, S.; Kim, Y.J.; Lee, E.K.; Park, S.W.; Yu, H.G. Antioxidative effects of ascorbic acid and astaxanthin on arpe-19 cells in an oxidative stress model. Antioxidants, 2020, 9(9), 833.
[http://dx.doi.org/10.3390/antiox9090833] [PMID: 32899990]
[91]
Shapiro, S.S.; Saliou, C. Role of vitamins in skin care. Nutrition, 2001, 17(10), 839-844.
[http://dx.doi.org/10.1016/S0899-9007(01)00660-8] [PMID: 11684391]
[92]
Sheraz, M.A.; Khan, M.F.; Ahmed, S.O.; Kazi, S.H.; Ahmad, I.Q. Stability and stabilization of ascorbic acid. Househ. Pers. Care Today, 2015, 10, 22-25.
[93]
Sheskey, P.J.; Cook, W.G.; Cable, C.G. Handbook of Pharmaceutical Excipients, 8th ed; Pharmaceutical Press: London, UK, 2017, pp. 80-83.
[94]
Bissett, D.L. Anti-aging skin care formulations. In: Cosmetic Formulation of Skin Care Products; Draelos, Z.D.; Thaman, L.A., Eds.; Taylor & Francis Group: New York, USA, 2006.
[95]
Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R.; Vitamin, C.; Vitamin, C. One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine, 2020, 24, 102117.
[http://dx.doi.org/10.1016/j.nano.2019.102117] [PMID: 31676375]
[96]
Pinnell, S.R.; Yang, H.; Omar, M.; Monteiro-Riviere, N.; DeBuys, H.V.; Walker, L.C.; Wang, Y.; Levine, M. Topical L-ascorbic acid: Percutaneous absorption studies. Dermatol. Surg., 2001, 27(2), 137-142.
[PMID: 11207686]
[97]
Lipkowski, J. Solvates and hydrates-supramolecular compounds. In: Comprehensive Supramolecular Chemistry II; Atwood, J.L., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 89-108.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12602-2]
[98]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Torne, S. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem., 2007, 57(1-4), 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]
[99]
Singireddy, A.; Subramanian, S. Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul. Sci. Technol., 2016, 34(3), 341-346.
[http://dx.doi.org/10.1080/02726351.2015.1081658]
[100]
Anandam, S.; Selvamuthukumar, S. Fabrication of cyclodextrin nanosponges for quercetin delivery: Physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci., 2014, 49(23), 8140-8153.
[http://dx.doi.org/10.1007/s10853-014-8523-6]
[101]
Darandale, S.S.; Vavia, P.R. Cyclodextrin-based nanosponges of curcumin: Formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem., 2013, 75(3-4), 315-322.
[http://dx.doi.org/10.1007/s10847-012-0186-9]
[102]
Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol., 2018, 45, 45-53.
[http://dx.doi.org/10.1016/j.jddst.2018.03.004]
[103]
Torne, S.; Darandale, S.; Vavia, P.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm. Dev. Technol., 2013, 18(3), 619-625.
[http://dx.doi.org/10.3109/10837450.2011.649855] [PMID: 22235935]
[104]
Ansari, K.A.; Torne, S.J.; Vavia, P.R.; Trotta, F.; Cavalli, R. Paclitaxel loaded nanosponges: In vitro characterization and cytotoxicity study on MCF-7 cell line culture. Curr. Drug Deliv., 2011, 8(2), 194-202.
[http://dx.doi.org/10.2174/156720111794479934] [PMID: 21235471]
[105]
Jilsha, G.; Viswanad, V. Nanosponge loaded hydrogel of cephalexin for topical delivery. Int. J. Pharm. Sci. Res., 2015, 6, 2781-2789.
[106]
Olteanu, A.A.; Arama, C.C.; Bleotu, C.; Lupuleasa, D.; Monciu, C.M. Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors (enalapril, captopril, cilazapril). Farmacia, 2015, 63, 492-503.
[107]
Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm., 2010, 74(2), 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003] [PMID: 19900544]
[108]
Minelli, R.; Cavalli, R.; Ellis, L.; Pettazzoni, P.; Trotta, F.; Ciamporcero, E.; Barrera, G.; Fantozzi, R.; Dianzani, C.; Pili, R. Nanosponge-encapsulated camptothecin exerts anti-tumor activity in human prostate cancer cells. Eur. J. Pharm. Sci., 2012, 47(4), 686-694.
[http://dx.doi.org/10.1016/j.ejps.2012.08.003] [PMID: 22917641]
[109]
Olteanu, A.A.; Aramă, C.C.; Radu, C.; Mihăescu, C.; Monciu, C.M. Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide). J. Incl. Phenom. Macrocycl. Chem., 2014, 80(1-2), 17-24.
[http://dx.doi.org/10.1007/s10847-014-0406-6]
[110]
Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech, 2011, 12(1), 279-286.
[http://dx.doi.org/10.1208/s12249-011-9584-3] [PMID: 21240574]
[111]
Gidwani, B.; Vyas, A. A comprehensive review of cyclodextrin based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int., 2015, 2015, 198268.
[http://dx.doi.org/10.1155/2015/198268] [PMID: 26582104]
[112]
Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J. Biomed. Nanotechnol., 2013, 9(6), 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594] [PMID: 23858964]
[113]
Clemente, N.; Argenziano, M.; Gigliotti, C.L.; Ferrara, B.; Boggio, E.; Chiocchetti, A.; Caldera, F.; Trotta, F.; Benetti, E.; Annaratone, L.; Ribero, S.; Pizzimenti, S.; Barrera, G.; Dianzani, U.; Cavalli, R.; Dianzani, C. Paclitaxel-loaded nanosponges inhibit growth and angiogenesis in melanoma cell models. Front. Pharmacol., 2019, 10, 776.
[http://dx.doi.org/10.3389/fphar.2019.00776] [PMID: 31354491]
[114]
Allahyari, S.; Valizadeh, H.; Roshangar, L.; Mahmoudian, M.; Trotta, F.; Caldera, F.; Jelvehgari, M.; Zakeri-Milani, P. Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery. Expert Opin. Drug Deliv., 2020, 17(12), 1807-1816.
[http://dx.doi.org/10.1080/17425247.2020.1800637] [PMID: 32729739]
[115]
Argenziano, M.; Haimhoffer, A.; Bastiancich, C.; Jicsinszky, L.; Caldera, F.; Trotta, F.; Scutera, S.; Alotto, D.; Fumagalli, M.; Musso, T.; Castagnoli, C.; Cavalli, R. In vitro enhanced skin permeation and retention of imiquimod loaded in β-cyclodextrin nanosponge hydrogel. Pharmaceutics, 2019, 11(3), 138.
[http://dx.doi.org/10.3390/pharmaceutics11030138] [PMID: 30897794]
[116]
Gangadharappa, H.V.; Prasad, S.M.; Singh, R.P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J. Drug Deliv. Sci. Technol., 2017, 41, 488-501.
[http://dx.doi.org/10.1016/j.jddst.2017.09.004]
[117]
Dubey, P.; Sharma, H.K.; Shah, S.; Tyagi, C.K.; Chandekar, A.R.; Jadon, R.S. Formulations and evaluation of cyclodextrin complexed ceadroxil loaded nanosponges. Int. J. Drug Deliv., 2017, 9(3), 84-100.
[http://dx.doi.org/10.5138/09750215.2180]
[118]
Zeng, W.; Martinuzzi, F.; MacGregor, A. Development and application of a novel UV method for the analysis of ascorbic acid. J. Pharm. Biomed. Anal., 2005, 36(5), 1107-1111.
[http://dx.doi.org/10.1016/j.jpba.2004.09.002] [PMID: 15620539]
[119]
Harmonised Tripartite Guideline, I.C.H.. Validation of analytical procedures: Text and methodology Q2(R1 International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human UseGeneva, Switzerland,2005.
[120]
Hameed, A.; Ali, S.A.; Khan, A.A.; Moin, S.T.; Khan, K.M.; Hashim, J.; Basha, F.Z.; Malik, M.I. Solvent free click chemistry for tetrazole synthesis from1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) based fluorinated ionic liquids, their micellization and density functional theory studies. RSC Adv, 2014, 4, 64128-64137.
[121]
D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm., 2014, 2014, 304757.
[http://dx.doi.org/10.1155/2014/304757]
[122]
Helal, D.A.; El-Rhman, D.A.; Abdel-Halim, S.A.; El-Nabarawi, M.A. Formulation and evaluation of fluconazole topical gel. Int. J. Pharm. Pharm. Sci., 2012, 4, 176-183.
[123]
Higuchi, T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci., 1961, 50(10), 874-875.
[http://dx.doi.org/10.1002/jps.2600501018] [PMID: 13907269]
[124]
Ahsan, S.F.; Sheraz, M.A.; Khan, M.F.; Anwar, Z.; Ahmed, S.; Ahmad, I. Formulation and stability studies of fast disintegrating tablets of amlodipine besylate. Indian J. Pharm. Educ. Res., 2019, 53(3), 480-493.
[http://dx.doi.org/10.5530/ijper.53.3.80]
[125]
Loukas, Y.L.; Jayasekera, P.; Gregoriadis, G. Characterization and photoprotection studies of a model gamma-cyclodextrin-included photolabile drug entrapped in liposomes incorporating light absorbers. J. Phys. Chem., 1995, 99(27), 11035-11040.
[http://dx.doi.org/10.1021/j100027a052]
[126]
Talari, A.C.S.; Martinez, M.A.G.; Movasaghi, Z.; Rehman, S.; Rehman, I.U. Advances in Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev., 2017, 52(5), 456-502.
[http://dx.doi.org/10.1080/05704928.2016.1230863]
[127]
Kestur, U.S.; Van Eerdenbrugh, B.; Taylor, L.S. Influence of polymer chemistry on crystal growth inhibition of two chemically diverse organic molecules. CrystEngComm, 2011, 13(22), 6712-6718.
[http://dx.doi.org/10.1039/c1ce05822c]
[128]
Sheraz, M.A.; Ahmed, S.; Ur Rehman, I. Effect of pH, polymer concentration and molecular weight on the physical state properties of tolfenamic acid. Pharm. Dev. Technol., 2015, 20(3), 352-360.
[http://dx.doi.org/10.3109/10837450.2013.871027] [PMID: 24417663]
[129]
Saha, S.; Roy, A.; Roy, M.N. Mechanistic investigation of inclusion complexes of a sulfa-drug with α and β-cyclodextrins. Ind. Eng. Chem. Res., 2011, 56(41), 11672-11683.
[http://dx.doi.org/10.1021/acs.iecr.7b02619]
[130]
Tűz, B.; Noszál, B.; Hosztafi, S.; Mazák, K. β-cyclodextrin complex formation and protonation equilibria of morphine and other opioid compounds of therapeutic interest. Eur. J. Pharm. Sci., 2022, 171, 106120.
[http://dx.doi.org/10.1016/j.ejps.2022.106120] [PMID: 34999212]
[131]
Rajendiran, N.; Mohandoss, T.; Venkatesh, G. Investigation of inclusion complexes of sulfamerazine with α- and β-cyclodextrins: An experimental and theoretical study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 124, 441-450.
[http://dx.doi.org/10.1016/j.saa.2014.01.057] [PMID: 24508883]
[132]
Garnero, C.; Longhi, M. Study of ascorbic acid interaction with hydroxypropyl-β-cyclodextrin and triethanolamine, separately and in combination. J. Pharm. Biomed. Anal., 2007, 45(4), 536-545.
[http://dx.doi.org/10.1016/j.jpba.2007.07.030] [PMID: 17851014]
[133]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c] [PMID: 11848947]
[134]
Kumar, S.; Trotta, F.; Rao, R. Encapsulation of babchi oil in cyclodextrin-based nanosponges: Physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics, 2018, 10(4), 169.
[http://dx.doi.org/10.3390/pharmaceutics10040169] [PMID: 30261580]
[135]
Allahyari, S.; Trotta, F.; Valizadeh, H.; Jelvehgari, M.; Zakeri-Milani, P. Cyclodextrin-based nanosponges as promising carriers for active agents. Expert Opin. Drug Deliv., 2019, 16(5), 467-479.
[http://dx.doi.org/10.1080/17425247.2019.1591365] [PMID: 30845847]
[136]
Lu, G.W.; Gao, P. Emulsions and microemulsions for topical and transdermal drug delivery. In: Handbook of Non-Invasive Drug Delivery Systems; Kulkarni, V.S., Ed.; Elsevier: Oxford, UK, 2010; pp. 59-94.
[http://dx.doi.org/10.1016/B978-0-8155-2025-2.10003-4]
[137]
Monographs on ascorbic acid and diphenyl carbonate. In: The Merck Index, 15th Ed.; O’ Neil, M.J., Ed.; Royal Society of Chemistry,Merck & Co. Inc.: White House Station, NJ, USA,, 2013.
[138]
Aulton, M.E. Powder flow. In: Aulton’s Pharmaceutics - The Design and Manufacture of Medicines, 5th ed; Aulton, M.E.; Taylor, K.M.G., Eds.; Elsevier Ltd.: London, UK, 2018; pp. 197-210.
[139]
Sinko, P.J. Martin’s Physical Pharmacy and Pharmaceutical Sciences.Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences,, 7th Ed.; Lippincott Williams and Wilkins,Wolters Kluwer: Philadelphia, PA, USA, 2017, pp. 486-513.
[140]
Harmonised Tripartite Guideline, I.C.H. Stability Testing of New Drug Substances and Products Q1A(R2); International Council on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use: Geneva, Switzerland, 2003.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy