Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

The Synthesis of Urolithins and their Derivatives and the Modes of Antitumor Action

Author(s): Xiangrong Xu, Zhuanhong Liu and Lei Yao*

Volume 23, Issue 1, 2023

Published on: 17 August, 2022

Page: [80 - 87] Pages: 8

DOI: 10.2174/1389557522666220516125500

Price: $65

conference banner
Abstract

Urolithins are microbial metabolites derived from berries and pomegranate fruits, which display anti-inflammatory, anti-oxidative, and anti-aging activities. There are eight natural urolithins (urolithin A-E, M5, M6 and M7), which have been isolated by now. Structurally, urolithins are phenolic compounds and belong to 6H-dibenzo [b,d] pyran-6-one. They have drawn considerable attention because of their vast range of biological activities and health benefits. Recent studies also suggest that they possess anti-SARS-CoV-2 and anticancer effects. In this article, the recent advances in the synthesis of urolithins and their derivatives from 2015 to 2021 are reviewed. To improve or overcome the solubility and metabolism stability issues, the modifications of urolithins are mainly centered on the hydroxy group and lactone group, and some compounds have been found to display promising results and the potential for further study. The possible modes of antitumor action of urolithin are also discussed. Several signaling pathways, including PI3K-Akt, Wnt/β-catenin pathways, and multiple receptors (aryl hydrocarbon receptor, estrogen and androgen receptors) and enzymes (tyrosinase and lactate dehydrogenase) are involved in the antitumor activity of urolithins.

Keywords: Urolithin, antitumor, modification, derivatives, synthesis, mode of action.

Graphical Abstract
[1]
Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective potential of ellagic acid: A critical review. Adv. Nutr., 2021, 12(4), 1211-1238.
[http://dx.doi.org/10.1093/advances/nmab007] [PMID: 33693510]
[2]
Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent advances in the production and applications of ellagic acid and its derivatives. A review. Molecules, 2020, 25(12), 2745.
[http://dx.doi.org/10.3390/molecules25122745] [PMID: 32545813]
[3]
Piwowarski, J.P.; Granica, S.; Stefańska, J.; Kiss, A.K. Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J. Nat. Prod., 2016, 79(12), 3022-3030.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00602] [PMID: 28006907]
[4]
D’Amico, D.; Andreux, P.A.; Valdés, P.; Singh, A.; Rinsch, C.; Auwerx, J. Impact of the natural compound urolithin A on health, disease, and aging. Trends Mol. Med., 2021, 27(7), 687-699.
[http://dx.doi.org/10.1016/j.molmed.2021.04.009] [PMID: 34030963]
[5]
Rønning, S.B.; Voldvik, V.; Bergum, S.K.; Aaby, K.; Borge, G.I.A. Ellagic acid and urolithin A modulate the immune response in LPS-stimulated U937 monocytic cells and THP-1 differentiated macrophages. Food Funct., 2020, 11(9), 7946-7959.
[http://dx.doi.org/10.1039/C9FO03008E] [PMID: 32832941]
[6]
Manigandan, S.; Yun, J.W. Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytes via beta3-adrenergic receptorp38 MAPK signaling pathway. Biotechnol. Bioprocess Eng., 2020, 25(3), 345-355.
[http://dx.doi.org/10.1007/s12257-020-0149-8]
[7]
Manalo, R.V.M. Molecular interactions with redox sites and salt bridges modulate the anti-aggregatory effect of flavonoid, tannin and cardenolide moieties against amyloid-beta (1-42) in silico. In Silico Pharmacol., 2017, 5(1), 11.
[http://dx.doi.org/10.1007/s40203-017-0033-1] [PMID: 29085768]
[8]
Garcia-Alloza, M.; Bacskai, B.J.; Calvo-Rodriguez, M. Mitochondria-ER contacts and glucose: The powerhouse of Alzheimer’s disease? Cell Calcium, 2021, 97, 102434.
[http://dx.doi.org/10.1016/j.ceca.2021.102434] [PMID: 34186204]
[9]
Fivenson, E.M.; Lautrup, S.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int., 2017, 109, 202-209.
[http://dx.doi.org/10.1016/j.neuint.2017.02.007] [PMID: 28235551]
[10]
Talbot, N.; Powles, N.T.; Page, M.I. Both the mono- and di-anions of ellagic acid are effective inhibitors of the serine β-lactamase CTX-M-15. RSC Adv., 2019, 9(53), 30637-30640.
[http://dx.doi.org/10.1039/C9RA05835D]
[11]
Suručić, R.; Travar, M.; Petković, M.; Tubić, B.; Stojiljković, M.P.; Grabež, M.; Šavikin, K.; Zdunić, G.; Škrbić, R. Pomegranate peel extract polyphenols attenuate the SARS-CoV-2 S-glycoprotein binding ability to ACE2 receptor: In silico and in vitro studies. Bioorg. Chem., 2021, 114, 105145.
[http://dx.doi.org/10.1016/j.bioorg.2021.105145] [PMID: 34246969]
[12]
Shukur, K.; Fallah, A.; Terali, K.; Kalkan, R.; Gazi, M.; Gülcan, H.O. 3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one and 3-hydroxy-6H-benzo[c]chromen-6-one act as on-off selective fluorescent sensors for Iron (III) under in vitro and ex vivo conditions. Turk. J. Chem., 2021, 45(3), 858-867.
[http://dx.doi.org/10.3906/kim-2011-58] [PMID: 34385872]
[13]
Cozza, G.; Gianoncelli, A.; Bonvini, P.; Zorzi, E.; Pasquale, R.; Rosolen, A.; Pinna, L.A.; Meggio, F.; Zagotto, G.; Moro, S. Urolithin as a converging scaffold linking ellagic acid and coumarin analogues: Design of potent protein kinase CK2 inhibitors. ChemMedChem, 2011, 6(12), 2273-2286.
[http://dx.doi.org/10.1002/cmdc.201100338] [PMID: 21972104]
[14]
Wei, P.; Zhou, B. Preparation of antitumor compound urostonin B. C.N. Patent 111039913, April 21, 2020.
[15]
Skranc, W.; Yiannikouros, G.; Trofimov, A.; Shan, Z.; Goss, C. Process -scale synthesis of urolithin A. U.S. Patent 20190263772, August 29, 2019.
[16]
Reddy, M.D.; Blanton, A.N.; Watkins, E.B. Palladium-catalyzed, N-(2-Aminophenyl)acetamide-assisted ortho-arylation of substituted benzamides: Application to the synthesis of urolithins B, M6, and M7. J. Org. Chem., 2017, 82(10), 5080-5095.
[http://dx.doi.org/10.1021/acs.joc.7b00256] [PMID: 28429590]
[17]
Rupiani, S.; Guidotti, L.; Manerba, M.; Di Ianni, L.; Giacomini, E.; Falchi, F.; Di Stefano, G.; Roberti, M.; Recanatini, M. Synthesis of natural urolithin M6, a galloflavin mimetic, as a potential inhibitor of lactate dehydrogenase A. Org. Biomol. Chem., 2016, 14(46), 10981-10987.
[http://dx.doi.org/10.1039/C6OB01977C] [PMID: 27827510]
[18]
Zhang, L.; Zhang, Z.; Hong, J.; Yu, J.; Zhang, J.; Mo, F. Oxidant-free c(sp2)–h functionalization/c–o bond formation: A Kolbe oxidative cyclization process. J. Org. Chem., 2018, 83(6), 3200-3207.
[http://dx.doi.org/10.1021/acs.joc.8b00089] [PMID: 29471627]
[19]
Ma, X.; Zhang, Z.; Li, W.; Wu, Q.; Hu, X. Synthetic method of urolithin A. CN111978282, September 10, 2020.
[20]
Nealmongkol, P.; Tangdenpaisal, K.; Sitthimonchai, S.; Ruchirawat, S.; Thasana, N. Cu(I)-mediated lactone formation in subcritical water: A benign synthesis of benzopyranones and urolithins A–C. Tetrahedron, 2014, 45(44), 9277-9283.
[http://dx.doi.org/10.1016/j.tet.2013.08.045]
[21]
Tang, L.; Jiang, J.; Song, G.; Wang, Y.; Zhuang, Z.; Tan, Y.; Xia, Y.; Huang, X.; Feng, X. Design, synthesis, and biological evaluation of novel 6H-benzo[c]chromen-6-one derivatives as potential phosphodiesterase II inhibitors. Int. J. Mol. Sci., 2021, 22(11), 5680.
[http://dx.doi.org/10.3390/ijms22115680] [PMID: 34073595]
[22]
Zhou, B.; Li, Y.; Wei, P.; Lan, Y. The synthesis and application of benzo[c]benzopyranone derivatives. C.N. Patent 11149608, August 07, 2020.
[23]
Norouzbahari, M.; Burgaz, E.V.; Ercetin, T.; Fallah, A.; Foroumadi, A.; Firoozpour, L.; Sahin, M.F.; Gazi, M.; Gulcan, H.O. Design, synthesis and characterization of novel urolithin derivatives as cholinesterase inhibitor agents. Lett. Drug Des. Discov., 2018, 15(11), 1131-1140.
[http://dx.doi.org/10.2174/1570180815666180115144608]
[24]
Noshadi, B.; Ercetin, T.; Luise, C.; Yuksel, M.Y.; Sippl, W.; Sahin, M.F.; Gazi, M.; Gulcan, H.O. Synthesis, characterization, molecular docking, and biological activities of some natural and synthetic urolithin analogs. Chem. Biodivers., 2020, 17(8), e2000197.
[http://dx.doi.org/10.1002/cbdv.202000197] [PMID: 32497364]
[25]
Shukur, K.T.; Ercetin, T.; Luise, C.; Sippl, W.; Sirkecioglu, O.; Ulgen, M.; Coskun, G.P.; Yarim, M.; Gazi, M.; Gulcan, H.O. Design, synthesis, and biological evaluation of new urolithin amides as multitarget agents against Alzheimer′s disease. Arch. Pharm. (Weinheim), 2021, 354(5), 2000467.
[http://dx.doi.org/10.1002/ardp.202000467]
[26]
Zhou, B.; Li, Y.; Wei, P.; Lan, Y. A synthesis method and application of the antimicrobial drug of tricarbon-chain linked Urolithin B and its hydrochlorides. C.N. Patent 109928963, June 25, 2019.
[27]
Stoicescu, D. F. Preparation of novel heterocyclic compounds such as urolithin A derivatives. WO2021078811, 2021.
[28]
Gulcan, H.O.; Unlu, S.; Esiringu, I.; Ercetin, T.; Sahin, Y.; Oz, D.; Sahin, M.F. Design, synthesis and biological evaluation of novel 6H-benzo[c]chromen-6-one, and 7,8,9,10-tetrahydrobenzo[c]chromen-6-one derivatives as potential cholinesterase inhibitors. Bioorg. Med. Chem., 2014, 22(19), 5141-5154.
[http://dx.doi.org/10.1016/j.bmc.2014.08.016] [PMID: 25189690]
[29]
Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; Langille, M.G.I.; Douglas, G.M.; Cheng, X.; Rouchka, E.C.; Waigel, S.J.; Dryden, G.W.; Alatassi, H.; Zhang, H.G.; Haribabu, B.; Vemula, P.K.; Jala, V.R. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun., 2019, 10(1), 89.
[http://dx.doi.org/10.1038/s41467-018-07859-7] [PMID: 30626868]
[30]
Liberal, J.; Carmo, A.; Gomes, C.; Cruz, M.T.; Batista, M.T. Urolithins impair cell proliferation, arrest the cell cycle and induce apoptosis in UMUC3 bladder cancer cells. Invest. New Drugs, 2017, 35(6), 671-681.
[http://dx.doi.org/10.1007/s10637-017-0483-7] [PMID: 28631098]
[31]
Totiger, T.M.; Srinivasan, S.; Jala, V.R.; Lamichhane, P.; Dosch, A.R.; Gaidarski, A.A., III; Joshi, C.; Rangappa, S.; Castellanos, J.; Vemula, P.K.; Chen, X.; Kwon, D.; Kashikar, N.; VanSaun, M.; Merchant, N.B.; Nagathihalli, N.S. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Mol. Cancer Ther., 2019, 18(2), 301-311.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0464] [PMID: 30404927]
[32]
Tuohetaerbaike, B.; Zhang, Y.; Tian, Y.; Zhang, N.N.; Kang, J.; Mao, X.; Zhang, Y.; Li, X. Pancreas protective effects of Urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. J. Ethnopharmacol., 2020, 250(2), 112479.
[http://dx.doi.org/10.1016/j.jep.2019.112479] [PMID: 31846746]
[33]
Dirimanov, S.; Högger, P. Screening of inhibitory effects of polyphenols on Akt-phosphorylation in endothelial cells and determination of structure-activity features. Biomolecules, 2019, 9(6), 219.
[http://dx.doi.org/10.3390/biom9060219] [PMID: 31195734]
[34]
Zhou, B.; Wang, J.; Zheng, G.; Qiu, Z. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food Chem. Toxicol., 2016, 97, 375-384.
[http://dx.doi.org/10.1016/j.fct.2016.10.005] [PMID: 27725205]
[35]
Lv, M.Y.; Shi, C.J.; Pan, F.F.; Shao, J.; Feng, L.; Chen, G.; Ou, C.; Zhang, J.F.; Fu, W.M. Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/β-catenin signaling. J. Cell. Biochem., 2019, 120(10), 17273-17282.
[http://dx.doi.org/10.1002/jcb.28989] [PMID: 31218741]
[36]
Norden, E.; Heiss, E.H. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis, 2019, 40(1), 93-101.
[http://dx.doi.org/10.1093/carcin/bgy158] [PMID: 30418550]
[37]
Mohammed Saleem, Y.I.; Albassam, H.; Selim, M. Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur. J. Nutr., 2020, 59(4), 1607-1618.
[http://dx.doi.org/10.1007/s00394-019-02016-2] [PMID: 31177307]
[38]
Cheng, F.; Dou, J.; Zhang, Y.; Wang, X.; Wei, H.; Zhang, Z.; Cao, Y.; Wu, Z.; Urolithin, A. Urolithin A inhibits epithelialmesenchymal transition in lung cancer cells via P53-Mdm2-snail pathway. OncoTargets Ther., 2021, 14, 3199-3208.
[http://dx.doi.org/10.2147/OTT.S305595] [PMID: 34040386]
[39]
Muku, G.E.; Murray, I.A.; Espín, J.C.; Perdew, G.H. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites, 2018, 8(4), 1-18.
[http://dx.doi.org/10.3390/metabo8040086] [PMID: 30501068]
[40]
Zhang, W.; Chen, J.H.; Aguilera-Barrantes, I.; Shiau, C.W.; Sheng, X.; Wang, L.S.; Stoner, G.D.; Huang, Y.W. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-α-dependent gene expression. Mol. Nutr. Food Res., 2016, 60(11), 2387-2395.
[http://dx.doi.org/10.1002/mnfr.201600048] [PMID: 27342949]
[41]
Dellafiora, L.; Milioli, M.; Falco, A.; Interlandi, M.; Mohamed, A.; Frotscher, M.; Riccardi, B.; Puccini, P.; Rio, D.D.; Galaverna, G.; Dall’Asta, C. A hybrid in silico/in vitro target fishing study to mine novel targets of urolithin A and B: A step towards a better comprehension of their estrogenicity. Mol. Nutr. Food Res., 2020, 64(16), e2000289.
[http://dx.doi.org/10.1002/mnfr.202000289] [PMID: 32640069]
[42]
Sánchez-González, C.; Ciudad, C.J.; Izquierdo-Pulido, M.; Noé, V. Urolithin A causes p21 up-regulation in prostate cancer cells. Eur. J. Nutr., 2016, 55(3), 1099-1112.
[http://dx.doi.org/10.1007/s00394-015-0924-z] [PMID: 25962506]
[43]
Dahiya, N.R.; Chandrasekaran, B.; Kolluru, V.; Ankem, M.; Damodaran, C.; Vadhanam, M.V. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Mol. Carcinog., 2018, 57(10), 1332-1341.
[http://dx.doi.org/10.1002/mc.22848] [PMID: 30069922]
[44]
Stanisławska, I.J.; Piwowarski, J.P.; Granica, S.; Kiss, A.K. The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine, 2018, 46, 176-183.
[http://dx.doi.org/10.1016/j.phymed.2018.03.054] [PMID: 30097116]
[45]
Lee, S.; Choi, H.; Park, Y.; Jung, H.J.; Ullah, S.; Choi, I.; Kang, D.; Park, C.; Ryu, I.Y.; Jeong, Y.; Hwang, Y.; Hong, S.; Chun, P.; Moon, H.R. Urolithin and reduced urolithin derivatives as potent inhibitors of tyrosinase and melanogenesis: Importance of the 4-substituted resorcinol moiety. Int. J. Mol. Sci., 2021, 22(11), 5616.
[http://dx.doi.org/10.3390/ijms22115616] [PMID: 34070680]
[46]
Wang, S.T.; Chang, W.C.; Hsu, C.; Su, N.W. Antimelanogenic effect of urolithin A and urolithin B, the colonic metabolites of ellagic acid, in b16 melanoma cells. J. Agric. Food Chem., 2017, 65(32), 6870-6876.
[http://dx.doi.org/10.1021/acs.jafc.7b02442] [PMID: 28726389]
[47]
Zhao, W.; Shi, F.; Guo, Z.; Zhao, J.; Song, X.; Yang, H. Metabolite of ellagitannins, urolithin A induces autophagy and inhibits metastasis in human sw620 colorectal cancer cells. Mol. Carcinog., 2018, 57(2), 193-200.
[http://dx.doi.org/10.1002/mc.22746] [PMID: 28976622]
[48]
Chong, Z.; Matsuo, H.; Onoue, S.; Yamamoto, H.; Ito, H.; Katakura, Y. Identification of polyphenols that repair the ultraviolet-B-induced DNA damage via SIRT1-dependent XPC/XPA activation. J. Funct. Foods, 2019, 54, 119-127.
[http://dx.doi.org/10.1016/j.jff.2019.01.017]
[49]
Alauddin, M.; Okumura, T.; Rajaxavier, J.; Khozooei, S.; Pöschel, S.; Takeda, S.; Singh, Y.; Brucker, S.Y.; Wallwiener, D.; Koch, A.; Sal-ker, M.S. Gut bacterial metabolite urolithin A decreases actin polymerization and migration in cancer cells. Mol. Nutr. Food Res., 2020, 64(7), e1900390.
[http://dx.doi.org/10.1002/mnfr.201900390] [PMID: 31976617]
[50]
Qiu, Z.; Zhou, J.; Zhang, C.; Cheng, Y.; Hu, J.; Zheng, G. Antiproliferative effect of urolithin A, the ellagic acid-derived colonic metabolite, on hepatocellular carcinoma HepG2.2.15 cells by targeting Lin28a/let-7a axis. Braz. J. Med. Biol. Res., 2018, 51(7), e7220.
[http://dx.doi.org/10.1590/1414-431x20187220] [PMID: 29742265]
[51]
Othman, Z.; Khalep, H.R.H.; Abidin, A.Z.; Hassan, H.; Fattepur, S. The anti-angiogenic properties of Morinda citrifolia. L. (Mengkudu) leaves using Chicken Chorioallantoic Membrane (CAM). Pharmacogn. J., 2019, 11(1), 12-15.
[http://dx.doi.org/10.5530/pj.2019.1.3]
[52]
Khan, J.; Leenoos, L. M.; Ruhi, S.; Al-Dhalli, S.; Kaleemullah, M.; Saad, R.; Ali, H. S.; Sahu, R.; Florence, M.; Rasny, M.; Budiasih, S.; Baber, S.; Ng, C. H.; Shamiha, N. N.; Aini, F.; Gamal, O. E.; Abdullah, I.; Asmani, F.; Yusuf, E. Development and evaluation of polyherbal halal ointment using honey and papaya. Int. J. Med. Toxicol. Leg. Med., 2020, 23(1and2), 232-238.
[http://dx.doi.org/10.5958/0974-4614.2020.00033.9]
[53]
Fattepur, S.; Nilugal, K. C.; Darshan, T. T.; Bacayo, M. F. D. C.; Asmani, F.; Abdullah, I.; Yusuf, E.; Goudanavar, P. Toxicological and pharmacological activity of ethanolic extracts of Catharanthus roseus in experimental animals. Int. J. Med. Toxicol. Leg. Med., 2018, 21(3and4), 141-144.
[54]
Kaleemullah, M.; Jiyauddin, K.; Thiban, E.; Rasha, S.; Al-Dhalli, S.; Budiasih, S.; Gamal, O.E.; Fadli, A.; Eddy, Y. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm. J., 2017, 25(5), 770-779.
[http://dx.doi.org/10.1016/j.jsps.2016.10.006] [PMID: 28725150]
[55]
Mariam-Aisha, F.; Elisa, S. S. Optimization of mint active compound extraction with anti-muscarinic property on intestinal tissue. Int. J. Med. Toxicol. Leg. Med., 2019, 22(1and2), 200-203.
[56]
Gholami-Ahangaran, M.; Ahmadi-Dastgerdi, A.; Karimi-Dehkordi, M. Thymol and carvacrol; as antibiotic alternative in green healthy poultry production. Plant Biotechnol Persa, 2020, 2(1), 22-25.
[http://dx.doi.org/10.29252/pbp.2.1.22]
[57]
Wan, A.E.; Khan, M.S.B.; Teo, B.S.X.; Khan, J.; Abdulla, I.; Kaleemullah, M.; Rasny, M.R.M. Screening of antioxidant and antibacterial activity of methanolic extract of Ipomoea aquatica leaf and stem against bacteria causes skin infection. Int. J. Med. Toxicol. Leg. Med., 2020, 23(3-4), 169-178.
[http://dx.doi.org/10.5958/0974-4614.2020.00064.9]
[58]
Zharif, N.; Santosh, F.; Kiran, C.N.; Fadli, A.; Ibrahim, A.; Nizam, G. Synergistic effect of ethanolic extract of Melastoma malabataricum leaves and antibiotics. Int. J. Med. Toxicol. Leg. Med., 2018, 21(3and4), 167-170.
[http://dx.doi.org/10.5958/0974-4614.2018.00059.1]
[59]
Fattepur, S.; Malik, M. Z. B. A.; Nilual, K.; Abdullah, I.; Yusuf, E.; Asmani, M. F.; Fatima, M. A.; Kaleemullah, M. Acute toxicity and antifungal activity of Pereskia bleo leaves extracts against Aspergillus niger and Candida albicans. Int. J. Med. Toxicol. Leg. Med., 2020, 23(1and2), 133-137.
[60]
Fattepur, S.; Nilugal, K.C.; Rajendran, R.; Asmani, F.; Yusuf, E. Anti-hyperlipidemic activity of methanolic extract of Boesenbergia pan-durata (finger root) in experimentally induced hypercholestrolemic Sprague Dawley rats. Asian J. Pharm. Clin. Res., 2018, 11(SI3), 8-12.
[http://dx.doi.org/10.22159/ajpcr.2018.v11s3.29962]
[61]
Saad, R.; Asmani, F.; Saad, M.; Hussain, M.; Khan, J.; Kaleemullah, M.; Othman, N.B.; Tofigh, A.; Yusuf, E. A new approach for predic-ting antioxidant property of herbal extracts. Int. J. Pharmacogn. Phytochem. Res., 2015, 7(1), 166-174.
[62]
Qahir, A.; Kakar, A.; Khan, N.; Hakeem, A.; Kamal, R.; Rehman, F. The antioxidant, antimicrobial, and clinical effects with elemental contents of Pomegranate (Punica granatum) peel extraction: A Review. Baghdad J. Biochem. Appl. Biol. Sci., 2021, 2(1), 21-28.
[http://dx.doi.org/10.47419/bjbabs.v2i01.33]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy