[1]
Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017; 16(4): 624-33.
[2]
Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci 2017; 108(4): 563-9.
[3]
Cole JH, Marioni RE, Harris SE, Deary IJ. Brain age and other bodily “ages”: implications for neuropsychiatry. Mol Psychiatry 2018.
[4]
Wagner KH, Cameron-Smith D, Wessner B, Franzke B. Biomarkers of aging: from function to molecular biology. Nutrients 2016; 8(6): 8-10.
[5]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[6]
Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 2017; 40(12): 681-90.
[7]
Franke K, Ziegler G, Klöppel S, Gaser C. Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 2010; 50(3): 883-92.
[8]
Jylhävä J, Pedersen NL, Hägg S. Biological age predictors. EBioMed 2017; 21: 29-36.
[9]
von Zglinicki T, Martin-Ruiz CM. Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 2005; 5(2): 197-203.
[10]
Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline. Br Med Bull 2009; 92: 135-52.
[11]
Rafferty LA, Cawkill PE, Stevelink SAM, Greenberg K, Greenberg N. Dementia, post-traumatic stress disorder and major depressive disorder: a review of the mental health risk factors for dementia in the military veteran population. Psychol Med 2018; 48(9): 1400-9.
[12]
Diniz BS, Teixeira AL, Cao F, et al. History of bipolar disorder and the risk of dementia: a systematic review and meta-analysis. Am J Geriatr Psychiatry 2017; 25(4): 357-62.
[13]
Lin C-E, Chung C-H, Chen L-F, Chi M-J. Increased risk of dementia in patients with schizophrenia: a population-based cohort study in Taiwan. Eur Psychiatry 2018; 53: 7-16.
[14]
Cai L, Huang J. Schizophrenia and risk of dementia: a meta-analysis study. Neuropsychiatr Dis Treat 2018; 14: 2047-55.
[15]
Russo P, Prinzi G, Proietti S, et al. Shorter telomere length in schizophrenia: evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res 2018; 202: 37-45.
[16]
Powell TR, Dima D, Frangou S, Breen G. Telomere length and bipolar disorder. Neuropsychopharmacology 2018; 43(2): 445-53.
[17]
Vance MC, Bui E, Hoeppner SS, et al. Prospective association between major depressive disorder and leukocyte telomere length over two years. Psychoneuroendocrinology 2018; 90: 157-64.
[18]
Verhoeven JE, Révész D, van Oppen P, Epel ES, Wolkowitz OM, Penninx BWJH. Anxiety disorders and accelerated cellular ageing. Br J Psychiatry 2015; 206(5): 371-8.
[19]
Kim TY, Kim SJ, Choi JR, et al. The effect of trauma and PTSD on telomere length: an exploratory study in people exposed to combat trauma. Sci Rep 2017; 7(1): 4375.
[20]
Baune BT, Smith E, Reppermund S, et al. Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney memory and aging study. Psychoneuroendocrinology 2012; 37(9): 1521-30.
[21]
Teixeira AL, Reis HJ, Nicolato R, et al. Increased serum levels of CCL11/eotaxin in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(3): 710-4.
[22]
Harper KM, Knapp DJ, Park MA, Breese GR. Age-related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal in male Wistar rats. Psychopharmacology 2017; 234(1): 79-88.
[23]
Czepielewski LS, Massuda R, Panizzutti B, et al. Telomere length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: evidence of pathological accelerated aging. Schizophr Bull 2018; 44(1): 158-67.
[24]
Zhang J, Rane G, Dai X, et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev 2016; 25: 55-69.
[25]
Rizvi S, Raza ST, Mahdi F. Telomere length variations in aging and age-related diseases. Curr Aging Sci 2014; 7(3): 161-7.
[26]
Powell TR, Jong S. De, Breen G, Lewis CM, Dima D. Telomere
length as a predictor of emotional processing in the brain. Hum
Brain Mapp 2019 15; 40(6): 1750-9.
[27]
Lindqvist D, Epel ES, Mellon SH, et al. Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55: 333-64.
[28]
Steel Z, Marnane C, Iranpour C, et al. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int J Epidemiol 2014; 43(2): 476-93.
[29]
Huang Y-C, Wang L-J, Tseng P-T, Hung C-F, Lin P-Y. Leukocyte telomere length in patients with bipolar disorder: an updated meta-analysis and subgroup analysis by mood status. Psychiatry Res 2018; 270: 41-9.
[30]
Malouff JM, Schutte NS. A meta-analysis of the relationship between anxiety and telomere length. Anxiety Stress Coping 2017; 30(3): 264-72.
[31]
Ridout KK, Ridout SJ, Price LH, Sen S, Tyrka AR. Depression and telomere length: a meta-analysis. J Affect Disord 2016; 191: 237-47.
[32]
Armanios M. Telomeres and age-related disease: how telomere biology informs clinical paradigms. J Clin Invest 2013; 123(3): 996-1002.
[33]
Stefler D, Malyutina S, Maximov V, et al. Leukocyte telomere length and risk of coronary heart disease and stroke mortality: prospective evidence from a Russian cohort. Sci Rep 2018; 8(1): 16627.
[34]
Igari R, Davy P, Sato H, et al. Cognitive impairment, brain ischemia and shorter telomeres are predictors of mortality in the Japanese elderly: A 13-year prospective community-based study. J Neurol Sci 2019; 397(397): 129-34.
[35]
Kessing LV, Vradi E, McIntyre RS, Andersen PK. Causes of decreased life expectancy over the life span in bipolar disorder. J Affect Disord 2015; 180: 142-7.
[36]
Kugathasan P, Johansen MB, Jensen MB, Aagaard J, Nielsen RE, Jensen SE. Coronary artery calcification and mortality risk in patients with severe mental illness. Circ Cardiovasc Imaging 2019; 12(3)e008236
[37]
Wang Y, Feigon J. Structural biology of telomerase and its interaction at telomeres 2017; 47: 77-87.
[38]
Moyzis RK, Buckingham JM, Crams LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG), present at the telomeres of human chromosomes (human repetitive DNA/in situ hybridization/trypanosome telomeres/BAL-31 nuclease/flow cytometry). Proc Natl Acad Sci 1988; 85: 6622-6.
[39]
Schmutz I, de Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Curr Biol 2016; 26(10): 397-9.
[40]
Fincham JRS. Telomeres. Acad Press 2001; pp. 1946-50.
[41]
Verdun RE, Karlseder J. Replication and protection of telomeres. Nature 2007; 447(7147): 924-31.
[42]
Ain Q, Schmeer C, Penndorf D, et al. Cell cycle-dependent and -independent telomere shortening accompanies murine brain aging. Aging 2018; 10(11): 3397-420.
[43]
Huzen J, Wong LSM, van Veldhuisen DJ, et al. Telomere length loss due to smoking and metabolic traits. J Intern Med 2014; 275(2): 155-63.
[44]
Boccardi V, Paolisso G, Mecocci P. Nutrition and lifestyle in healthy aging: the telomerase challenge. Aging 2016; 8(1): 12-5.
[45]
Kiecolt-Glaser JK, Glaser R. Psychological stress, telomeres, and telomerase. Brain Behav Immun 2010; 24(4): 529-30.
[46]
Balakrishnan L, Bambara RA. Okazaki fragment metabolism. Cold Spring Harb Perspect Biol 2013; 5(2): 1-12.
[47]
Griep MA, Primer RNA. In: Brenner S, Miller JH, Eds Encyclopedia of Genetics. Amsterdam: Elsevier Science 2001; pp. 1546-8.
[48]
de Lange T. T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 2004; 5(4): 323-9.
[49]
Van Ly D, Low RRJ, Frölich S, et al. Telomere loop dynamics in chromosome end protection. Mol Cell 2018; 71(4): 510-25.
[50]
McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 2008; 30: 67-76.
[51]
Gatov E, Rosella L, Chiu M, Kurdyak PA. Trends in standardized mortality among individuals with schizophrenia, 1993-2012: a population-based, repeated cross-sectional study. CMAJ 2017; 189(37): E1177-87.
[52]
Ösby U, Westman J, Hällgren J, Gissler M. Mortality trends in cardiovascular causes in schizophrenia, bipolar and unipolar mood disorder in Sweden 1987-2010. Eur J Public Health 2016; 26(5): 867-71.
[53]
Bora E, Binnur Akdede B, Alptekin K. Neurocognitive impairment in deficit and non-deficit schizophrenia: a meta-analysis. Psychol Med 2017; 47(14): 2401-13.
[54]
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17(8): 524-32.
[55]
Rodrigues-Amorim D, Rivera-Baltanás T, Bessa J, et al. The neurobiological hypothesis of neurotrophins in the pathophysiology of schizophrenia: A meta-analysis. J Psychiatr Res 2018; 106: 43-53.
[56]
Das TK, Dey A, Sabesan P, et al. Putative astroglial dysfunction in schizophrenia: a meta-analysis of 1H-MRS studies of medial prefrontal myo-inositol. Front Psychiatry 2018; 9: 438.
[57]
Marques TR, Ashok AH, Pillinger T, et al. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies. Psychol Med 2018; 9: 1-11.
[58]
Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. Nat Rev Dis Primers 2015; 1: 15067.
[59]
Rao S, Kota LN, Li Z, et al. Accelerated leukocyte telomere erosion in schizophrenia: evidence from the present study and a meta-analysis. J Psychiatr Res 2016; 79: 50-6.
[60]
Fernandez-Egea E, Bernardo M, Heaphy CM, et al. Telomere length and pulse pressure in newly diagnosed, antipsychotic-naive patients with nonaffective psychosis. Schizophr Bull 2009; 35(2): 437-42.
[61]
Czepielewski LS, Massuda R, Panizzutti B, et al. Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging. Schizophr Res 2016; 174(1-3): 39-42.
[62]
Kao H-T, Cawthon RM, Delisi LE, et al. Rapid telomere erosion in schizophrenia. Mol Psychiatry 2008; 13: 118-9.
[63]
Galletly C, Dhillon VS, Liu D, Balzan RP, Hahn LA, Fenech MF. Shorter telomere length in people with schizophrenia: a preliminary study from Australia. Schizophr Res 2017; 190: 46-51.
[64]
Nieratschker V, Lahtinen J, Meier S, et al. Longer telomere length in patients with schizophrenia. Schizophr Res 2013; 149(1-3): 116-20.
[65]
Zhang Y, Hishimoto A, Otsuka I, et al. Longer telomeres in elderly schizophrenia are associated with long-term hospitalization in the Japanese population. J Psychiatr Res 2018; 103: 161-6.
[66]
Mansour H, Chowdari K, Fathi W, et al. Does telomere length mediate associations between inbreeding and increased risk for bipolar I disorder and schizophrenia? Psychiatry Res 2011; 188(1): 129-32.
[67]
Riley G, Perrin M, Vaez-Azizi LM, et al. Telomere length and early trauma in schizophrenia. Schizophr Res 2018; 199: 426-30.
[68]
Monroy-Jaramillo N, Rodríguez-Agudelo Y, Aviña-Cervantes LC, Roberts DL, Velligan DI, Walss-Bass C. Leukocyte telomere length in Hispanic schizophrenia patients under treatment with olanzapine. J Psychiatr Res 2017; 90: 26-30.
[69]
Polho GB, De-Paula VJ, Cardillo G, dos Santos B, Kerr DS. Leukocyte telomere length in patients with schizophrenia: a meta-analysis. Schizophr Res 2015; 165(2-3): 195-200.
[70]
Lin P-Y. Shortened leukocyte telomere length in patients with schizophrenia is related to disease status. Schizophr Res 2015; 168(1-2): 597-8.
[71]
Maurya PK, Rizzo LB, Xavier G, et al. Shorter leukocyte telomere length in patients at ultra-high risk for psychosis. Eur Neuropsychopharmacol 2017; 27(5): 538-42.
[72]
Porton B, Delisi LE, Bertisch HC, et al. Telomerase levels in schizophrenia: a preliminary study. Schizophr Res 2008; 106(2-3): 242-7.
[73]
Pawelczyk T, Szymanska B, Grancow-Grabka M, Kotlicka-Antczak M, Pawelczyk A. Telomere length in blood cells is related to the chronicity, severity, and recurrence rate of schizophrenia. Neuropsychiatr Dis Treat 2015; 11: 1493-503.
[74]
Maurya PK, Rizzo LB, Xavier G, et al. Leukocyte telomere length variation in different stages of schizophrenia. J Psychiatr Res 2018; 96: 218-23.
[75]
Kota LN, Purushottam M, Moily NS, Jain S. Shortened telomere in unremitted schizophrenia. Psychiatry Clin Neurosci 2015; 69(5): 292-7.
[76]
Yu W-Y, Chang H-W, Lin C-H, Cho C-L. Short telomeres in patients with chronic schizophrenia who show a poor response to treatment. J Psychiatry Neurosci 2008; 33(3): 244-7.
[77]
Li Z, Hu M, Zong X, et al. Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naïve schizophrenia. Sci Rep 2015; 5: 18553.
[78]
Pawełczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Żurner N, Pawełczyk A. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83: 142-8.
[79]
Shivakumar V, Kalmady SV, Rajasekaran A, et al. Telomere length and its association with hippocampal gray matter volume in antipsychotic-naïve/free schizophrenia patients. Psychiatry Res Neuroimaging 2018; 282: 11-7.
[80]
Merikangas KR, Jin R, He JP, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 2011; 68(3): 241-51.
[81]
Bourne C, Aydemir Ö, Balanzá-Martínez V, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand 2013; 128(3): 149-62.
[82]
Passos IC, Mwangi B, Vieta E, Berk M, Kapczinski F. Areas of controversy in neuroprogression in bipolar disorder. Acta Psychiatr Scand 2016; 134(2): 91-103.
[83]
Berk M, Kapczinski F, Andreazza AC, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 35(3): 804-17.
[84]
Rizzo LB, Costa LG, Mansur RB, et al. The theory of bipolar disorder as an illness of accelerated aging: implications for clinical care and research. Neurosci Biobehav Rev 2014; 42: 157-69.
[85]
Simon NM, Smoller JW, McNamara KL, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 2006; 60(5): 432-5.
[86]
Rizzo LB, Do Prado CH, Grassi-Oliveira R, et al. Immunosenescence is associated with human cytomegalovirus and shortened telomeres in type I bipolar disorder. Bipolar Disord 2013; 15(8): 832-8.
[87]
Vasconcelos-Moreno MP, Fries GR, Gubert C, et al. Telomere length, oxidative stress, inflammation and bdnf levels in siblings of patients with bipolar disorder: implications for accelerated cellular aging. Int J Neuropsychopharmacol 2017; 20(6): 445-54.
[88]
Elvsåshagen T, Vera E, Bøen E, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord 2011; 135(1-3): 43-50.
[89]
Lima IMM, Barros A, Rosa DV, et al. Analysis of telomere attrition in bipolar disorder. J Affect Disord 2015; 172: 43-7.
[90]
Barbé-Tuana FM, Parisi MM, Panizzutti BS, et al. Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease. Br J Psychiatry 2016; 38(4): 281-6.
[91]
Soeiro-de-Souza MG, Teixeira AL, Mateo EC, et al. Leukocyte telomerase activity and antidepressant efficacy in bipolar disorder. Eur Neuropsychopharmacol 2014; 24(7): 1139-43.
[92]
Hajek T, Kopecek M, Höschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37(5): 333-43.
[93]
Otten M, Meeter M. Hippocampal structure and function in individuals with bipolar disorder: a systematic review. J Affect Disord 2015; 174: 113-25.
[94]
Colpo GD, Leffa DD, Köhler CA, Kapczinski F, Quevedo J, Carvalho AF. Is bipolar disorder associated with accelerating aging? A meta-analysis of telomere length studies. J Affect Disord 2015; 186: 241-8.
[95]
Bromet E, Andrade LH, Hwang I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med 2011; 9: 90.
[97]
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet 2017; 390(10100): 1211-59.
[98]
Mokdad AH, Forouzanfar MH, Daoud F, et al. Global burden of diseases, injuries, and risk factors for young people’s health during 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 2016; 387(10036): 2383-401.
[99]
Hartmann N, Boehner M, Groenen F, Kalb R. Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress Anxiety 2010; 27(12): 1111-6.
[100]
Hoen PW, de Jonge P, Na BY, et al. Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study. Psychosom Med 2011; 73(7): 541-7.
[101]
Wikgren M, Maripuu M, Karlsson T, et al. Short telomeres in depression and the general population are associated with a hypocortisolemic state. Biol Psychiatry 2012; 71(4): 294-300.
[102]
Verhoeven JE, Révész D, Epel ES, Lin J, Wolkowitz OM, Penninx BWJH. Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol Psychiatry 2014; 19(8): 895-901.
[103]
Garcia-Rizo C, Fernandez-Egea E, Miller BJ, et al. Abnormal glucose tolerance, white blood cell count, and telomere length in newly diagnosed, antidepressant-naïve patients with depression. Brain Behav Immun 2013; 28: 49-53.
[104]
Boeck C, Salinas-Manrique J, Calzia E, et al. Targeting the association between telomere length and immuno-cellular bioenergetics in female patients with major depressive disorder. Sci Rep 2018; 8(1): 9419.
[105]
Simon NM, Walton ZE, Bui E, et al. Telomere length and telomerase in a well-characterized sample of individuals with major depressive disorder compared to controls. Psychoneuroendocrinology 2015; 58: 9-22.
[106]
Wolkowitz OM, Mellon SH, Epel ES, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress--preliminary findings. PLoS One 2011; 6(3)e17837
[107]
Teyssier J-R, Chauvet-Gelinier J-C, Ragot S, Bonin B. Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores. PLoS One 2012; 7(11)e49677
[108]
Phillips AC, Robertson T, Carroll D, et al. Do symptoms of depression predict telomere length? Evidence from the west of Scotland twenty-07 study. Psychosom Med 2013; 75(3): 288-96.
[109]
Henje Blom E, Han LKM, Connolly CG, et al. Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder. Transl Psychiatry 2015; 5e676
[110]
Needham BL, Mezuk B, Bareis N, Lin J, Blackburn EH, Epel ES. Depression, anxiety and telomere length in young adults: evidence from the National Health and Nutrition Examination Survey. Mol Psychiatry 2015; 20(4): 520-8.
[111]
Wolkowitz OM, Mellon SH, Epel ES, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry 2012; 17(2): 164-72.
[112]
Hough CM, Bersani FS, Mellon SH, et al. Leukocyte telomere length predicts SSRI response in major depressive disorder: a preliminary report. Mol Neuropsychiatry 2016; 2(2): 88-96.
[113]
Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology 2017; 77: 25-36.
[114]
Gotlib IH, LeMoult J, Colich NL, et al. Telomere length and cortisol reactivity in children of depressed mothers. Mol Psychiatry 2015; 20(5): 615-20.
[115]
Osler M, Bendix L, Rask L, Rod NH. Stressful life events and leucocyte telomere length: do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. Brain Behav Immun 2016; 58: 248-53.
[116]
Jiménez KM, Pereira-Morales AJ, Adan A, Forero DA. Telomere length and childhood trauma in Colombians with depressive symptoms. Br J Psychiatry 2019; 41(3): 194-8.
[117]
Bersani FS, Lindqvist D, Mellon SH, et al. Association of dimensional psychological health measures with telomere length in male war veterans. J Affect Disord 2016; 190: 537-42.
[118]
Chen SH, Epel ES, Mellon SH, et al. Adverse childhood experiences and leukocyte telomere maintenance in depressed and healthy adults. J Affect Disord 2014; 169: 86-90.
[119]
Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry 2015; 72(4): 334-41.
[120]
Shalev I, Moffitt TE, Braithwaite AW, et al. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry 2014; 19(11): 1163-70.
[121]
Tyrka AR, Parade SH, Price LH, et al. Alterations of mitochondrial dna copy number and telomere length with early adversity and psychopathology. Biol Psychiatry 2016; 79(2): 78-86.
[122]
Révész D, Verhoeven JE, Milaneschi Y, Penninx BWJH. Depressive and anxiety disorders and short leukocyte telomere length: mediating effects of metabolic stress and lifestyle factors. Psychol Med 2016; 46(11): 2337-49.
[123]
Kananen L, Surakka I, Pirkola S, et al. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One 2010; 5(5)e10826
[124]
Darrow SM, Verhoeven JE, Révész D, et al. The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom Med 2016; 78(7): 776-87.
[125]
Chang S-C, Crous-Bou M, Prescott J, et al. Prospective association of depression and phobic anxiety with changes in telomere lengths over 11 years. Depress Anxiety 2018; 35(5): 431-9.
[126]
Verhoeven JE, van Oppen P, Révész D, Wolkowitz OM, Penninx BWJH. Depressive and anxiety disorders showing robust, but non-dynamic, 6-year longitudinal association with short leukocyte telomere length. Am J Psychiatry 2016; 173(6): 617-24.
[127]
Hoen PW, Rosmalen JGM, Schoevers RA, Huzen J, van der Harst P, de Jonge P. Association between anxiety but not depressive disorders and leukocyte telomere length after 2 years of follow-up in a population-based sample. Psychol Med 2013; 43(4): 689-97.
[128]
Teixeira AL, Gama CS, Rocha NP, Teixeira MM. Revisiting the role of eotaxin-1/CCL11 in psychiatric disorders. Front Psychiatry 2018; 9: 241.
[129]
Felger JC. Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol 2018; 16(5): 533-8.
[130]
Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci 2019; 1437(1): 57-67.
[131]
Fries GR, Stertz L, Re GZ, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience 2015; 300: 141-54.
[132]
Stuart MJ, Singhal G, Baune BT. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders. Front Cell Neurosci 2015; 9: 357.
[133]
Flynn G, Maru S, Loughlin J, Romero IA, Male D. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol 2003; 136(1-2): 84-93.
[134]
Banisadr G, Rostene W, Kitabgi P, Parsadaniantz S. Chemokines and brain functions. Curr Drug Targets Inflamm Allergy 2005; 4(3): 387-99.
[135]
Takasugi M. Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 2018; 17(2): 1-8.
[136]
Horuk R. Chemokine receptors. Cytokine Growth Factor Rev 2001; 12(4): 313-35.
[137]
Palomino DCT, Marti LC. Chemokines and immunity. Einstein 2015; 13(3): 469-73.
[138]
Legler D, Thelen M. Chemokines: chemistry, biochemistry and biological function. Chim Int J Chem 2016; 70(12): 856-9.
[139]
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104: 67-92.
[140]
Schönemeier B, Kolodziej A, Schulz S, Jacobs S, Hoellt V, Stumm R. Regional and cellular localization of the CXCl12/SDF-1 chemokine receptor CXCR7 in the developing and adult rat brain. J Comp Neurol 2008; 510(2): 207-20.
[141]
Stuart MJ, Baune BT. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 2014; 42: 93-115.
[142]
Guerreiro R, Santos-Costa Q, Azevedo-Pereira JM. As quimiocinas e os seus receptores: características e funções fisiológicas. Acta Med Port 2011; 24: 967-76.
[143]
Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000; 18(6): 217-42.
[144]
David J, Mortari F. Chemokine receptors: a brief overview. Clin Appl Immunol Rev 2001; 1(2): 105-25.
[145]
Horuk R. Chemokines. Sci World J 2014; 12(4): 764-9.
[146]
Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006; 354(6): 610-21.
[147]
Rollins BJ. Chemokines. Lang Soc 2018; 46(02): 257-69.
[148]
Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000; 52(1): 145-76.
[149]
Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000; 95(10): 3032-43.
[150]
Clark-Lewis I, Mattioli I, Gong JH, Loetscher P. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem 2003; 278(1): 289-95.
[151]
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2014; 49(3): 1212-44.
[152]
Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement 2018; 14(12): 1640-50.
[153]
Sellner S, Paricio-Montesinos R, Spieß A, et al. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol Commun 2016; 4(1): 102.
[154]
Kang WS, Kim YJ, Park HJ, Kim SK, Paik JW, Kim JW. Association of CCL11 promoter polymorphisms with schizophrenia in a Korean population. Gene 2018; 656: 80-5.
[155]
Ogłodek E, Szota A, Just M, Moś D, Araszkiewicz A. The role of the neuroendocrine and immune systems in the pathogenesis of depression. Pharmacol Rep 2014; 66(5): 776-81.
[156]
Le Thuc O, Stobbe K, Cansell C, Nahon JL, Blondeau N, Rovère C. Hypothalamic inflammation and energy balance disruptions: Spotlight on chemokines. Front Endocrinol 2017; 8(AUG): 197.
[157]
Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O. Neuroinflammation and psychiatric illness. J Neuroinflammation 2013; 10: 43.
[158]
Haque A, Polcyn R, Matzelle D, Banik NL. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci 2018; 8(2)E33
[159]
Tripathy D, Thirumangalakudi L, Grammas P. RANTES upregulation in the Alzheimer’s disease brain: a possible neuroprotective role. Neurobiol Aging 2010; 31(1): 8-16.
[160]
Janelidze S, Suchankova P, Ekman A, et al. Low IL-8 is associated with anxiety in suicidal patients: genetic variation and decreased protein levels. Acta Psychiatr Scand 2015; 131(4): 269-78.
[161]
Watson K, Fan GH. Macrophage inflammatory protein 2 inhibits beta-amyloid peptide (1-42)-mediated hippocampal neuronal apoptosis through activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways. Mol Pharmacol 2005; 67(3): 757-65.
[162]
Omari KM, Lutz SE, Santambrogio L, Lira SA, Raine CS. Neuroprotection and remyelination after autoimmune demyelination in mice that inducibly overexpress CXCL1. Am J Pathol 2009; 174(1): 164-76.
[163]
Stumm RK, Rummel J, Junker V, et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 2002; 22(14): 5865-78.
[164]
Hulshof S, van Haastert ES, Kuipers HF, et al. CX3CL1 and CX3CR1 expression in human brain tissue: noninflammatory control versus multiple sclerosis. J Neuropathol Exp Neurol 2003; 62(9): 899-907.
[165]
Grizenkova J, Akhtar S, Brandner S, Collinge J, Lloyd SE. Microglial CX3CR1 knockout reduces prion disease incubation time in mice. BMC Neurosci 2014; 15(1): 44.
[166]
Pišlar A, Božić B, Zidar N, Kos J. Inhibition of cathepsin X reduces the strength of microglial-mediated neuroinflammation. Neuropharmacology 2017; 114: 88-100.
[167]
Hornik TC, Vilalta A, Brown GC. Activated microglia cause reversible apoptosis of pheochromocytoma cells, inducing their cell death by phagocytosis. J Cell Sci 2016; 129(1): 65-79.
[168]
Nash KR, Moran P, Finneran DJ, et al. Fractalkine over expression suppresses α-synuclein-mediated neurodegeneration. Mol Ther 2015; 23(1): 17-23.
[169]
Yang G, Meng Y, Li W, et al. Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol 2011; 21(3): 279-97.
[170]
Salmaggi A, Gelati M, Dufour A, et al. Expression and modulation of IFN-γ-inducible chemokines (IP-10, Mig, and I-TAC) in human brain endothelium and astrocytes: possible relevance for the immune invasion of the central nervous system and the pathogenesis of multiple sclerosis. J Interferon Cytokine Res 2002; 22(6): 631-40.
[171]
Spittau B, Zhou X, Ming M, Krieglstein K. IL6 protects MN9D cells and midbrain dopaminergic neurons from MPP+-induced neurodegeneration. Neuromolecular Med 2012; 14(4): 317-27.
[172]
Xia MQ, Bacskai BJ, Knowles RB, Qin SX, Hyman BT. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J Neuroimmunol 2000; 108(1-2): 227-35.
[173]
Tanuma N, Sakuma H, Sasaki A, Matsumoto Y. Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 2006; 112(2): 195-204.
[174]
Krauthausen M, Kummer MP, Zimmermann J, et al. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J Clin Invest 2015; 125(1): 365-78.
[175]
Passos GF, Figueiredo CP, Prediger RDS, et al. Role of the macrophage inflammatory protein-1α/CC chemokine receptor 5 signaling pathway in the neuroinflammatory response and cognitive deficits induced by β-amyloid peptide. Am J Pathol 2009; 175(4): 1586-97.
[176]
Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 702-21.
[177]
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18(5): 595-606.
[178]
Tian D-S, Peng J, Murugan M, et al. Chemokine ccl2-ccr2 signaling induces neuronal cell death via stat3 activation and il-1β production after status epilepticus. J Neurosci 2017; 37(33): 7878-92.
[179]
Vorspan F, Mehtelli W, Dupuy G, Bloch V, Lépine JP. Anxiety and substance use disorders: co-occurrence and clinical issues. Curr Psychiatry Rep 2015; 17(2): 4.
[180]
Vetreno RP, Crews FT. Current hypotheses on the mechanisms of alcoholism. Handb Clin Neurol 2014; 125: 477-97.
[181]
He J, Crews FT. Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 2008; 210(2): 349-58.
[182]
Rostène W, Kitabgi P, Parsadaniantz SM. Chemokines: a new class of neuromodulator? Nat Rev Neurosci 2007; 8: 895-904.
[183]
Rostène W, Dansereau MA, Godefroy D, et al. Neurochemokines: a menage a trois providing new insights on the functions of chemokines in the central nervous system. J Neurochem 2011; 118(5): 680-94.
[184]
Lauro C, Di Angelantonio S, Cipriani R, et al. Activity of adenosine receptors type 1 is required for CX3CL1-mediated neuroprotection and neuromodulation in hippocampal neurons. J Immunol 2008; 180(11): 7590-6.
[185]
Heinisch S, Kirby LG. Fractalkine/CX3CL1 enhances GABA synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuroscience 2009; 164(3): 1210-23.
[186]
Limatola C, Giovannelli A, Maggi L, et al. SDF-1α-mediated modulation of synaptic transmission in rat cerebellum. Eur J Neurosci 2000; 12(7): 2497-504.
[187]
Gosselin RD, Dansereau MA, Pohl M, et al. Chemokine network in the nervous system: a new target for pain relief. Curr Med Chem 2008; 15(27): 2866-75.
[188]
Gao X, Zhang Q, Meng D, et al. JNK-induced MCP-1 production
in spinal cord astrocytes contributes to central sensitization and
neuropathic pain. J Neurosci 2009 2009; 29(13): 4096-108.
[189]
Guyon A, Banisadr G, Rovère C, et al. Complex effects of stromal cell-derived factor-1 α on melanin-concentrating hormone neuron excitability. Eur J Neurosci 2005; 21(3): 701-10.
[190]
Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4(7): 702-10.
[191]
Ragozzino D. CXC chemokine receptors in the central nervous system: role in cerebellar neuromodulation and development. J Neurovirol 2002; 8(6): 559-72.
[192]
Skrzydelski D, Guyon A, Daugé V, et al. The chemokine stromal cell-derived factor-1/CXCL12 activates the nigrostriatal dopamine system. J Neurochem 2007; 102(4): 1175-83.
[193]
Guyon A, Skrzydelski D, De Giry I, et al. Long term exposure to the chemokine CCL2 activates the nigrostriatal dopamine system: a novel mechanism for the control of dopamine release. Neuroscience 2009; 162(4): 1072-80.
[194]
Eyo UB, Peng J, Murugan M, et al. Regulation of physical microglia-neuron interactions by fractalkine signaling after status epilepticus. Neuro 2017; 3(6): 1-14.
[195]
Luo X, Wang X, Xia Z, Chung SK, Cheung CW. CXCL12/CXCR4 axis: an emerging neuromodulator in pathological pain. Rev Neurosci 2016; 27(1): 83-92.
[196]
Heinisch S, Kirby LG. SDF-1α/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuropharmacology 2010; 58(2): 501-14.
[197]
Gordon RJ, McGregor AL, Connor B. Chemokines direct neural progenitor cell migration following striatal cell loss. Mol Cell Neurosci 2009; 41(2): 219-32.
[198]
Tran PB, Ren D, Veldhouse TJ, Miller RJ. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells. J Neurosci Res 2004; 76(1): 20-34.
[199]
Gordon RJ, Mehrabi NF, Maucksch C, Connor B. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone. Exp Neurol 2012; 233(1): 587-94.
[200]
Pinto JV, Passos IC, Librenza-Garcia D, et al. Neuron-glia interaction as a possible pathophysiological mechanism of bipolar disorder. Curr Neuropharmacol 2018; 16(5): 519-32.
[201]
Harry GJ. Microglia during development and aging. Pharmacol Ther 2013; 139(3): 313-26.
[202]
Bachstetter AD, Morganti JM, Jernberg J, et al. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 2011; 32(11): 2030-44.
[203]
Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP. Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun 2010; 24(7): 1190-201.
[204]
Cerbai F, Lana D, Nosi D, et al. The neuron-astrocyte-microglia triad in normal brain ageing and in a model of neuroinflammation in the rat hippocampus. PLoS One 2012; 7(9)e45250
[205]
Mizuno T, Kawanokuchi J, Numata K, Suzumura A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 2003; 979(1-2): 65-70.
[206]
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and aging: the role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018; 19(1): 1-27.
[207]
Orre M, Kamphuis W, Osborn LM, et al. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice. Neurobiol Aging 2014; 35(1): 1-14.
[208]
Pujol F, Kitabgi P, Boudin H. The chemokine SDF-1 differentially regulates axonal elongation and branching in hippocampal neurons. J Cell Sci 2005; 118(Pt 5): 1071-80.
[209]
Disdier C, Devoy J, Cosnefroy A, et al. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part Fibre Toxicol 2015; 12(1): 27.
[210]
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[211]
Disdier C, Chalansonnet M, Gagnaire F, et al. Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-aerosol in aging rats. Sci Rep 2017; 7(1): 12196.
[212]
Bradburn S, McPhee J, Bagley L, et al. Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance. Neurobiol Aging 2018; 63: 54-64.
[213]
Streit WJ, Conde JR, Harrison JK. Chemokines and Alzheimer’s disease. Neurobiol Aging 2001; 22(6): 909-13.
[214]
Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M. CCL2 affects β-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer’s disease. Neurobiol Aging 2013; 34(4): 1060-8.
[215]
Ott BR, Jones RN, Daiello LA, et al. Blood-cerebrospinal fluid barrier gradients in mild cognitive impairment and Alzheimer’s disease: Relationship to inflammatory cytokines and chemokines. Front Aging Neurosci 2018; 10: 245.
[216]
Zhu M, Allard JS, Zhang Y, et al. Age-related Brain Expression and Regulation of the Chemokine CCL4/MIP-1β in APP/PS1 Double Transgenic Mice. J Neuropathol Exp Neurol 2014; 73: 362-74.
[217]
Eyre HA, Air T, Pradhan A, et al. A meta-analysis of chemokines in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68: 1-8.
[218]
Köhler CA, Freitas TH, Stubbs B, et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: systematic review and meta-analysis. Mol Neurobiol 2018; 55(5): 4195-206.
[219]
Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J. Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry 2018; 23(1): 48-58.
[220]
Kern S, Skoog I, Börjesson-Hanson A, et al. Higher CSF interleukin-6 and CSF interleukin-8 in current depression in older women. Results from a population-based sample. Brain Behav Immun 2014; 41(1): 55-8.
[221]
Brietzke E, Kauer-Sant’Anna M, Teixeira AL, Kapczinski F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav Immun 2009; 23(8): 1079-82.
[222]
Barbosa IG, Rocha NP, Bauer ME, et al. Chemokines in bipolar disorder: trait or state? Eur Arch Psychiatry Clin Neurosci 2013; 263(2): 159-65.
[223]
Wang TY, Lee SY, Chen SL, et al. The differential levels of inflammatory cytokines and bdnf among bipolar spectrum disorders. Int J Neuropsychopharmacol 2016; 19(8): 1-8.
[224]
O’Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 2006; 90(2-3): 263-7.
[225]
Subileau EA, Rezaie P, Davies HA, et al. Expression of chemokines and their receptors by human brain endothelium: implications for multiple sclerosis. J Neuropathol Exp Neurol 2009; 68(3): 227-40.
[226]
Baune BT, Ponath G, Golledge J, et al. Association between IL-8 cytokine and cognitive performance in an elderly general population-the MEMO-Study. Neurobiol Aging 2008; 29(6): 937-44.
[227]
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477(7362): 90-4.
[228]
de Miranda AS, Brant F, Campos AC, et al. Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 2015; 284: 920-33.
[229]
Panizzutti B, Gubert C, Schuh AL, et al. Increased serum levels of eotaxin/CCL11 in late-stage patients with bipolar disorder: an accelerated aging biomarker? J Affect Disord 2015; 182: 64-9.
[230]
Hong S, Lee EE, Martin AS, et al. Abnormalities in chemokine levels in schizophrenia and their clinical correlates. Schizophr Res 2017; 181: 63-9.
[231]
Asevedo E, Gadelha A, Noto C, et al. Impact of peripheral levels of chemokines, BDNF and oxidative markers on cognition in individuals with schizophrenia. J Psychiatr Res 2013; 47(10): 1376-82.
[232]
Noto C, Maes M, Ota VK, et al. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J Biol Psychiatry 2015; 16(6): 422-9.
[233]
Goldsmith DR, Rapaport MH, Miller BJ, Hynynen K. A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 2016; 21(12): 1696-709.
[234]
Polacchini A, Girardi D, Falco A, et al. Distinct CCL2, CCL5, CCL11, CCL27, IL-17, IL-6, BDNF serum profiles correlate to different job-stress outcomes. Neurobiol Stress 2018; 8(8): 82-91.
[235]
Duncan DS, McLaughlin WM, Vasilakes N, Echevarria FD, Formichella CR, Sappington RM. Constitutive and stress-induced expression of CCL5 machinery in rodent retina. J Clin Cell Immunol 2017; 8(3): 506.
[236]
Crews FT, Vetreno RP. Addiction, adolescence, and innate immune gene induction. Front Psychiatry 2011; 2: 19.
[237]
Kuo HW, Liu TH, Tsou HH, et al. Inflammatory chemokine eotaxin-1 is correlated with age in heroin dependent patients under methadone maintenance therapy. Drug Alcohol Depend 2018; 183(183): 19-24.