Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Evaluation of the Glucuronic Acid Production and Antibacterial Properties of Kombucha Black Tea

Author(s): Fereshteh Ansari, Hadi Pourjafar*, Ali Kangari and Aziz Homayouni

Volume 20, Issue 11, 2019

Page: [985 - 990] Pages: 6

DOI: 10.2174/1389201020666190717100958

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Kombucha beverage is considered as a dietary supplement and drinking it strengthens the body’s immune system which prevents diseases.

Objective: The purpose of this study was to determine the amount of glucuronic acid and antibacterial activity of Kombucha black tea drink during its production at different storage temperature.

Methods: The extent of glucuronic acid at temperatures of 20°C and 30°C was explored by the use of the HPLC system for 21 days. To analyse the antibacterial property, the influence of Kombucha black tea supernatant on the growth of Salmonella typhimurium, Staphylococcus aureus, and Lactobacillus rhamnosus bacteria was examined via the two procedures of the disc and agar well diffusion.

Results: The production of glucuronic acid underwent a variation at 20°C from 17.0 mg/L on day 1 to roughly 27.2 mg/L on day 21, and the difference was significant. Furthermore, the quantity of this acid at 30°C increased from 42.2 mg/L on day 1 to 48.0 mg/L on day 21. The amount of glucuronic acid produced at 30°C was significantly greater than that at 20°C (p<0.05). This study indicated that the Kombucha black tea has antibacterial activity against Salmonella typhimurium and Staphylococcus aureus, but not against Lactobacillus rhamnosus. However, there are no statistical differences in antibacterial activity of Kombucha between incubation at 20oC and 30oC (P>0.05).

Conclusion: This study offers a perspective on glucuronic acid production (especially in 30°C rather than 20°C) and antibacterial activity of Kombucha black tea beverage.

Keywords: Kombucha, antibacterial activity, glucuronic acid, tea, HPLC, Salmonella typhimurium.

« Previous
Graphical Abstract
[1]
Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A.A. Study of protective role of double coated beads of calcium alginate-chitosan-eudragit S100 nanoparticles achieved from microencapsulation of Lactobacillus acidophilus as a predominant flora of human and animals gut. J. Vet. Res. (Pulawy), 2016, 71(3), 311-320.
[2]
Wang, Y.; Ji, B.; Wu, W.; Wang, R.; Yang, Z.; Zhang, D.; Tian, W. Hepatoprotective effects of kombucha tea: Identification of functional strains and quantification of functional components. J. Sci. Food Agric., 2014, 94(2), 265-272.
[http://dx.doi.org/10.1002/jsfa.6245] [PMID: 23716136]
[3]
Pourjafar, H.; Noori, N.; Gandomi, H.; Basti, A.A.; Ansari, F. Stability and efficiency of double-coated beads containing Lactobacillus acidophilus obtained from the calcium alginate-chitosan and Eudragit S100 nanoparticles microencapsulation. Int. J. Probiotics Prebiotics, 2018, 13(2/3), 77-84.
[4]
Soni, S.; Dey, G. Perspectives on global fermented foods. Br. Food J., 2014, 116, 1767-1787.
[http://dx.doi.org/10.1108/BFJ-01-2014-0032]
[5]
Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf., 2014, 13, 538-550.
[http://dx.doi.org/10.1111/1541-4337.12073]
[6]
Dufresne, C.; Farnworth, E. Tea, Kombucha, and health: A review. Food Res. Int., 2000, 33, 409-421.
[http://dx.doi.org/10.1016/S0963-9969(00)00067-3]
[7]
Vázquez-Cabral, B.D.; Larrosa-Pérez, M.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Rutiaga-Quiñones, J.G.; Gamboa-Gómez, C.I.; Rocha-Guzmán, N.E. Oak kombucha protects against oxidative stress and inflammatory processes. Chem. Biol. Interact., 2017, 272, 1-9.
[http://dx.doi.org/10.1016/j.cbi.2017.05.001] [PMID: 28476604]
[8]
Lobo, R.; Dias, F.; Shenoy, C. Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds. Int. Food Res. J., 2017, 24(2), 541-546.
[9]
Greenwalt, C.J.; Steinkraus, K.H.; Ledford, R.A. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. J. Food Prot., 2000, 63(7), 976-981.
[http://dx.doi.org/10.4315/0362-028X-63.7.976] [PMID: 10914673]
[10]
Deghrigue, M.; Chriaa, J.; Battikh, H.; Kawther, A.; Bakhrouf, A. Antiproliferative and antimicrobial activities of kombucha tea. Afr. J. Microbiol. Res., 2013, 7, 3466-3470.
[11]
Nguyen, N.K.; Nguyen, P.B.; Nguyen, H.T.; Le, P.H. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. Lebensm. Wiss. Technol., 2015, 64, 1149-1155.
[http://dx.doi.org/10.1016/j.lwt.2015.07.018]
[12]
Balentine, D.A.; Wiseman, S.A.; Bouwens, L.C. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr., 1997, 37(8), 693-704.
[http://dx.doi.org/10.1080/10408399709527797] [PMID: 9447270]
[13]
Koch, W.; Kukula-Koch, W.; Głowniak, K. Catechin composition and antioxidant activity of black teas in relation to brewing time. J. AOAC Int., 2017, 100(6), 1694-1699.
[http://dx.doi.org/10.5740/jaoacint.17-0235] [PMID: 28707612]
[14]
Yavari, N.; Assadi, M.M.; Moghadam, M.B.; Larijani, K. Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Aust. J. Basic Appl. Sci., 2011, 5, 1788-1794.
[15]
Abdolhosseinzadeh, E.; Dehnad, A.R.; Pourjafar, H.; Homayouni, A.; Ansari, F. The production of probiotic Scallion Yogurt: Viability of Lactobacillus acidoplilus freely and microencapsulated in the product. Carpath. J. Food Sci. Technol., 2018, 10(3), 72-80.
[16]
Shah, N.P. Probiotic bacteria: selective enumeration and survival in dairy foods. J. Dairy Sci., 2000, 83(4), 894-907.
[http://dx.doi.org/10.3168/jds.S0022-0302(00)74953-8] [PMID: 10791807]
[17]
Ghasemnezhad, R.; Razavilar, V.; Pourjafar, H.; Khosravi-Darani, K.; Ala, K. The viability of free and encapsulated Lactobacillus casei and Bifidobacterium animalis in chocolate milk, and evaluation of its pH changes and sensory properties during storage. Ann. Res. Rev. Biol., 2017, 1-8.
[http://dx.doi.org/[http://10.9734/ARRB/2017/37885]]
[18]
Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Šaponjac, V.T.; Vulić, J.J.; Vulić, J.J. Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technol. Biotechnol., 2014, 52(4), 420-429.
[http://dx.doi.org/10.17113/ftb.52.04.14.3611] [PMID: 27904315]
[19]
Velićanski, A.S.; Cvetković, D.D.; Markov, S.L.; Tumbas, V.T.; Savatović, S.M. Antimicrobial and antioxidant activity of lemon balm Kombucha. Acta Period. Technol., 2007, 38, 165-172.
[http://dx.doi.org/10.2298/APT0738165V]
[20]
Ansari, F.; Pourjafar, H.; Esmailpour, S. Study on citric acid production and antibacterial activity of kombucha green tea beverage during production and storage. Annu. Res. Rev. Biol., 2017, 16, 1-8.
[http://dx.doi.org/10.9734/ARRB/2017/35664]
[21]
Beigmohammadi, F.; Karbasi, A.; Beigmohammadi, Z. Production of high glucuronic acid level in Kombucha beverage under the influence environmental condition. J. Food Technol. Nutr., 2010, 7(2), 30-38.
[22]
Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem., 2007, 102, 392-398.
[http://dx.doi.org/10.1016/j.foodchem.2006.05.032]
[23]
Chen, C.; Liu, B.Y. Changes in major components of tea fungus metabolites during prolonged fermentation. J. Appl. Microbiol., 2000, 89(5), 834-839.
[http://dx.doi.org/10.1046/j.1365-2672.2000.01188.x] [PMID: 11119158]
[24]
Franco, V.G.; Perín, J.C.; Mantovani, V.E.; Goicoechea, H.C. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection. Talanta, 2006, 68(3), 1005-1012.
[http://dx.doi.org/10.1016/j.talanta.2005.07.003] [PMID: 18970424]
[25]
Mirzaei, H.; Pourjafar, H.; Homayouni, A. The effect of microencapsulation with calcium alginate and resistant starch on the Lactobacillus acidophilus (La5) survival rate in simulated gastrointestinal juice conditions. J. Vet. Res. (Pulawy), 2011, 66, 337-377.
[26]
Fu, C.; Yan, F.; Cao, Z.; Xie, F.; Lin, J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci. Technol., 2014, 34, 123-126.
[http://dx.doi.org/10.1590/S0101-20612014005000012]
[27]
Nguyen, N.K.; Dong, N.T.; Le, P.H.; Nguyen, H.T. Evaluation of the glucuronic acid production and other biological activities of fermented sweeten-black tea by kombucha layer and the co-culture with different Lactobacillus sp. strains. Ijmer, 2014, 4, 12-17.
[28]
Greenwalt, C.; Ledford, R.; Steinkraus, K. Determination and characterization of the antimicrobial activity of the fermented tea kombucha. Lebensm. Wiss. Technol., 1998, 31, 291-296.
[http://dx.doi.org/10.1006/fstl.1997.0354]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy