Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Expanding Opportunities in Treatment of Leukemia by Solid Lipid Nanoparticles

Author(s): Prarthna Yadav, Harshita Mishra, Manju Nagpal and Geeta Aggarwal*

Volume 18, Issue 3, 2021

Published on: 01 October, 2020

Page: [212 - 221] Pages: 10

DOI: 10.2174/1570180817999201001155508

Price: $65

Abstract

Background: Leukemia is a severe type of blood cancer that involves an abnormal proliferation of blood-forming cells. Its conventional treatment faces many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. Nano drug delivery systems help in overcoming these challenges by delivering the drug to the target site actively or passively. Solid lipid nanoparticles are gaining popularity because they reduce unwanted toxicity, are biocompatible, increase bioavailability and are versatile in terms of incorporated agents (hydrophilic as well as lipophilic drugs, genes, enzymes, etc.).

Purpose: The aim of this review is to discuss recent advancements in anti-leukemic therapy utilizing solid lipid nanoparticles (SLNs) as successful carriers in enhancing the efficiency of the treatment and bioavailability of the incorporated drug along with overcoming multidrug resistance.

Methods: This review represents the existing literature on the applications of SLNs in anti-leukemic therapy. A qualitative literature review has been performed for this purpose. We performed keyword research in popular databases such as Google Scholar, Wiley, Elsevier, Scopus, Google patent and PubMed. Only articles published in English and from reputed journals from specific fields were considered. Benchmark studies having major importance from 2000 to 2020 were selected to follow the progress in the field across the globe.

Results: This article improves the understanding of the role of SLNs in the treatment of leukemia. Traditional anti-leukemic therapy involves many challenges, including resistance, lack of specificity and high unwanted toxicity of drugs. SLNs are emerging as a better alternative to conventional delivery systems as they can reduce unwanted toxicity, are biocompatible, and can provide active as well as passive molecular targeting.

Conclusion: SLNs provide several advantages in drug delivery for leukemia, including enhancement of efficiency and bioavailability and reduction of toxicity by virtue of their small size, lipid core, non-dependency on organic solvents and versatility in terms of incorporated drugs.

Keywords: Antileukemic therapy, conventional treatment, leukemia, molecular targeting, nano drug delivery system, solid lipid nanoparticles.

Graphical Abstract
[1]
[2]
Porth, C. Essentials of pathophysiology: Concepts of altered health states; Lippincott Williams & Wilkins, 2011.
[3]
Hamerschlak, N. Leukemia: Genetics and prognostic factors. J. Pediatr. (Rio J.), 2008, 84(4)(Suppl.), S52-S57.
[http://dx.doi.org/10.1590/S0021-75572008000500008] [PMID: 18830516]
[4]
Cancer Statistics Review , 1975-2016 - SEER Statistics. https://seer.cancer.gov/csr/1975_2016/
[6]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[7]
Sell, S. Leukemia stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev., 2005, 4, 197-205.
[http://dx.doi.org/10.1385/SCR:1:3:197]] [PMID: 17142856]
[8]
Iacobucci, I.; Mullighan, C.G. Genetic basis of acute lymphoblastic leukemia. J. Clin. Oncol., 2017, 35(9), 975-983.
[http://dx.doi.org/10.1200/JCO.2016.70.7836] [PMID: 28297628]
[9]
Combest, A.J.; Danford, R.C.; Andrews, E.R.; Simmons, A.; McAtee, P.; Reitsma, D.J. Overview of the recent developments in chronic lymphocytic leukemia. Part.1. J. Hematol. Oncol. Pharm., 2016, 6(2), 54-56.
[10]
Löwenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med., 1999, 341(14), 1051-1062.
[http://dx.doi.org/10.1056/NEJM199909303411407] [PMID: 10502596]
[11]
Wu, Z.; Sun, H.; Li, J.; Jin, H. Circular RNAs in Leukemia. Aging (Albany NY), 2019, 11(13), 4757-4771.
[http://dx.doi.org/10.18632/aging.102091] [PMID: 31306100]
[12]
Stevens, A.; Lowe, J.S.; Scott, I. Core pathology; Elsevier Health Sciences, 2008.
[13]
Mohan, H. Textbook of Pathophysiology; Jaypee Brother Med Publ Six, 2000.
[14]
Barrett, A.P. A long-term prospective clinical study of oral complications during conventional chemotherapy for acute leukemia. Oral Surg. Oral Med. Oral Pathol., 1987, 63(3), 313-316.
[http://dx.doi.org/10.1016/0030-4220(87)90196-4] [PMID: 3495768]
[15]
Moradpour, Z.; Barghi, L. Novel approaches for efficient delivery of tyrosine kinase inhibitors. J. Pharm. Pharm. Sci., 2019, 22(1), 37-48.
[http://dx.doi.org/10.18433/jpps29891] [PMID: 30636671]
[16]
Salomoni, P.; Calabretta, B. Targeted therapies and autophagy: New insights from chronic myeloid leukemia. Autophagy, 2009, 5(7), 1050-1051.
[http://dx.doi.org/10.4161/auto.5.7.9509] [PMID: 19713759]
[17]
Bayón-Cordero, L.; Alkorta, I.; Arana, L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel), 2019, 9(3), 474.
[http://dx.doi.org/10.3390/nano9030474] [PMID: 30909401]
[18]
Tarudji, A.W.; Kievit, F.M. Active targeting and transport. Nanoparticles for Biomedical Applications; Elsevier, 2020, pp. 19-36.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00003-5]
[19]
Dragu, D.L.; Necula, L.G.; Bleotu, C.; Diaconu, C.C.; Chivu-economescu, M.; Dragu, D.L. Therapies targeting cancer stem cells: Current trends and future challenges. World J. Stem Cells, 2015, 7(9), 1185-1201.
[20]
Dong, X.; Mumper, R.J. Nanomedicinal strategies to treat multidrug-resistant tumors: Current progress. Nanomedicine (Lond.), 2010, 5(4), 597-615.
[http://dx.doi.org/10.2217/nnm.10.35] [PMID: 20528455]
[21]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3)e10143
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[22]
Kashif, M.; Majeed, M.I. Nanoparticles Based Diagnosis and Treatment of Diseases. Int. J. Chem. Biochem. Sci., 2016, 10, 25-36.
[23]
Choi, Y.H.; Han, H-K. Correction to: Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2019, 49(1), 201-201.
[http://dx.doi.org/10.1007/s40005-018-00412-0] [PMID: 31186979]
[24]
Miao, L.; Guo, S.; Lin, C.M.; Liu, Q.; Huang, L. Nanoformulations for combination or cascade anticancer therapy. Adv. Drug Deliv. Rev., 2017, 115, 3-22.
[http://dx.doi.org/10.1016/j.addr.2017.06.003] [PMID: 28624477]
[25]
Lopalco, A.; Denora, N. Nanoformulations for drug delivery: Safety, toxicity, and efficacy. Computational Toxicology; Springer, 2018, pp. 347-365.
[http://dx.doi.org/10.1007/978-1-4939-7899-1_17]
[26]
Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Hao, Y.; Qiu, Y.; Zhao, W.; Wu, C. Naringenin-loaded solid lipid nanoparticles: Preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther., 2016, 10, 911-925.
[PMID: 27041995]
[27]
Jeevanandam, J.; Chan, Y.S.; Danquah, M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie, 2016, 128-129, 99-112.
[http://dx.doi.org/10.1016/j.biochi.2016.07.008] [PMID: 27436182]
[28]
Pathak, K.; Raghuvanshi, S. Oral bioavailability: Issues and solutions via nanoformulations. Clin. Pharmacokinet., 2015, 54(4), 325-357.
[http://dx.doi.org/10.1007/s40262-015-0242-x] [PMID: 25666353]
[29]
Mishra, H.; Mishra, P.K.; Iqbal, Z.; Jaggi, M.; Madaan, A.; Bhuyan, K.; Gupta, N.; Gupta, N.; Vats, K.; Verma, R.; Talegaonkar, S. Co-Delivery of eugenol and dacarbazine by hyaluronic acid-coated liposomes for targeted inhibition of survivin in treatment of resistant metastatic melanoma. Pharmaceutics, 2019, 11(4), 163.
[http://dx.doi.org/10.3390/pharmaceutics11040163] [PMID: 30987266]
[30]
Giri, T.K. Solid lipid nanoparticles for the delivery of drug molecules. Materials for Biomedical Engineering: Organic Micro and Nanostructures; Elsevier Inc., 2019, pp. 551-576.
[31]
Gastaldi, L.; Battaglia, L.; Peira, E.; Chirio, D.; Muntoni, E.; Solazzi, I.; Gallarate, M.; Dosio, F. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm., 2014, 87(3), 433-444.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[32]
Chaves, L.; Lima, S.; Vieira, ACC.; Ferreira, D.; Sarmento, B.; Reis, S. Overcoming clofazimine intrinsic toxicity: Statistical modelling and characterization of solid lipid nanoparticles. JR. Soc. Interface, 2018, 15(139)20170932
[http://dx.doi.org/10.1098/rsif.2017.0932] [PMID: 29436513]
[33]
Liu, J.; Gong, T.; Wang, C.; Zhong, Z.; Zhang, Z. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: Preparation and characterization. Int. J. Pharm., 2007, 340(1-2), 153-162.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.009] [PMID: 17428627]
[34]
Subedi, R.K.; Kang, K.W.; Choi, H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur. J. Pharm. Sci., 2009, 37(3-4), 508-513.
[http://dx.doi.org/10.1016/j.ejps.2009.04.008] [PMID: 19406231]
[35]
Singh, S.; Dobhal, A.K.; Jain, A.; Pandit, J.K.; Chakraborty, S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug. Zidovudine. Chem. Pharm. Bull. (Tokyo), 2010, 58(5), 650-655.
[http://dx.doi.org/10.1248/cpb.58.650] [PMID: 20460791]
[36]
Cavalli, R.; Gasco, M.R.; Chetoni, P.; Burgalassi, S.; Saettone, M.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm., 2002, 238(1-2), 241-245.
[http://dx.doi.org/10.1016/S0378-5173(02)00080-7] [PMID: 11996827]
[37]
Kartal-Yandim, M.; Adan-Gokbulut, A.; Baran, Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit. Rev. Biotechnol., 2016, 36(4), 716-726.
[http://dx.doi.org/10.3109/07388551.2015.1015957] [PMID: 25757878]
[38]
Kapse-Mistry, S.; Govender, T.; Srivastava, R.; Yergeri, M. Nanodrug delivery in reversing multidrug resistance in cancer cells. Front. Pharmacol., 2014, 5, 159.
[PMID: 25071577]
[39]
Cavaco, M.C.; Pereira, C.; Kreutzer, B.; Gouveia, L.F.; Silva-Lima, B.; Brito, A.M.; Videira, M. Evading P-glycoprotein mediated-efflux chemoresistance using Solid Lipid Nanoparticles. Eur. J. Pharm. Biopharm., 2017, 110, 76-84.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.024] [PMID: 27810470]
[40]
Barth, B.M.I.; I., Altinoğlu E.; Shanmugavelandy, S.S.; Kaiser, J.M.; Crespo-Gonzalez, D.; DiVittore, N.A.; McGovern, C.; Goff, T.M.; Keasey, N.R.; Adair, J.H.; Loughran, T.P., Jr; Claxton, D.F.; Kester, M. Targeted indocyanine-green-loaded calcium phosphosilicate nanoparticles for in vivo photodynamic therapy of leukemia. ACS Nano, 2011, 5(7), 5325-5337.
[http://dx.doi.org/10.1021/nn2005766] [PMID: 21675727]
[41]
Eskiler, G.G.; Cecener, G. European journal of pharmaceutical sciences solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur. J. Pharm. Sci., 2018, 120, 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040]
[42]
Battaglia, L.; Muntoni, E.; Chirio, D.; Peira, E.; Annovazzi, L.; Schiffer, D.; Mellai, M.; Riganti, C.; Salaroglio, I.C.; Lanotte, M.; Panciani, P.; Capucchio, M.T.; Valazza, A.; Biasibetti, E.; Gallarate, M. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment. Nanomedicine (Lond.), 2017, 12(6), 639-656.
[http://dx.doi.org/10.2217/nnm-2016-0380] [PMID: 28186465]
[43]
Neves, A.R.; Queiroz, J.F.; Lima, S.A.C.; Reis, S. Apo E-functionalization of solid lipid nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjug. Chem., 2017, 28(4), 995-1004.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00705] [PMID: 28355061]
[44]
Pandey, A. Solid lipid nanoparticles: A multidimensional drug delivery system., Nanoscience in Medicine; Springer, 2020, 1, pp. 249-95..
[http://dx.doi.org/10.1007/978-3-030-29207-2_8]
[45]
Marengo, E.; Cavalli, R.; Caputo, O.; Rodriguez, L.; Gasco, M.R. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int. J. Pharm., 2000, 205(1-2), 3-13.
[http://dx.doi.org/10.1016/S0378-5173(00)00471-3] [PMID: 11000537]
[46]
Rodenak-Kladniew, B.; Islan, G.A.; de Bravo, M.G.; Durán, N.; Castro, G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces, 2017, 154, 123-132.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.021] [PMID: 28334689]
[47]
Alavi, M.; Hamidi, M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther., 2019, 34(1), 34.
[http://dx.doi.org/10.1515/dmpt-2018-0032] [PMID: 30707682]
[48]
Dinda, A.; Biswal, I.; Chowdhury, P.; Mohapatra, R. Formulation development and evaluation of paclitaxel loaded solid lipid nanoparticles using glyceryl monostearate. J. Appl. Pharm. Sci., 2013, 3(8), 133.
[49]
Silki; Sinha, V.R. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS Pharm. Sci. Tech, 2018, 19(3), 1264-1273.
[http://dx.doi.org/10.1208/s12249-017-0944-5] [PMID: 29313261]
[50]
Rosière, R.; Van Woensel, M.; Gelbcke, M.; Mathieu, V.; Hecq, J.; Mathivet, T.; Vermeersch, M.; Van Antwerpen, P.; Amighi, K.; Wauthoz, N. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol. Pharm., 2018, 15(3), 899-910.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00846] [PMID: 29341619]
[51]
Naseri, N.; Zakeri-Milani, P.; Hamishehkar, H.; Pilehvar-Soltanahmadi, Y.; Valizadeh, H. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsification method. Drug Res. (Stuttg.), 2017, 67(6), 343-348.
[http://dx.doi.org/10.1055/s-0043-102404] [PMID: 28288490]
[52]
ud Din, F.; Mustapha, O.; Kim, D.W.; Rashid, R.; Park, J.H.; Choi, J.Y.; Sae, K.K.; Chul, S.Y.; Jong, O.K.; Han-Gon, C. Novel dual-reverse thermosensitive solid lipid nanoparticle-loaded hydrogel for rectal administration of flurbiprofen with improved bioavailability and reduced initial burst effect. Eur. J. Pharm. Biopharm., 2015, 94, 64-72.
[53]
Müller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thünemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm., 2006, 317(1), 82-89.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.045] [PMID: 16580159]
[54]
Youssef, N.A.H.A.; Kassem, A.A.; Farid, R.M.; Ismail, F.A.; El-Massik, M.A.E.; Boraie, N.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2018, 548(1), 609-624.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.014] [PMID: 30033394]
[55]
Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol., 2010, 62(11), 1637-1645.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01024.x] [PMID: 21039547]
[56]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[57]
Neri-Numa, I.A.; DellaTorre, A.; Oriani, V.B.; Franch, G.C., Jr; Angolini, C.F.F.; Dupas Hubinger, M.; Ruiz, A.L.T.G.; Pastore, G.M. In vitro bioactivity approach of unripe genipap (Genipa americana L., Rubiaceae) fruit extract and its solid lipid microparticle. Food Res. Int., 2020, 127108720
[http://dx.doi.org/10.1016/j.foodres.2019.108720] [PMID: 31882083]
[58]
Yang, Z.; Yu, B.; Zhu, J.; Huang, X.; Xie, J.; Xu, S.; Yang, X.; Wang, X.; Yung, B.C.; Lee, L.J.; Lee, R.J.; Teng, L. A microfluidic method to synthesize transferrin-lipid nanoparticles loaded with siRNA LOR-1284 for therapy of acute myeloid leukemia. Nanoscale, 2014, 6(16), 9742-9751.
[http://dx.doi.org/10.1039/C4NR01510J] [PMID: 25003978]
[59]
Gavrilov, K.E. Suppression of BCR-ABL by siRNA-loaded nanoparticles for the treatment of chronic myeloid leukemia; Yale University, 2015.
[60]
Jyotsana, N.; Sharma, A.; Chaturvedi, A.; Budida, R.; Scherr, M.; Kuchenbauer, F.; Lindner, R.; Noyan, F.; Sühs, K-W.; Stangel, M.; Grote-Koska, D.; Brand, K.; Vornlocher, H-P.; Eder, M.; Thol, F.; Ganser, A.; Humphries, R.K.; Ramsay, E.; Cullis, P.; Heuser, M. Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann. Hematol., 2019, 98(8), 1905-1918.
[http://dx.doi.org/10.1007/s00277-019-03713-y] [PMID: 31104089]
[61]
He, W.; Bennett, M.J.; Luistro, L.; Carvajal, D.; Nevins, T.; Smith, M.; Tyagi, G.; Cai, J.; Wei, X.; Lin, T-A.; Heimbrook, D.C.; Packman, K.; Boylan, J.F. Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol. Ther., 2014, 22(2), 359-370.
[http://dx.doi.org/10.1038/mt.2013.210]] [PMID: 24002693]
[62]
Remant, K.C.; Thapa, B.; Valencia-Serna, J.; Domun, S.S.; Dimitroff, C.; Jiang, X.; Uludağ, H. Cholesterol grafted cationic lipopolymers: Potential siRNA carriers for selective chronic myeloid leukemia therapy. J. Biomed. Mater. Res. A, 2020, 108(3), 565-580.
[http://dx.doi.org/10.1002/jbm.a.36837] [PMID: 31714657]
[63]
Wong, H.L.; Bendayan, R.; Rauth, A.M.; Li, Y.; Wu, X.Y. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev., 2007, 59(6), 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008]
[64]
Grana, A; Limpach, A; Chauhan, H Formulation considerations and applications of solid lipid nanoparticles., Am. Pharm. Rev., 2013, 16(1)..
[65]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[66]
Serpe, L.; Laurora, S.; Pizzimenti, S.; Ugazio, E.; Ponti, R.; Canaparo, R.; Briatore, F.; Barrera, G.; Gasco, M.R.; Bernengo, M.G.; Eandi, M.; Zara, G.P. Cholesteryl butyrate solid lipid nanoparticles as a butyric acid pro-drug: Effects on cell proliferation, cell-cycle distribution and c-MYC expression in human leukemic cells. Anticancer Drugs, 2004, 15(5), 525-536.
[http://dx.doi.org/10.1097/01.cad.0000127329.83568.15] [PMID: 15166628]
[67]
Foglietta, F.; Serpe, L.; Canaparo, R.; Vivenza, N.; Riccio, G.; Imbalzano, E. Modulation of butyrate anticancer activity by solid lipid nanoparticle delivery: An in vitro investigation on human breast cancer and leukemia cell lines. J. Pharm. Pharm. Sci., 2014, 17(2), 231-247.
[http://dx.doi.org/10.18433/J3XP4R]
[68]
Bhushan, S.; Kakkar, V.; Pal, H.C.; Guru, S.K.; Kumar, A.; Mondhe, D.M.; Sharma, P.R.; Taneja, S.C.; Kaur, I.P.; Singh, J.; Saxena, A.K. Enhanced anticancer potential of encapsulated solid lipid nanoparticles of TPD: A novel triterpenediol from Boswellia serrata. Mol. Pharm., 2013, 10(1), 225-235.
[http://dx.doi.org/10.1021/mp300385m] [PMID: 23237302]
[69]
Chung, W.G.; Sandoval, M.A.; Sloat, B.R.; Lansakara-P, D.S.P.; Cui, Z. Stearoyl gemcitabine nanoparticles overcome resistance related to the over-expression of ribonucleotide reductase subunit M1. J. Control. Release, 2012, 157(1), 132-140.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.004] [PMID: 21851843]
[70]
Sharma, P.; Dube, B.; Sawant, K. Synthesis of cytarabine lipid drug conjugate for treatment of meningeal leukemia: Development; characterization and in vitro cell line studies.2012 J. Biomed. Nanotechnol., 8(6), 928-937.
[71]
Bhushan, S.; Kakkar, V.; Pal, H.C.; Mondhe, D.M.; Kaur, I.P. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor. Chem. Biol. Interact., 2016, 244, 84-93.
[http://dx.doi.org/10.1016/j.cbi.2015.11.022] [PMID: 26620693]
[72]
Üner, M.; Yener, G.; Ergüven, M. Materials Science and Engineering C Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater. Sci. Eng. C Mater. Biol. Appl.., 2019, 103109874
[73]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Shakery, M. Folate targeted solid lipid nanoparticles of simvastatin for enhanced cytotoxic effects of doxorubicin in chronic myeloid leukemia. Curr. Nanosci., 2012, 8(2), 249-258.
[http://dx.doi.org/10.2174/157341312800167542]
[74]
Dai, Y; Huang, J; Xiang, B; Zhu, H; He, C Antiproliferative and apoptosis triggering potential of paclitaxel-based targeted-lipid nanoparticles with enhanced cellular internalization by transferrin receptors - a study in leukemia cells. Nanoscale Res. Lett., 2018, 13, 271.
[http://dx.doi.org/10.1186/s11671-018-2688-x.]
[75]
Shao, Y.; Luo, W.; Guo, Q.; Li, X.; Zhang, Q.; Li, J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des. Devel. Ther., 2019, 13, 2043-2055.
[http://dx.doi.org/10.2147/DDDT.S202818] [PMID: 31388296]
[76]
Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res., 2018, 115-170.
[77]
Dal Pizzol, C. Development of a solid lipid nanoparticle containing a pyrimidine analogue and in vitro evaluation of antitumor activity, 2014.https://repositorio.ufsc.br/xmlui/handle/123456789/128894
[78]
Mendoza, A.E. De.; Imbuluzqueta, E.; Cirauqui, C. Lipid nanosystems enhance the bioavailability and the therapeutic efficacy of FTY720 in acute myeloid leukemia. J. Biomed. Nanotechnol., 2015, 11(4), 691-701.
[http://dx.doi.org/10.1166/jbn.2015.1944] [PMID: 26310075]
[79]
Yin, J.; Hou, Y.; Song, X.; Wang, P.; Li, Y. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine, 2019, 14, 4045-4057.
[http://dx.doi.org/10.2147/IJN.S210057] [PMID: 31213814]
[80]
Sharma, G.; Goyal, A.K.; Singh, A.P. Application of design of expert for the development and systematic optimisation of l-asparaginase loaded nanoparticulate carrier drug delivery systems. J. Drug Deliv. Ther., 2019, 9(3-s), 303-308.
[81]
Huang, Y.; Cole, S.P.; Cai, T.; Cai, Y.U. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol. Lett., 2016, 12(1), 11-15.
[http://dx.doi.org/10.3892/ol.2016.4596] [PMID: 27347092]
[82]
Ma, P.; Dong, X.; Swadley, C.L.; Gupte, A.; Leggas, M.; Ledebur, H.C. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J. Biomed. Nanotechnol., 2009, 5(2), 151-161.
[PMID: 20055093]
[83]
Lasa-Saracíbar, B.; Estella-Hermoso de Mendoza, A.; Mollinedo, F.; Odero, M.D.; Blanco-Príeto, M.J. Edelfosine lipid nanosystems overcome drug resistance in leukemic cell lines. Cancer Lett., 2013, 334(2), 302-310.
[http://dx.doi.org/10.1016/j.canlet.2013.01.018] [PMID: 23353057]
[84]
Aznar, M.A.; Lasa-Saracíbar, B.; Blanco-Prieto, M.J. Edelfosine lipid nanoparticles overcome MDR in K-562 leukemia cells by caspaseindependent mechanism. Mol. Pharm., 2014, 11(8), 2650-2658.
[http://dx.doi.org/10.1021/mp5000696] [PMID: 24865362]
[85]
Zhu, B.; Zhang, H.; Yu, L. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation. Biomed. Pharmacother., 2017, 86, 547-554.
[http://dx.doi.org/10.1016/j.biopha.2016.11.121] [PMID: 28024291]
[86]
Zhou, X; Wang, J; Hu, X Glycyrrhetinic acid solid lipid nanoparticles and preparation method for same CN102512369A, 2011.
[87]
Peer, D.; Weinstein, S.; Toker, I.A.; Ramishetti, S. Ramot At Tel- Aviv Unlversity Ltd, Ramot at Tel Aviv University Ltd, assignee. Targeted lipid particles for systemic delivery of nucleic acid molecules to leukocytes. United States patent application US 15/571,535, 2018..
[88]
Yu, H.; Jian, Y.; Li, Y.; Hu, F.; Hong, Y. A paclitaxel lipid nanoparticle injection with antitumor activity China CN102871963A, 2013..

© 2024 Bentham Science Publishers | Privacy Policy