Title:Expanding Opportunities in Treatment of Leukemia by Solid Lipid Nanoparticles
Volume: 18
Issue: 3
Author(s): Prarthna Yadav, Harshita Mishra, Manju Nagpal and Geeta Aggarwal*
Affiliation:
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi,India
Keywords:
Antileukemic therapy, conventional treatment, leukemia, molecular targeting, nano drug delivery system, solid
lipid nanoparticles.
Abstract:
Background: Leukemia is a severe type of blood cancer that involves an abnormal proliferation
of blood-forming cells. Its conventional treatment faces many challenges, including resistance,
lack of specificity and high unwanted toxicity of drugs. Nano drug delivery systems help in
overcoming these challenges by delivering the drug to the target site actively or passively. Solid
lipid nanoparticles are gaining popularity because they reduce unwanted toxicity, are biocompatible,
increase bioavailability and are versatile in terms of incorporated agents (hydrophilic as well as
lipophilic drugs, genes, enzymes, etc.).
Purpose: The aim of this review is to discuss recent advancements in anti-leukemic therapy utilizing
solid lipid nanoparticles (SLNs) as successful carriers in enhancing the efficiency of the treatment
and bioavailability of the incorporated drug along with overcoming multidrug resistance.
Methods: This review represents the existing literature on the applications of SLNs in anti-leukemic
therapy. A qualitative literature review has been performed for this purpose. We performed keyword
research in popular databases such as Google Scholar, Wiley, Elsevier, Scopus, Google patent
and PubMed. Only articles published in English and from reputed journals from specific fields were
considered. Benchmark studies having major importance from 2000 to 2020 were selected to follow
the progress in the field across the globe.
Results: This article improves the understanding of the role of SLNs in the treatment of leukemia.
Traditional anti-leukemic therapy involves many challenges, including resistance, lack of specificity
and high unwanted toxicity of drugs. SLNs are emerging as a better alternative to conventional
delivery systems as they can reduce unwanted toxicity, are biocompatible, and can provide active as
well as passive molecular targeting.
Conclusion: SLNs provide several advantages in drug delivery for leukemia, including enhancement
of efficiency and bioavailability and reduction of toxicity by virtue of their small size, lipid
core, non-dependency on organic solvents and versatility in terms of incorporated drugs.