Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Newer Developments in the Synthesis of P-Heterocycles

Author(s): György Keglevich*

Volume 23, Issue 12, 2019

Page: [1342 - 1355] Pages: 14

DOI: 10.2174/1385272823666190726093322

Open Access Journals Promotions 2
Abstract

The P-heterocyclic field forms a special part of organophosphorus chemistry, and is a special discipline within heterocyclic chemistry. The relevant results accumulated in the group of the author of this minireview in last 5 years are summarized. After surveying the conformational situation of cyclic phosphinates, their Microwave (MW)-assisted direct esterification and the T3P®-promoted esterification are discussed. The next chapters describe newer results regarding the interpretation and modelling of the rate enhancing effect of MWs, and on an important, but somewhat neglected field, the hydrolysis of phosphinates. New results on the ring enlargement of 5-membered unsaturated P-heterocycles to 6-ring species, as well as on the synthesis of 7-phosphanorbornene derivatives, and their refunctionalization are also included. Novel findings on the preparation of cyclic amides and imides are also explored. Last but not least, the user-friendly deoxygenations of cyclic phosphine oxides elaborated by us are shown. The reader will be able to discover green chemical considerations and accomplishments throughout the series of organophosphorus transformations reviewed.

Keywords: P-heterocycles, 3-phospholene 1-oxides, phospholane oxides, hexahydrophosphinine oxides, 7-phosphanorbornene 7-oxides, phosphinic derivatives, phosphine boranes, phosphines.

Erratum In:
Newer Developments in the Synthesis of P-Heterocycles

Graphical Abstract
[1]
Keglevich, G. Application of Microwave Irradiation in the Synthesis of PHeterocycles In: Green Synthetic Approaches for Biologically Relevant Heterocycles; Brahmachari, G., Ed.; Elsevier: Amsterdam, 2015; p. 559-570.
[http://dx.doi.org/10.1016/B978-0-12-800070-0.00020-7]
[2]
Keglevich, G.; Kiss, N.Z.; Grün, A.; Bálint, E.; Kovács, T. Advantages of the microwave tool in organophosphorus syntheses. Synthesis, 2017, 49, 3069-3083.
[http://dx.doi.org/10.1055/s-0036-1589031]
[3]
Keglevich, G.; Grün, A.; Bálint, E.; Kiss, N.Z.; Bagi, P.; Tőke, L. Green chemical syntheses and applications within organophosphorus chemistry. Struct. Chem., 2017, 28(2), 431-443.
[http://dx.doi.org/10.1007/s11224-016-0847-1]
[4]
Keglevich, G. The impact of microwaves on organophosphorus chemistry. Chem. Rec., 2019, 19(1), 65-76.
[http://dx.doi.org/10.1002/tcr.201800006] [PMID: 29688611]
[5]
Keglevich, G.; Kiss, N.Z.; Henyecz, R.; Mucsi, Z. Microwave irradiation and catalysis in organophosphorus reactions. Pure Appl. Chem., 2019, 91, 145-157.
[http://dx.doi.org/10.1515/pac-2018-0501]
[6]
Keglevich, G.; Bálint, E.; Kiss, N.Z. The Use of MW in Organophosphorus Chemistry In: Milestones in Microwave Chemistry – SpringerBriefs in Molecular Science; Keglevich, G., Ed.; Springer: Switzerland, 2016; p. 47-76.
[http://dx.doi.org/10.1007/978-3-319-30632-2_3]
[7]
Keglevich, G. Microwave-assisted synthesis of P-heterocycles. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 1266-1278.
[http://dx.doi.org/10.1080/10426507.2014.885974]
[8]
Keglevich, G.; Kiss, N.Z.; Bálint, E.; Bagi, P.; Grün, A.; Kovács, T.; Henyecz, R.; Ábrányi-Balogh, P. Milestones in Microwave-assisted Organophosphorus Chemistry. Phosphorus Sulfur Silicon Relat. Elem, 2016, 191, SI, 1416-1420.
[http://dx.doi.org/10.1080/10426507.2016.1211657]
[9]
Ábrányi-Balogh, P.; Keglevich, G. A theoretical study on the conformation of 5- and 6-membered P-heterocycles: 1-substituted 2,3,4,5-tetrahydro-1H-phosphole 1-oxides and 1,2,3,4,5,6-hexahydrophosphinine 1-oxides. Curr. Org. Chem., 2017, 21, 2216-2228.
[http://dx.doi.org/10.2174/1385272821666170523114510]
[10]
Keglevich, G.; Bálint, E.; Kiss, N.Z.; Jablonkai, E.; Hegedűs, L.; Grün, A.; Greiner, I. Microwave-assisted esterification of phosphinic acids. Curr. Org. Chem., 2011, 15, 1802-1810.
[http://dx.doi.org/10.2174/138527211795656570]
[11]
Keglevich, G.; Kiss, N.Z.; Mucsi, Z.; Körtvélyesi, T. Insights into a surprising reaction: The microwave-assisted direct esterification of phosphinic acids. Org. Biomol. Chem., 2012, 10(10), 2011-2018.
[http://dx.doi.org/10.1039/c2ob06972e] [PMID: 22293944]
[12]
Keglevich, G.; Kovács, A.; Újszászy, K.; Tungler, A.; Tóth, G.; Tőke, L. Facile synthesis of 1,2,3,4,5,6-hexahydrophosphinine 1-oxides by the hydrogenation of 1,2-dihydro-phosphinine 1-oxides. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70, 219-227.
[http://dx.doi.org/10.1080/10426509208049170]
[13]
Quin, L.D. A Guide to Organophosphorus Chemistry; Wiley: New York, 2000.
[14]
Kiss, N.Z.; Keglevich, G. An overview of the synthesis of phosphinates and phosphinic amides. Curr. Org. Chem., 2014, 18, 2673-2690.
[http://dx.doi.org/10.2174/1385272819666140829011741]
[15]
Minami, T.; Okauchi, T. Vinyl- and Arylphosphorus Derivatives In: Comprehensive Organic Functional Group Transformations II; Katritzky, A.R.; Taylor, R.J.K., Eds.; Elsevier: Oxford, 2005; p. 853-907.
[http://dx.doi.org/10.1016/B0-08-044655-8/00038-6]
[16]
Cristau, H-J.; Virieux, D. Product Class 40: Arylphosphinic Acids and Derivatives In: Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; 1st ed.; Ramsden, C.A.; Bellus, D., Eds.; Georg Thieme Verlag: Stuttgart, 2007; 31b, p. 1963.
[http://dx.doi.org/10.1055/sos-SD-031-02233]
[17]
Kiss, N.Z.; Ludányi, K.; Drahos, L.; Keglevich, G. Novel synthesis of phosphinates by the microwave-assisted esterification of phosphinic acids. Synth. Commun., 2009, 39, 2392-2404.
[http://dx.doi.org/10.1080/00397910802654880]
[18]
Kiss, N.Z.; Böttger, É.; Drahos, L.; Keglevich, G. Microwave-assisted direct esterification of cyclic phosphinic acids. Heteroatom Chem., 2013, 24, 283-288.
[http://dx.doi.org/10.1002/hc.21092]
[19]
Mucsi, Z.; Kiss, N.Z.; Keglevich, G. A quantum chemical study on the mechanism and energetics of the direct esterification, thioesterification and amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide. RSC Adv, 2014, 4, 11948-11954.
[http://dx.doi.org/10.1039/c3ra47456a]
[20]
Kranjc, K.; Kočevar, M. Microwave-assisted organic synthesis: General considerations and transformations of heterocyclic compounds. Curr. Org. Chem., 2010, 14, 1050-1074.
[http://dx.doi.org/10.2174/138527210791130488]
[21]
Golubski, Z.E. Alkylation of phosphinic acid salts in the presence of crown ethers. Synthesis, 1980, 8, 632-634.
[http://dx.doi.org/10.1055/s-1980-29147]
[22]
Bálint, E.; Jablonkai, E.; Bálint, M.; Keglevich, G. Alkylating esterification of 1-hydroxy-3-phospholene oxides under solventless MW conditions. Heteroatom Chem., 2010, 21, 211-214.
[http://dx.doi.org/10.1002/hc.20596]
[23]
Keglevich, G.; Kiss, N.Z.; Mucsi, Z.; Jablonkai, E.; Bálint, E. The synthesis of phosphinates: Traditional versus green chemical approaches. Green Process. Synth., 2014, 3, 103-110.
[http://dx.doi.org/10.1515/gps-2013-0106]
[24]
Martínez-Palou, R. Ionic liquid and microwave-assisted organic synthesis: A “green” and synergic couple. J. Mex. Chem. Soc., 2007, 51, 252-264.
[25]
Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Ionic liquids and catalysis: Recent progress from knowledge to applications. Appl. Catal. A Gen., 2010, 373, 1-56.
[http://dx.doi.org/10.1016/j.apcata.2009.10.008]
[26]
Zhang, Q.; Zhang, S.; Deng, Y. Recent advances in ionic liquid catalysis. Green Chem., 2011, 13, 2619-2637.
[http://dx.doi.org/10.1039/c1gc15334j]
[27]
Rádai, Z.; Kiss, N.Z.; Keglevich, G. An overview of the applications of ionic liquids as catalysts and additives in organic chemical reactions. Curr. Org. Chem., 2018, 22, 533-556.
[http://dx.doi.org/10.2174/1385272822666171227152013]
[28]
Kiss, N.Z.; Keglevich, G. Microwave-assisted direct esterification of cyclic phosphinic acids in the presence of ionic liquids. Tetrahedron Lett., 2016, 57, 971-974.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.044]
[29]
Kiss, N.Z.; Rádai, Z.; Tihanyi, I.; Szabó, T.; Keglevich, G. Microwave-assisted direct esterification of a cyclic phosphinic acid with phenols. Mendeleev Commun., 2018, 28, 31-32.
[http://dx.doi.org/10.1016/j.mencom.2018.01.009]
[30]
Keglevich, G.; Kiss, N.Z.; Jablonkai, E.; Bálint, E.; Mucsi, Z. The potential of microwave in organophosphorus syntheses. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 647-654.
[http://dx.doi.org/10.1080/10426507.2014.989430]
[31]
Keglevich, G.; Greiner, I.; Mucsi, Z. An interpretation of the rate enhancing effect of microwaves – modelling the distribution and effect of local overheating – A case study. Curr. Org. Chem., 2015, 19, 1436-1440.
[http://dx.doi.org/10.2174/1385272819666150528004505]
[32]
Keglevich, G.; Kiss, N.Z.; Mucsi, Z. Milestones in microwave-assisted organophosphorus chemistry. Pure Appl. Chem., 2016, 88, 931-939.
[http://dx.doi.org/10.1515/pac-2016-0604]
[33]
Keglevich, G.; Kiss, N.Z. Potential and scope of microwave heating: A case study on the synthesis of phosphinates. Curr. Green Chem., 2018, 5, 60-66.
[http://dx.doi.org/10.2174/2213346105666180508122555]
[34]
Keglevich, G.; Mucsi, Z. Interpretation of the Rate Enhancing Effect of Microwaves In: Microwave Chemistry; Cravotto, G.; Carnaroglio, D., Eds.; De Gruyter: Berlin, 2017; p. 53-64.
[http://dx.doi.org/10.1515/9783110479935-004]
[35]
Wissmann, H.; Kleiner, H-J. New peptide-synthesis. Angew. Chem. Int. Ed. Engl., 1980, 19, 133-134.
[http://dx.doi.org/10.1002/anie.198001331]
[36]
Glauder, J. T3P: Propanephosphonic acid anhydride for peptide and amide synthesis. Speciality Chemicals Mag., 2004, 24, 30-31.
[37]
Pizova, H.; Bobal, P. An optimized and scalable synthesis of propylphosphonic anhydride for general use. Tetrahedron Lett., 2015, 56, 2014-2017.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.126]
[38]
Basavaprabhu; Vishwanatha, T.M.; Panguluri, N.R.; Sureshbabu, V.V. Propanephosphonic acid anhydride (T3P®) - A Benign reagent for diverse applications inclusive of large-scale synthesis. Synthesis, 2013, 45, 1569-1601.
[http://dx.doi.org/10.1055/s-0033-1338989]
[39]
Waghmare, A.A.; Hindupur, R.M.; Pati, H.N. Propylphosphonic anhydride (T3P®): An expedient reagent for organic synthesis. Rev. J. Chem., 2014, 4, 53-131.
[http://dx.doi.org/10.1134/S2079978014020034]
[40]
Amitrano, R.; Koch, P.; Neuber, M.; Neumann, D.; Petrovic, P.; Roos, M.; Vedder, C. ALLESSAN CAP - Highly Versatile and Affordable Coupling Agent In: Peptides for Youth: Advances in Experimental Medicine and Biology; Del Valle, S.; Escher, E.; Lubell, W.D., Eds.; Springer: New York, 2009; 611, p. 193-194.
[41]
Schwarz, M. n-Propane phosphonic acid anhydride - A condensation reagent. Synlett, 2000, 2000(9), 1369.
[42]
García, A.L.L. T3P: A convenient and useful reagent in organic synthesis. Synlett, 2007, 8, 1328-1329.
[http://dx.doi.org/10.1055/s-2007-980339]
[43]
Jablonkai, E.; Milen, M.; Drahos, L.; Keglevich, G. Esterification of five-membered cyclic phosphinic acids under mild conditions using propylphosphonic anhydride (T3P®). Tetrahedron Lett., 2013, 54, 5873-5875.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.082]
[44]
Jablonkai, E.; Henyecz, R.; Milen, M.; Kóti, J.; Drahos, L.; Keglevich, G. T3P®-assisted esterification and amidation of phosphinic acids. Tetrahedron, 2014, 70, 8280-8285.
[http://dx.doi.org/10.1016/j.tet.2014.09.021]
[45]
Ábrányi-Balogh, P.; Jablonkai, E.; Henyecz, R.; Milen, M.; Keglevich, G. Theoretical calculations on the mechanism of the T3P®-promoted esterification and amidation of phosphinic acids. Curr. Org. Chem., 2016, 20, 1135-1142.
[http://dx.doi.org/10.2174/1385272820666151218204848]
[46]
Henyecz, R.; Milen, M.; Kánai, K.; Keglevich, G. The Use of the T3P® Reagent in the Synthesis of Phosphinic and Phosphonic Derivatives In: Organophosphorus Chemistry in: Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, 2018; pp. 148-157.
[http://dx.doi.org/10.1515/9783110535839-007]
[47]
Frank, A.W. Phosphorus Acids (Thio-, Seleno Analogs) and Derivatives In: Organic Phosphorus Compounds; Kosolapoff, G.M.; Maier, L., Eds.; J. Wiley & Sons, Inc.: New York, 1972; 4, p. 264-265.
[48]
Houben-Weyl, Methoden der organischen Chemie, Phosphor-Verbindungen II, Band E2, Regitz, M., Ed.; Georg Thieme Verlag: Stuttgart, 1982; pp. 142- 143, pp. 310-313.
[49]
Desai, J.; Wang, Y.; Wang, K.; Malwal, S.R.; Oldfield, E. Isoprenoid biosynthesis inhibitors targeting bacterial cell growth. ChemMedChem, 2016, 11(19), 2205-2215.
[http://dx.doi.org/10.1002/cmdc.201600343] [PMID: 27571880]
[50]
Tcarkova, K.V.; Artyushin, O.I.; Bondarenko, N.A. Synthetic routes to bis(3-aminophenyl) phosphinic acid. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 1520-1522.
[http://dx.doi.org/10.1080/10426507.2016.1212347]
[51]
Keglevich, G.; Grün, A.; Bölcskei, A.; Drahos, L.; Kraszni, M.; Balogh, G.T. Synthesis and proton dissociation properties of arylphosphonates; A microwave-assisted catalytic Arbuzov reaction with aryl bromides. Heteroatom Chem., 2012, 23, 574-582.
[http://dx.doi.org/10.1002/hc.21053]
[52]
Gavande, N.; Yamamoto, I.; Salam, N.K.; Ai, T-H.; Burden, P.M.; Johnston, G.A.R.; Hanrahan, J.R.; Chebib, M. Novel cyclic phosphinic acids as GABA(C) rho receptor antagonists: Design, synthesis, and pharmacology. ACS Med. Chem. Lett., 2010, 2(1), 11-16.
[http://dx.doi.org/10.1021/ml1001344] [PMID: 24900248]
[53]
Haake, P.; Hurst, G. Reactions of phosphinates. The acid-catalyzed and acid-inhibited hydrolysis of p-nitrophenyl diphenylphosphinate. J. Am. Chem. Soc., 1966, 88, 2544-2550.
[http://dx.doi.org/10.1021/ja00963a033]
[54]
Wróblewski, A.E.; Verkade, J.G. 1-oxo-2-oxa-1-phosphabicyclo[2.2.2] octane: A new mechanistic probe for the basic hydrolysis of phosphate esters. J. Am. Chem. Soc., 1996, 118, 10168-10174.
[http://dx.doi.org/10.1021/ja9611147]
[55]
Cevasco, G.; Thea, S. The quest for carbanion-promoted dissociative pathways in the hydrolysis of aryl phosphinates. J. Chem. Soc., Perkin Trans., 1993, 2, 1103-1106.
[http://dx.doi.org/10.1039/p29930001103]
[56]
Tulsi, N.S.; Downey, A.M.; Cairo, C.W. A protected l-bromopho-sphonomethylphenylalanine amino acid derivative (BrPmp) for synthesis of irreversible protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem., 2010, 18(24), 8679-8686.
[http://dx.doi.org/10.1016/j.bmc.2010.09.040] [PMID: 21055952]
[57]
Jansa, P.; Hradil, O.; Baszczyňski, O.; Dračínský, M.; Janeba, Z. An efficient microwave-assisted synthesis and biological properties of polysubstituted pyrimidinyl- and 1,3,5-triazinylphosphonic acids. Tetrahedron, 2012, 68, 865-871.
[http://dx.doi.org/10.1016/j.tet.2011.11.040]
[58]
Ray, R.; Boucher, L.J.; Broomfield, C.A.; Lenz, D.E. Specific soman-hydrolyzing enzyme activity in a clonal neuronal cell culture. Biochim. Biophys. Acta, 1988, 967(3), 373-381.
[http://dx.doi.org/10.1016/0304-4165(88)90100-6] [PMID: 2848588]
[59]
Keglevich, G.; Kovács, A.; Tőke, L.; Újszászy, K.; Argay, G.; Czugler, M.; Kálmán, A. P-Substituted 3-phosphabicyclo[3.1.0]hexane 3-oxides from diastereoselective substitution at phosphorus. Heteroatom Chem., 1993, 4, 329-335.
[http://dx.doi.org/10.1002/hc.520040405]
[60]
Jansa, P.; Baszczyňski, O.; Procházková, E.; Dračínský, M.; Janeba, Z. Microwave-assisted hydrolysis of phosphonate diesters: An efficient protocol for the preparation of phosphonic acids. Green Chem., 2012, 14, 2282-2288.
[http://dx.doi.org/10.1039/c2gc35547g]
[61]
Keglevich, G.; Rádai, Z.; Harsági, N.; Szigetvári, Á.; Kiss, N.Z. A study on the acidic hydrolysis of cyclic phosphinates: 1-Alkoxy-3-phospholene 1-oxides, 1-ethoxy-3-methylphospholane 1-oxide, and 1-ethoxy-3-methyl-1,2,3,4,5,6-hexahydrophosphinine 1-oxide. Heteroatom Chem., 2017, 28e21394
[http://dx.doi.org/10.1002/hc.21394]
[62]
Keglevich, G. Synthesis of 6- and 7-membered P-heterocycles by ring enlargement. Synthesis, 1993, 10, 931-942.
[http://dx.doi.org/10.1055/s-1993-25970]
[63]
Keglevich, G. 6-Membered P-heterocycles: 1,2-Dihydro-, 1,2,3,6-tetrahydro- and 1,2,3,4,5,6-hexahydrophosphinine 1-oxides. Curr. Org. Chem., 2006, 10, 93-111.
[http://dx.doi.org/10.2174/138527206775193022]
[64]
Kiss, N.Z.; Örkényi, R.; Mucsi, Z.; Keglevich, G. The synthesis of 3-phosphabicyclo[3.1.0]hexane 3-oxides and 1,2-dihydrophosphinine 1-oxides with lipophilic P-alkoxy substituents by ring enlargement. Heteroatom Chem., 2014, 25, 265-273.
[http://dx.doi.org/10.1002/hc.21180]
[65]
Kiss, N.Z.; Simon, A.; Drahos, L.; Huben, K.; Jankovski, S.; Keglevich, G. Synthesis of 1-amino-2,5-dihydro-1H-phosphole 1-oxides and their N-phosphinoyl derivatives, bis(2,5-dihydro-1H-phoshol-1-yl)amine P,P′-dioxides. Synthesis, 2013, 45, 199-204.
[66]
Kiss, N.Z.; Rádai, Z.; Mucsi, Z.; Keglevich, G. Synthesis of bis(phosphinoyl)amines and phosphinoyl-phosphorylamines by the N-phosphinoylation and N-phosphorylation of 1-alkylamino-2,5-dihydro-1H-phosphole 1-oxides. Heteroatom Chem., 2015, 26, 134-141.
[http://dx.doi.org/10.1002/hc.21229]
[67]
Kovács, T.; Keglevich, G. The reduction of tertiary phosphine oxides by silanes. Curr. Org. Chem., 2017, 21, 569-585.
[http://dx.doi.org/10.2174/1385272821666161108121532]
[68]
Kovács, T.; Keglevich, G. Deoxygenation of Phosphine Oxides In: Organophosphorus Chemistry – Novel Developments; Keglevich, G., Ed.; De Gruyter: Berlin, 2018; pp. 179-198.
[http://dx.doi.org/10.1515/9783110535839-009]
[69]
Fritzsche, H.; Hasserodt, U.; Korte, F.; Friese, G.; Adrian, K. Reduction of pentavalent organophosphorus compounds to phosphines, II. Reduction of tertiary phosphine oxides to tertiary phosphines with trichlorosilane. Chem. Ber., 1965, 98, 171-174.
[http://dx.doi.org/10.1002/cber.19650980122]
[70]
Fritzsche, H.; Hasserodt, U.; Korte, F.; Friese, G.; Adrian, K.; Arenz, H.J. Reduction of pentavalent organophosphorus compounds to phosphines, I. Reduction of tertiary phosphine oxides to tertiary phosphines with silanes. Chem. Ber., 1964, 97, 1988-1993.
[http://dx.doi.org/10.1002/cber.19640970729]
[71]
Keglevich, G.; Kovács, T. Silanes as reagents for the deoxygenation of tertiary phosphine oxides – A case study for the deoxygenation of 5-membered cyclic phosphine oxides. Curr. Green Chem., 2014, 1, 182-188.
[http://dx.doi.org/10.2174/2213346101666140115214100]
[72]
Keglevich, G.; Kovács, T.; Csatlós, F. The deoxygenation of phosphine oxides under green chemical conditions. Heteroatom Chem., 2015, 26, 199-205.
[http://dx.doi.org/10.1002/hc.21249]
[73]
Kovács, T.; Urbanics, A.; Csatlós, F.; Binder, J.; Falk, A.; Uhlig, F.; Keglevich, G. A study on the deoxygenation of phosphine oxides by different silane derivatives. Curr. Org. Synth., 2016, 13, 148-153.
[http://dx.doi.org/10.2174/1570179412666150817222349]
[74]
Kovács, T.; Keglevich, G. The deoxygenation of phosphine oxides under green chemical conditions. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 359-366.
[http://dx.doi.org/10.1080/10426507.2015.1065259]
[75]
Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. General and selective copper-catalyzed reduction of tertiary and secondary phosphine oxides: Convenient synthesis of phosphines. J. Am. Chem. Soc., 2012, 134(23), 9727-9732.
[http://dx.doi.org/10.1021/ja301764m] [PMID: 22480270]
[76]
Voituriez, A.; Saleh, N. From phosphine-promoted to phosphine-catalyzed reactions by in situ phosphine oxide reduction. Tetrahedron Lett., in press
[http://dx.doi.org/10.1016/j.tetlet.2016.08.036]
[77]
Valentine, D.H.; Hillhouse, J.H. Alkyl phosphines as reagents and catalysts in organic synthesis. Synthesis, 2003, 317-334.
[78]
Xu, S.; He, Z. Recent advances in stoichiometric phosphine-mediated organic synthetic reactions. RSC Advances, 2013, 3, 16885-16904.
[http://dx.doi.org/10.1039/c3ra42088d]
[79]
O’Brien, C.J.; Tellez, J.L.; Nixon, Z.S.; Kang, L.J.; Carter, A.L.; Kunkel, S.R.; Przeworski, K.C.; Chass, G.A. Recycling the waste: The development of a catalytic wittig reaction. Angew. Chem. Int. Ed. Engl., 2009, 48(37), 6836-6839.
[http://dx.doi.org/10.1002/anie.200902525] [PMID: 19688801]
[80]
O’Brien, C.J.; Nixon, Z.S.; Holohan, A.J.; Kunkel, S.R.; Tellez, J.L.; Doonan, B.J.; Coyle, E.E.; Lavigne, F.; Kang, L.J.; Przeworski, K.C. Part I: the development of the catalytic Wittig reaction. Chem. Eur. J., 2013, 19(45), 15281-15289.
[http://dx.doi.org/10.1002/chem.201301444] [PMID: 24115040]
[81]
O’Brien, C.J.; Lavigne, F.; Coyle, E.E.; Holohan, A.J.; Doonan, B.J. Breaking the ring through a room temperature catalytic Wittig reaction. Chem. Eur. J., 2013, 19(19), 5854-5858.
[http://dx.doi.org/10.1002/chem.201300546] [PMID: 23526683]
[82]
Coyle, E.E.; Doonan, B.J.; Holohan, A.J.; Walsh, K.A.; Lavigne, F.; Krenske, E.H.; O’Brien, C.J. Catalytic wittig reactions of semi- and nonstabilized ylides enabled by ylide tuning. Angew. Chem. Int. Ed. Engl., 2014, 53(47), 12907-12911.
[http://dx.doi.org/10.1002/anie.201406103] [PMID: 25250907]
[83]
Werner, T.; Hoffmann, M.; Deshmukh, S. First microwave-assisted catalytic Wittig reaction. Eur. J. Org. Chem., 2014, 6873-6876.
[http://dx.doi.org/10.1002/ejoc.201403113]
[84]
Hoffmann, M.; Deshmukh, S.; Werner, T. Scope and limitation of the microwave-assisted catalytic Wittig reaction. Eur. J. Org. Chem., 2015, 20, 4532-4543.
[http://dx.doi.org/10.1002/ejoc.201500310]
[85]
Werner, T.; Hoffmann, M.; Deshmukh, S. Phospholane-catalyzed Wittig reaction. Eur. J. Org. Chem., 2015, 15, 3286-3295.
[http://dx.doi.org/10.1002/ejoc.201500243]
[86]
Werner, T.; Hoffmann, M.; Deshmukh, S. First enantioselective catalytic Wittig reaction. Eur. J. Org. Chem., 2014, 30, 6630-6633.
[http://dx.doi.org/10.1002/ejoc.201402941]
[87]
Schirmer, M-L.; Adomeit, S.; Werner, T. First base-free catalytic Wittig reaction. Org. Lett., 2015, 17(12), 3078-3081.
[http://dx.doi.org/10.1021/acs.orglett.5b01352] [PMID: 26020449]
[88]
Schirmer, M-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Novel base-free catalytic Wittig reaction for the synthesis of highly functionalized alkenes. Chem. Eur. J., 2016, 22(7), 2458-2465.
[http://dx.doi.org/10.1002/chem.201503744] [PMID: 26762186]
[89]
Tsai, Y-L.; Lin, W. Synthesis of multifunctional alkenes from substituted acrylates and aldehydes via phosphine-catalyzed Wittig reaction. Asian J. Org. Chem., 2015, 4, 1040-1043.
[http://dx.doi.org/10.1002/ajoc.201500251]
[90]
Van Kalkeren, H.A.; Blom, A.L.; Rutjes, F.P.J.T.; Huijbregts, M.A.J. On the usefulness of life cycle assessment in early chemical methodology development: The case of organophosphorus-catalyzed Appel and Wittig reactions. Green Chem., 2013, 15, 1255-1263.
[http://dx.doi.org/10.1039/c3gc00053b]
[91]
Van Kalkeren, H.A.; te Grotenhuis, C.; Haasjes, F.S.; Hommersom, C.A.; Rutjes, F.; van Delft, F.L. Catalytic Staudinger/Aza-Wittig sequence by in situ phosphane oxide reduction. Eur. J. Org. Chem., 2013, 31, 7059-7066.
[http://dx.doi.org/10.1002/ejoc.201300585]
[92]
Wang, L.; Wang, Y.; Chen, M.; Ding, M-W.; Reversible, P. III)/P(V) Redox: Catalytic aza-wittig reaction for the synthesis of 4(3H)-quinazolinones and the natural product Vasicinone. Adv. Synth. Catal., 2014, 356, 1098-1104.
[http://dx.doi.org/10.1002/adsc.201300950]
[93]
Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Organophosphorus-catalyzed diaza-Wittig reaction: Application to the synthesis of pyridazines. Org. Biomol. Chem., 2014, 12(36), 7159-7166.
[http://dx.doi.org/10.1039/C4OB01201A] [PMID: 25101802]
[94]
Van Kalkeren, H.A.; van Delft, F.L.; Rutjes, F.P.J.T. Catalytic Appel reactions. Pure Appl. Chem., 2013, 85, 817-828.
[http://dx.doi.org/10.1351/PAC-CON-12-06-13]
[95]
Fourmy, K.; Voituriez, A. Catalytic cyclization reactions of Huisgen zwitterion with α-ketoesters by in situ chemoselective phosphine oxide reduction. Org. Lett., 2015, 17(6), 1537-1540.
[http://dx.doi.org/10.1021/acs.orglett.5b00426] [PMID: 25761148]
[96]
O’Brien, C.J. Catalytic Wittig and Mitsunobu reactions. WO 2010118042 2014. U.S. Patent US 8901365, 2014; Chem. Abstr., 2010, 153, 481695.
[97]
Buonomo, J.A.; Aldrich, C.C. Mitsunobu Reactions catalytic in phosphine and a fully catalytic system. Angew. Chem. Int. Ed. Engl., 2015, 54(44), 13041-13044.
[http://dx.doi.org/10.1002/anie.201506263] [PMID: 26347115]
[98]
Hirose, D.; Taniguchi, T.; Ishibashi, H. Recyclable Mitsunobu reagents: Catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen. Angew. Chem. Int. Ed. Engl., 2013, 52(17), 4613-4617.
[http://dx.doi.org/10.1002/anie.201300153] [PMID: 23468412]
[99]
Kovács, T.; Fülöp, L.S.; Mucsi, Z.; Karaghiosoff, K.; Czugler, M.; Keglevich, G. Revisiting the 7-phospanorbornene family; New P-alkyl derivatives. Heteroatom Chem., 2015, 26, 335-347.
[http://dx.doi.org/10.1002/hc.21265]
[100]
Keglevich, G.; Chuluunbaatar, T.; Ludányi, K.; Tőke, L. Phosphine-boranes based on the 7-phosphanorbornene framework; A regioselective approach to the monoboranes of the dimers of phospholes. Tetrahedron, 2000, 56, 1-6.
[http://dx.doi.org/10.1016/S0040-4020(99)00765-6]
[101]
Kovács, T.; Cseresnyés, D.; Drahos, L.; Keglevich, G. Revisiting the reaction of phosphole oxide dimers with borane-dimethylsulfide. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192, 695-699.
[http://dx.doi.org/10.1080/10426507.2017.1284838]
[102]
Sowa, S.; Stankevič, M.; Szmigielska, A.; Małuszyńska, H.; Kozioł, A.E.; Pietrusiewicz, K.M. Reduction of functionalized tertiary phosphine oxides with BH3. J. Org. Chem., 2015, 80(3), 1672-1688.
[http://dx.doi.org/10.1021/jo502623g] [PMID: 25581110]
[103]
Sowa, S.; Stankevič, M.; Flis, A.; Pietrusiewicz, K.M. Reduction of tertiary phosphine oxides ba BH3 assisted by neighboring activating groups. Synthesis, 2018, 50, 2106-2118.
[http://dx.doi.org/10.1055/s-0036-1591546]
[104]
Sowa, S.; Pietrusiewicz, K.M. Chemoselective reduction of the P=O bond in the presence of P–O and P–N bonds in phosphonate and phosphinate derivatives. Eur. J. Org. Chem., 2019, 5, 923-938.
[http://dx.doi.org/10.1002/ejoc.201801518]
[105]
Kovács, T.; Fülöp, L.S.; Keglevich, G. Fragmentation-related phosphonylation of nucleophiles utilizing P-alkyl 2,3-oxaphosphabicyclo[2.2.2]octene 3-oxide precursors. Heteroatom Chem., 2016, 27, 83-90.
[http://dx.doi.org/10.1002/hc.21304]

© 2024 Bentham Science Publishers | Privacy Policy