Review Article

纳米医学方法能否为酪氨酸激酶抑制剂的疗效提供优势?

卷 30, 期 13, 2023

发表于: 14 September, 2022

页: [1482 - 1501] 页: 20

弟呕挨: 10.2174/0929867329666220618162303

价格: $65

Open Access Journals Promotions 2
摘要

酪氨酸激酶抑制剂(TKI)是治疗各种癌症的有效药物分子。纳米医学干预和方法不仅可以为TKI提供承载能力,还可以潜在地针对肿瘤特异性环境甚至细胞区室。因此,纳米启发的药物递送系统可以通过增强肿瘤可用性来提高药物的功效,从而产生更大的疗效并减少副作用。已经开发了各种纳米系统来输送TKI以增强癌症的治疗,每种系统都有自己的制备方法和物理化学特性。因此,本综述将讨论纳米干预对联合治疗、剂量减少和更大潜在治疗结局的适用性。强调了单个纳米系统,重点是已开发的系统及其对各种癌细胞系和模型的功效。

关键词: 酪氨酸激酶抑制剂,纳米系统,癌症,细胞系,纳米颗粒,纳米胶束

[1]
Crews, K.R.; Hicks, J.K.; Pui, C.H.; Relling, M.V.; Evans, W.E. Pharmacogenomics and individualized medicine: Translating science into practice. Clin. Pharmacol. Ther., 2012, 92(4), 467-475.
[http://dx.doi.org/10.1038/clpt.2012.120] [PMID: 22948889]
[2]
Monte, A.A.; Heard, K.J.; Vasiliou, V. Prediction of drug response and safety in clinical practice. J. Med. Toxicol., 2012, 8(1), 43-51.
[http://dx.doi.org/10.1007/s13181-011-0198-7] [PMID: 22160757]
[3]
Filipski, K.K.; Mechanic, L.E.; Long, R.; Freedman, A.N. Pharmacogenomics in oncology care. Front. Genet., 2014, 5(5), 73.
[PMID: 24782887]
[4]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[5]
Hanahan, D.; Weinberg, R.A.; Francisco, S. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[6]
Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in cancer and apoptosis. Cancers (Basel), 2018, 11(1), 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[7]
Kroemer, G.; Pouyssegur, J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell, 2008, 13(6), 472-482.
[http://dx.doi.org/10.1016/j.ccr.2008.05.005] [PMID: 18538731]
[8]
Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
[9]
Fenech, M. Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov. Today, 2002, 7(22), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(02)02502-3] [PMID: 12546856]
[10]
Charames, G.S.; Bapat, B. Genomic instability and cancer. Curr. Mol. Med., 2003, 3(7), 589-596.
[http://dx.doi.org/10.2174/1566524033479456] [PMID: 14601634]
[11]
Negrini, S.; Gorgoulis, V.G.; Halazonetis, T.D. Genomic instability--an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol., 2010, 11(3), 220-228.
[http://dx.doi.org/10.1038/nrm2858] [PMID: 20177397]
[12]
Talseth-Palmer, B.A.; Scott, R.J. Genetic variation and its role in malignancy. Int. J. Biomed. Sci., 2011, 7(3), 158-171.
[PMID: 23675233]
[13]
Haradhvala, N.J.; Polak, P.; Stojanov, P.; Covington, K.R.; Shinbrot, E.; Hess, J.M.; Rheinbay, E.; Kim, J.; Maruvka, Y.E.; Braunstein, L.Z.; Kamburov, A.; Hanawalt, P.C.; Wheeler, D.A.; Koren, A.; Lawrence, M.S.; Getz, G. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell, 2016, 164(3), 538-549.
[http://dx.doi.org/10.1016/j.cell.2015.12.050] [PMID: 26806129]
[14]
de Vries, N.L.; Mahfouz, A.; Koning, F.; de Miranda, N.F.C.C. Unraveling the complexity of the cancer microenvironment with multidimensional genomic and cytometric technologies. Front. Oncol., 2020, 10, 1254.
[http://dx.doi.org/10.3389/fonc.2020.01254] [PMID: 32793500]
[15]
Robinson, D.R.; Wu, Y.M.; Lin, S.F. The protein tyrosine kinase family of the human genome. Oncogene, 2000, 19(49), 5548-5557.
[http://dx.doi.org/10.1038/sj.onc.1203957] [PMID: 11114734]
[16]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[17]
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[18]
Gschwind, A.; Fischer, O.M.; Ullrich, A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat. Rev. Cancer, 2004, 4(5), 361-370.
[http://dx.doi.org/10.1038/nrc1360] [PMID: 15122207]
[19]
Chase, A.; Cross, N.C. Signal transduction therapy in haematological malignancies: Identification and targeting of tyrosine kinases. Clin. Sci. (Lond.), 2006, 111(4), 233-249.
[http://dx.doi.org/10.1042/CS20060035] [PMID: 16961463]
[20]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[21]
Drake, J.M.; Lee, J.K.; Witte, O.N. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol. Cell. Biol., 2014, 34(10), 1722-1732.
[http://dx.doi.org/10.1128/MCB.01592-13] [PMID: 24567371]
[22]
Knösel, T.; Kampmann, E.; Kirchner, T.; Altendorf-Hofmann, A. Tyrosine kinases in soft tissue tumors. Pathologe, 2014, 35(Suppl. 2), 198-201.
[PMID: 25193679]
[23]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[24]
Smidova, V.; Michalek, P.; Goliasova, Z.; Eckschlager, T.; Hodek, P.; Adam, V.; Heger, Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics, 2021, 11(4), 1546-1567.
[http://dx.doi.org/10.7150/thno.48662] [PMID: 33408767]
[25]
Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem., 2000, 69, 373-398.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.373] [PMID: 10966463]
[26]
Scheijen, B.; Griffin, J.D. Tyrosine kinase oncogenes in normal hematopoiesis and hematological disease. Oncogene, 2002, 21(21), 3314-3333.
[http://dx.doi.org/10.1038/sj.onc.1205317] [PMID: 12032772]
[27]
Tridente, G. Kinases. In: Adverse Events and Oncotargeted Kinase InhibitorsAcademic Press, 2017, pp. 9-56.
[http://dx.doi.org/10.1016/B978-0-12-809400-6.00002-0]
[28]
Siveen, K.S.; Prabhu, K.S.; Achkar, I.W.; Kuttikrishnan, S.; Shyam, S.; Khan, A.Q.; Merhi, M.; Dermime, S.; Uddin, S. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol. Cancer, 2018, 17(1), 31.
[http://dx.doi.org/10.1186/s12943-018-0788-y] [PMID: 29455667]
[29]
Pawson, T. Regulation and targets of receptor tyrosine kinases. Eur. J. Cancer, 2002, 38(Suppl. 5), S3-S10.
[http://dx.doi.org/10.1016/S0959-8049(02)80597-4] [PMID: 12528767]
[30]
Culhane, J.; Li, E. Targeted therapy with tyrosine kinase inhibitors. US Pharm, 2008, 33(10), 3-14.
[31]
Lahiry, P.; Torkamani, A.; Schork, N.J.; Hegele, R.A. Kinase mutations in human disease: Interpreting genotype-phenotype relationships. Nat. Rev. Genet., 2010, 11(1), 60-74.
[http://dx.doi.org/10.1038/nrg2707] [PMID: 20019687]
[32]
Beretta, G.L.; Cassinelli, G.; Pennati, M.; Zuco, V.; Gatti, L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem., 2017, 142, 271-289.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.062] [PMID: 28851502]
[33]
Metibemu, D.S.; Akinloye, O.A.; Akamo, A.J.; Ojo, D.O.; Okeowo, O.T.; Omotuyi, I.O. Exploring receptor tyrosine kinases inhibitors in Cancer treatments. Egypt. J. Med. Hum. Genet., 2019, 20, 35.
[http://dx.doi.org/10.1186/s43042-019-0035-0]
[34]
Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol., 2019, 12(1), 27.
[http://dx.doi.org/10.1186/s13045-019-0718-5] [PMID: 30866992]
[35]
Liang, X.; Yang, Q.; Wu, P.; He, C.; Yin, L.; Xu, F.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; Song, X.; Lv, C.; Zhang, W.; Jing, B. The synthesis review of the approved tyrosine kinase inhibitors for anticancer therapy in 2015-2020. Bioorg. Chem., 2021, 113, 105011.
[http://dx.doi.org/10.1016/j.bioorg.2021.105011] [PMID: 34091289]
[36]
Al-Obeidi, F.A.; Lam, K.S. Development of inhibitors for protein tyrosine kinases. Oncogene, 2000, 19(49), 5690-5701.
[http://dx.doi.org/10.1038/sj.onc.1203926] [PMID: 11114749]
[37]
Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci., 2004, 1(2), 101-115.
[http://dx.doi.org/10.7150/ijms.1.101] [PMID: 15912202]
[38]
Wadleigh, M.; DeAngelo, D.J.; Griffin, J.D.; Stone, R.M. After chronic myelogenous leukemia: Tyrosine kinase inhibitors in other hematologic malignancies. Blood, 2005, 105(1), 22-30.
[http://dx.doi.org/10.1182/blood-2003-11-3896] [PMID: 15358622]
[39]
Kosior, K.; Lewandowska-Grygiel, M.; Giannopoulos, K. Tyrosine kinase inhibitors in hematological malignancies. Postepy Hig. Med. Dosw., 2011, 65, 819-828.
[http://dx.doi.org/10.5604/17322693.968778] [PMID: 22173446]
[40]
Rossi, J.F. Targeted therapies in adult b-cell malignancies. BioMed Res. Int., 2015, 2015, 217593.
[http://dx.doi.org/10.1155/2015/217593] [PMID: 26425544]
[41]
Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers (Basel), 2020, 12(3), 731.
[http://dx.doi.org/10.3390/cancers12030731] [PMID: 32244867]
[42]
Foroughi-Nia, B.; Barar, J.; Memar, M.Y.; Aghanejad, A.; Davaran, S. Progresses in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life Sci., 2021, 278, 119642.
[http://dx.doi.org/10.1016/j.lfs.2021.119642] [PMID: 34033837]
[43]
Lu, Y.; Bian, D.; Zhang, X.; Zhang, H.; Zhu, Z. Inhibition of Bcl-2 and Bcl-xL overcomes the resistance to the third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer. Mol. Med. Rep., 2021, 23(1), 48.
[44]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review; Tabriz University of Medical Sciences, 2017, 7, pp. 339-348.
[45]
Da Silva, C.G.; Peters, G.J.; Ossendorp, F.; Cruz, L.J. The potential of multi-compound nanoparticles to bypass drug resistance in cancer. Cancer Chemother. Pharmacol., 2017, 80(5), 881-894.
[http://dx.doi.org/10.1007/s00280-017-3427-1] [PMID: 28887666]
[46]
Russo, E.; Spallarossa, A.; Tasso, B.; Villa, C.; Brullo, C. Nanotechnology of tyrosine kinase inhibitors in cancer therapy: A perspective. Int. J. Mol. Sci., 2021, 22(12), 6538.
[http://dx.doi.org/10.3390/ijms22126538] [PMID: 34207175]
[47]
Jo, D.H.; Kim, J.H.; Lee, T.G.; Kim, J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, 2015, 11(7), 1603-1611.
[http://dx.doi.org/10.1016/j.nano.2015.04.015] [PMID: 25989200]
[48]
Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz, S., Jr. Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist., 2021, 4, 44-68.
[49]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[50]
Boyles, M.; Powell, L.; Kermanizadeh, A.; Johnston, H.J.; Rothen-Rutishauser, B.; Stone, V.; Clift, M.J.D. An overview of nanoparticle biocompatibility for their use in nanomedicine. In: Pharmaceutical Nanotechnology: Innovation and Production: Innovation and Production; Cornier, J.; Owen, A.; Kwade, A.; Van de Voorde, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: USA, 2017; pp. 443-468.
[http://dx.doi.org/10.1002/9783527800681.ch18]
[51]
Pinto, A.C.; Moreira, J.N.; Simões, S. Liposomal imatinib-mitoxantrone combination: Formulation development and therapeutic evaluation in an animal model of prostate cancer. Prostate, 2011, 71(1), 81-90.
[http://dx.doi.org/10.1002/pros.21224] [PMID: 20607721]
[52]
Zhou, X.; Yung, B.; Huang, Y.; Li, H.; Hu, X.; Xiang, G.; Lee, R.J. Novel liposomal gefitinib (L-GEF) formulations. Anticancer Res., 2012, 32(7), 2919-2923.
[PMID: 22753756]
[53]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[54]
Lakkadwala, S.; Singh, J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf. B Biointerfaces, 2019, 173, 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.047] [PMID: 30261346]
[55]
Çoban, Ö.; Değim, Z.; Yılmaz, Ş.; Altıntaş, L.; Arsoy, T.; Sözmen, M. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma. Drug Dev. Res., 2019, 80(5), 556-565.
[PMID: 30901500]
[56]
Hu, Y.; Zhang, J.; Hu, H.; Xu, S.; Xu, L.; Chen, E. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer. Cell Cycle, 2020, 19(24), 3581-3594.
[http://dx.doi.org/10.1080/15384101.2020.1852756] [PMID: 33300430]
[57]
Kallus, S.; Englinger, B.; Senkiv, J.; Laemmerer, A.; Heffeter, P.; Berger, W.; Kowol, C.R.; Keppler, B.K. Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index. Nanomedicine, 2018, 14(8), 2632-2643.
[http://dx.doi.org/10.1016/j.nano.2018.08.001] [PMID: 30121385]
[58]
Zhou, X.; Tao, H.; Shi, K.H. Development of a nanoliposomal formulation of erlotinib for lung cancer and in vitro/in vivo antitumoral evaluation. Drug Des. Devel. Ther., 2017, 12, 1-8.
[http://dx.doi.org/10.2147/DDDT.S146925] [PMID: 29296076]
[59]
Ye, H.; Zhou, L.; Jin, H.; Chen, Y.; Cheng, D.; Jian, Y. Sorafenib-loaded long-circulating nanoliposomes for liver cancer therapy. Hindawi BioMed Res. Int., 2020, 2020, 1351046.
[http://dx.doi.org/10.1155/2020/1351046]
[60]
Vaishya, R.D.; Khurana, V.; Patel, S.; Mitra, A.K. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(5), 422-437.
[http://dx.doi.org/10.1002/wnan.1272] [PMID: 24888969]
[61]
Wang, H.; Li, F.; Du, C.; Wang, H.; Mahato, R.I.; Huang, Y. Doxorubicin and lapatinib combination nanomedicine for treating resistant breast cancer. Mol. Pharm., 2014, 11(8), 2600-2611.
[http://dx.doi.org/10.1021/mp400687w] [PMID: 24405470]
[62]
Yang, Q.; Moulder K, R.; Cohen, M.S.; Cai, S.; Forrest, L.M. Cabozantinib loaded DSPE-PEG2000 micelles as delivery system: Formulation, characterization and cytotoxicity evaluation. BAOJ Pharm. Sci., 2015, 1, 1.
[http://dx.doi.org/10.24947/2380-5552/1/1/00101] [PMID: 25688382]
[63]
Tesan, F.; Cerqueira-Coutinho, C.; Salgueiro, J.; de Souza Albernaz, M.; Pinto, S.R.; Dos Reis, S.S.R.; Bernardes, E.S.; Chiapetta, D.; Zubillaga, M.; Santos-Oliveira, R. Characterization and biodistribution of bevacizumab TPGS-based nanomicelles: Preliminary studies. J. Drug Deliv. Sci. Technol., 2016, 36, 95-98.
[http://dx.doi.org/10.1016/j.jddst.2016.09.011]
[64]
Zhang, S.; Zhao, L.; Peng, X.; Sun, Q.; Liao, X.; Gan, N.; Zhao, G.; Li, H. Self-assembled phospholipid-based mixed micelles for improving the solubility, bioavailability and anticancer activity of lenvatinib. Colloids Surf. B Biointerfaces, 2021, 201, 111644.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111644] [PMID: 33639512]
[65]
Bahman, F.; Pittalà, V.; Haider, M.; Greish, K. Enhanced anticancer activity of nanoformulation of dasatinib against triple-negative breast cancer. J. Pers. Med., 2021, 11(6), 559.
[http://dx.doi.org/10.3390/jpm11060559] [PMID: 34204015]
[66]
Delmarre, D.; Tatton, N.; Krause-Elsmore, S. Formulation of hydrophobic drug into cochleate delivery vehicles: A simplified protocol and formulation kit. Drug Deliv. Technol., 2004, 1, 64-69.
[67]
Çoban, Ö.; Değim, Z. Development of nanocochleates containing erlotinib hcl and dexketoprofen trometamol and evaluation of in vitro characteristic properties. Turk. J. Pharm. Sci., 2018, 15(1), 16-21.
[PMID: 32454635]
[68]
Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[69]
Thakkar, S.; Sharma, D.; Misra, M. Comparative evaluation of electrospraying and lyophilization techniques on solid state properties of Erlotinib nanocrystals: Assessment of in-vitro cytotoxicity. Eur. J. Pharm. Sci., 2018, 111, 257-269.
[http://dx.doi.org/10.1016/j.ejps.2017.10.008] [PMID: 28989102]
[70]
Zare, E.N.; Padil, V.V.T.; Mokhtari, B.; Venkateshaiah, A.; Wacławek, S.; Černík, M.; Tay, F.R.; Varma, R.S.; Makvandi, P. Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications. Adv. Colloid Interface Sci., 2020, 283, 102236.
[http://dx.doi.org/10.1016/j.cis.2020.102236] [PMID: 32829011]
[71]
Shu, M.; Gao, F.; Yu, C.; Zeng, M.; He, G.; Wu, Y.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z.; Xu, L. Dual -targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology, 2020, 335102, 12.
[72]
Mohapatra, A.; Uthaman, S.; Park, I-K. Chapter 10 - Polyethylene Glycol Nanoparticles as Promising Tools for Anticancer Therapeutics. In: Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics; Kesharwani, P.; Paknikar, K.M.; Gajbhiye, V., Eds.; Academic Press, USA, 2019; pp. 205-231.
[http://dx.doi.org/10.1016/B978-0-12-816963-6.00010-8]
[73]
Zhou, X.; He, X.; Shi, K.; Yuan, L.; Yang, Y.; Liu, Q.; Ming, Y.; Yi, C.; Qian, Z. Injectable thermosensitive hydrogel containing erlotinib-loaded hollow mesoporous silica nanoparticles as a localized drug delivery system for NSCLC therapy. Adv. Sci. (Weinh.), 2020, 7(23), 2001442.
[http://dx.doi.org/10.1002/advs.202001442] [PMID: 33304746]
[74]
Singh, N.A.; Pandey, K. Chapter 13 - Advanced drug delivery systems in kidney cancer. In: Advanced Drug Delivery Systems in the Management of Cancer; Dua, K.; Mehta, M.; de Jesus, T.; Pinto, A.; Pont, L.G.; Williams, K.A.; Rathbone, M.J. Academic Press, USA, 2021; pp. 155-181.
[75]
Chiang, C-S.; Hu, S-H.; Liao, B-J.; Chang, Y-C.; Chen, S-Y. Enhancement of cancer therapy efficacy by trastuzumab-conjugated and pH-sensitive nanocapsules with the simultaneous encapsulation of hydrophilic and hydrophobic compounds. Nanomedicine, 2014, 10(1), 99-107.
[http://dx.doi.org/10.1016/j.nano.2013.07.009] [PMID: 23891983]
[76]
Sherje, A.P.; Dravyakar, B.R.; Kadam, D.; Jadhav, M. Cyclodextrin-based nanosponges: A critical review. Carbohydr. Polym., 2017, 173, 37-49.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.086] [PMID: 28732878]
[77]
Pandey, P.; Purohit, D.; Dureja, H. Nanosponges -A promising novel drug delivery system. Recent Pat. Nanotechnol., 2018, 12(3), 180-191.
[http://dx.doi.org/10.2174/1872210512666180925102842] [PMID: 30251614]
[78]
Dora, C.P.; Trotta, F.; Kushwah, V.; Devasari, N.; Singh, C.; Suresh, S.; Jain, S. Potential of erlotinib cyclodextrin nanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohydr. Polym., 2016, 137, 339-349.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.080] [PMID: 26686138]
[79]
Momin, M.M.; Zaheer, Z.; Zainuddin, R.; Sangshetti, J.N. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 1064-1075.
[http://dx.doi.org/10.1080/21691401.2017.1360324] [PMID: 28758795]
[80]
Ahmed, M.M.; Fatima, F.; Anwer, K.; Ansari, M.J.; Das, S.S.; Alshahrani, S.M. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. J. Polym. Eng., 2020, 40(10), 823-832.
[http://dx.doi.org/10.1515/polyeng-2019-0365]
[81]
Obeas, L.K.; Ghalib, A.K.; Alsultan, G.A.K.; Asikin-Mijan, N.; Yunus, R. A review on nanorods - an overview from synthesis to emerging, device applications and toxicity. Orient. J. Chem., 2021, 37(2), 370201.
[http://dx.doi.org/10.13005/ojc/370201]
[82]
Liu, J.; Abshire, C.; Carry, C.; Sholl, A.B.; Mandava, S.H.; Datta, A.; Ranjan, M.; Callaghan, C.; Peralta, D.V.; Williams, K.S.; Lai, W.R.; Abdel-Mageed, A.B.; Tarr, M.; Lee, B.R. Nanotechnology combined therapy: Tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. BJU Int., 2017, 119(2), 342-348.
[http://dx.doi.org/10.1111/bju.13590] [PMID: 27431021]
[83]
Escobar-Chávez, J.J.; Rodríguez-Cruz, I.M.; Domínguez-Delgado, C.L. Nanocarrier Systems for Transdermal Drug Delivery, Recent Advances in Novel Drug Carrier Systems, 2012,
[http://dx.doi.org/10.5772/50314]
[84]
Karade, V.C.; Sharma, A.; Dhavale, R.P.; Dhavale, R.P.; Shingte, S.R.; Patil, P.S.; Kim, J.H.; Zahn, D.R.T.; Chougale, A.D.; Salvan, G.; Patil, P.B. APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci. Rep., 2021, 11(1), 5674.
[http://dx.doi.org/10.1038/s41598-021-84770-0] [PMID: 33707549]
[85]
Maruyama, T. Chapter 6 - Carbon nanotubes. In: Micro and Nano Technologies, Handbook of Carbon-Based Nanomaterials; Thomas, S.; Sarathchandran, C.; Ilangovan, S.A.; Moreno-Piraján, J.C., Eds.; Elsevier , 2021, pp. 299-319.
[http://dx.doi.org/10.1016/B978-0-12-821996-6.00009-9]
[86]
Oraki Kohshour, M.; Mirzaie, S.; Zeinali, M.; Amin, M.; Said Hakhamaneshi, M.; Jalili, A.; Mosaveri, N.; Jamalan, M. Ablation of breast cancer cells using trastuzumab-functionalized multi-walled carbon nanotubes and trastuzumab-diphtheria toxin conjugate. Chem. Biol. Drug Des., 2014, 83(3), 259-265.
[http://dx.doi.org/10.1111/cbdd.12244] [PMID: 24118702]
[87]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[88]
Kydd, J.; Jadia, R.; Rai, P. Co-administered polymeric nano-antidotes for improved photo-triggered response in glioblastoma. Pharmaceutics, 2018, 10(4), 226.
[http://dx.doi.org/10.3390/pharmaceutics10040226] [PMID: 30423822]
[89]
Wang, J.; Su, G.; Yin, X.; Luo, J.; Gu, R.; Wang, S.; Feng, J.; Chen, B. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor-Afatinib: In vitro and in vivo evaluation. Biomed. Pharmacother., 2019, 120, 109493.
[http://dx.doi.org/10.1016/j.biopha.2019.109493] [PMID: 31586902]
[90]
Vaidya, B.; Parvathaneni, V.; Kulkarni, N.S.; Shukla, S.K.; Damon, J.K.; Sarode, A.; Kanabar, D.; Garcia, J.V.; Mitragotri, S.; Muth, A.; Gupta, V. Cyclodextrin modified erlotinib loaded PLGA nanoparticles for improved therapeutic efficacy against non-small cell lung cancer. Int. J. Biol. Macromol., 2019, 122, 338-347.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.181] [PMID: 30401652]
[91]
Zhou, C.; Shi, Q.; Liu, J.; Huang, S.; Yang, C.; Xiong, B. Effect of inhibiting tumor angiogenesis after embolization in the treatment of hcc with apatinib-loaded p(N-isopropyl-acrylamide-co-butyl methyl acrylate) temperature-sensitive nanogel. J. Hepatocell. Carcinoma, 2020, 7, 447-456.
[http://dx.doi.org/10.2147/JHC.S282209] [PMID: 33409168]
[92]
Zhang, H.; Cui, W.; Qu, X.; Wu, H.; Qu, L.; Zhang, X.; Mäkilä, E.; Salonen, J.; Zhu, Y.; Yang, Z.; Chen, D.; Santos, H.A.; Hai, M.; Weitz, D.A. Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc. Natl. Acad. Sci. USA, 2019, 116(16), 7744-7749.
[http://dx.doi.org/10.1073/pnas.1817251116] [PMID: 30926671]
[93]
Li, X.; Wang, L.; Wang, L.; Yu, J.; Lu, G.; Zhao, W.; Miao, C.; Zou, C.; Wu, J. Overcoming therapeutic failure in osteosarcoma via Apatinib-encapsulated hydrophobic poly(ester amide) nanoparticles. Biomater. Sci., 2020, 8(21), 5888-5899.
[http://dx.doi.org/10.1039/D0BM01296C] [PMID: 33001086]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy