Review Article

肌肽和肺病

卷 27, 期 11, 2020

页: [1714 - 1725] 页: 12

弟呕挨: 10.2174/0929867326666190712140545

价格: $65

摘要

肌肽(β-丙氨酰-L-组氨酸)是一种小二肽,具有多种活性,包括抗氧化作用,金属离子螯合,质子缓冲能力以及对蛋白质羰基化和糖基化的抑制作用。肌肽主要在丰富的器官中进行研究,包括骨骼肌,大脑皮层,肾脏,脾脏和血浆。近来,在流感病毒或脂多糖诱导的急性肺损伤和肺纤维化的动物模型中,已经在肌肽水平低的器官如肺中研究了肌肽补充作用。在肌肽的已知保护作用中,其抗氧化作用已被潜在地用于治疗肺部疾病而引起越来越多的关注。在这篇综述中,我们描述了肌肽的体外和体内生物学和生理学作用。我们还报告了我们最近的研究,并讨论了肌肽或其相关化合物在肌肽仅少量(尤其是肺)存在的器官中的作用及其保护机制。

关键词: 肌肽,活性氧(ROS),急性肺损伤,肽,抗氧化剂,氧化应激。

[1]
Crush, K.G. Carnosine and related substances in animal tissues. Comp. Biochem. Physiol., 1970, 34(1), 3-30.
[http://dx.doi.org/10.1016/0010-406X(70)90049-6] [PMID: 4988625]
[2]
Suyama, M.; Maruyama, M. Identification of methylated beta-alanylhistidine in the muscles of snake and dolphin. J. Biochem., 1969, 66(3), 405-407.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a129159] [PMID: 5348589]
[3]
Dennis, P.O.; Lorkin, P.A. Isolation and synthesis of balenine, a dipeptide occurring in whale-meat extract. J. Chem. Soc. Perkin Trans. I, 1965, 1, 4968-4972.
[http://dx.doi.org/10.1039/JR9650004968] [PMID: 5891952]
[4]
Winnick, R.E.; Moikeha, S.; Winnick, T. Intracellular distribution of carnosine and anserine in skeletal muscle. J. Biol. Chem., 1963, 238, 3645-3647.
[PMID: 14109199]
[5]
Clifford, W.M. The distribution of carnosine in the animal kingdom. Biochem. J., 1921, 15(6), 725-735.
[http://dx.doi.org/10.1042/bj0150725] [PMID: 16743047]
[6]
Sjaastad, O.; Berstad, J.; Gjesdahl, P.; Gjessing, L. Homocarnosinosis. 2. A familial metabolic disorder associated with spastic paraplegia, progressive mental deficiency, and retinal pigmentation. Acta Neurol. Scand., 1976, 53(4), 275-290.
[http://dx.doi.org/10.1111/j.1600-0404.1976.tb04348.x] [PMID: 1266573]
[7]
O’Dowd, J.J.; Cairns, M.T.; Trainor, M.; Robins, D.J.; Miller, D.J. Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain. J. Neurochem., 1990, 55(2), 446-452.
[http://dx.doi.org/10.1111/j.1471-4159.1990.tb04156.x] [PMID: 2370547]
[8]
Kamal, M.A.; Jiang, H.; Hu, Y.; Keep, R.F.; Smith, D.E. Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 296(4), R986-R991.
[http://dx.doi.org/10.1152/ajpregu.90744.2008] [PMID: 19225147]
[9]
Kawahara, M.; Tanaka, K.I.; Kato-Negishi, M. Zinc, carnosine, and neurodegenerative diseases. Nutrients, 2018, 10(2)E147
[http://dx.doi.org/10.3390/nu10020147] [PMID: 29382141]
[10]
Jung, S.; Bae, Y.S.; Kim, H.J.; Jayasena, D.D.; Lee, J.H.; Park, H.B.; Heo, K.N.; Jo, C. Carnosine, anserine, creatine, and inosine 5′-monophosphate contents in breast and thigh meats from 5 lines of Korean native chicken. Poult. Sci., 2013, 92(12), 3275-3282.
[http://dx.doi.org/10.3382/ps.2013-03441] [PMID: 24235239]
[11]
Peiretti, P.G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chem., 2011, 126(4), 1939-1947.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.036] [PMID: 25213980]
[12]
Everaert, I.; Mooyaart, A.; Baguet, A.; Zutinic, A.; Baelde, H.; Achten, E.; Taes, Y.; De Heer, E.; Derave, W. Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids, 2011, 40(4), 1221-1229.
[http://dx.doi.org/10.1007/s00726-010-0749-2] [PMID: 20865290]
[13]
Peters, V.; Kebbewar, M.; Jansen, E.W.; Jakobs, C.; Riedl, E.; Koeppel, H.; Frey, D.; Adelmann, K.; Klingbeil, K.; Mack, M.; Hoffmann, G.F.; Janssen, B.; Zschocke, J.; Yard, B.A. Relevance of allosteric conformations and homocarnosine concentration on carnosinase activity. Amino Acids, 2010, 38(5), 1607-1615.
[http://dx.doi.org/10.1007/s00726-009-0367-z] [PMID: 19915793]
[14]
Bellia, F.; Vecchio, G.; Rizzarelli, E. Carnosinases, their substrates and diseases. Molecules, 2014, 19(2), 2299-2329.
[http://dx.doi.org/10.3390/molecules19022299] [PMID: 24566305]
[15]
Unno, H.; Yamashita, T.; Ujita, S.; Okumura, N.; Otani, H.; Okumura, A.; Nagai, K.; Kusunoki, M. Structural basis for substrate recognition and hydrolysis by mouse carnosinase CN2. J. Biol. Chem., 2008, 283(40), 27289-27299.
[http://dx.doi.org/10.1074/jbc.M801657200] [PMID: 18550540]
[16]
Pavlin, M.; Rossetti, G.; De Vivo, M.; Carloni, P. Carnosine and homocarnosine degradation mechanisms by the human carnosinase enzyme CN1: insights from multiscale simulations. Biochemistry, 2016, 55(19), 2772-2784.
[http://dx.doi.org/10.1021/acs.biochem.5b01263] [PMID: 27105448]
[17]
Pegova, A.; Abe, H.; Boldyrev, A. Hydrolysis of carnosine and related compounds by mammalian carnosinases. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 127(4), 443-446.
[http://dx.doi.org/10.1016/S0305-0491(00)00279-0] [PMID: 11281261]
[18]
Lenney, J.F.; George, R.P.; Weiss, A.M.; Kucera, C.M.; Chan, P.W.; Rinzler, G.S. Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin. Chim. Acta, 1982, 123(3), 221-231.
[http://dx.doi.org/10.1016/0009-8981(82)90166-8] [PMID: 7116644]
[19]
Everaert, I.; Taes, Y.; De Heer, E.; Baelde, H.; Zutinic, A.; Yard, B.; Sauerhöfer, S.; Vanhee, L.; Delanghe, J.; Aldini, G.; Derave, W. Low plasma carnosinase activity promotes carnosinemia after carnosine ingestion in humans. Am. J. Physiol. Renal Physiol., 2012, 302(12), F1537-F1544.
[http://dx.doi.org/10.1152/ajprenal.00084.2012] [PMID: 22496410]
[20]
Lenney, J.F. Human cytosolic carnosinase: evidence of identity with prolinase, a non-specific dipeptidase. Biol. Chem. Hoppe Seyler, 1990, 371(2), 167-171.
[http://dx.doi.org/10.1515/bchm3.1990.371.1.167] [PMID: 2334521]
[21]
Teufel, M.; Saudek, V.; Ledig, J.P.; Bernhardt, A.; Boularand, S.; Carreau, A.; Cairns, N.J.; Carter, C.; Cowley, D.J.; Duverger, D.; Ganzhorn, A.J.; Guenet, C.; Heintzelmann, B.; Laucher, V.; Sauvage, C.; Smirnova, T. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J. Biol. Chem., 2003, 278(8), 6521-6531.
[http://dx.doi.org/10.1074/jbc.M209764200] [PMID: 12473676]
[22]
Tamba, M.; Torreggiani, A. Hydroxyl radical scavenging by carnosine and Cu(II)-carnosine complexes: a pulse-radiolysis and spectroscopic study. Int. J. Radiat. Biol., 1999, 75(9), 1177-1188.
[http://dx.doi.org/10.1080/095530099139656] [PMID: 10528926]
[23]
Babizhayev, M.A.; Seguin, M.C.; Gueyne, J.; Evstigneeva, R.P.; Ageyeva, E.A.; Zheltukhina, G.A. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities. Biochem. J., 1994, 304(Pt 2), 509-516.
[http://dx.doi.org/10.1042/bj3040509] [PMID: 7998987]
[24]
Nagasawa, T.; Yonekura, T.; Nishizawa, N.; Kitts, D.D. In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Mol. Cell. Biochem., 2001, 225(1-), 29-34.
[http://dx.doi.org/10.1023/A:1012256521840] [PMID: 11716361]
[25]
Dobbie, H.; Kermack, W.O. Complex-formation between polypeptides and metals. 2. The reaction between cupric ions and some dipeptides. Biochem. J., 1955, 59(2), 246-257.
[http://dx.doi.org/10.1042/bj0590246] [PMID: 14351188]
[26]
Matsukura, T.; Tanaka, H. Applicability of zinc complex of L-carnosine for medical use. Biochemistry (Mosc.), 2000, 65(7), 817-823.
[PMID: 10951100]
[27]
Abe, H.; Dobson, G.P.; Hoeger, U.; Parkhouse, W.S. Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. Am. J. Physiol., 1985, 249(4 Pt 2), R449-R454.
[http://dx.doi.org/10.1152/ajpregu.1985.249.4.R449] [PMID: 4051030]
[28]
Brownson, C.; Hipkiss, A.R. Carnosine reacts with a glycated protein. Free Radic. Biol. Med., 2000, 28(10), 1564-1570.
[http://dx.doi.org/10.1016/S0891-5849(00)00270-7] [PMID: 10927182]
[29]
Szwergold, B.S. Carnosine and anserine act as effective transglycating agents in decomposition of aldose-derived Schiff bases. Biochem. Biophys. Res. Commun., 2005, 336(1), 36-41.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.033] [PMID: 16112643]
[30]
Corona, C.; Frazzini, V.; Silvestri, E.; Lattanzio, R.; La Sorda, R.; Piantelli, M.; Canzoniero, L.M.; Ciavardelli, D.; Rizzarelli, E.; Sensi, S.L. Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. PLoS One, 2011, 6(3)e17971
[http://dx.doi.org/10.1371/journal.pone.0017971] [PMID: 21423579]
[31]
Kawahara, M.; Koyama, H.; Nagata, T.; Sadakane, Y. Zinc, copper, and carnosine attenuate neurotoxicity of prion fragment PrP106-126. Metallomics, 2011, 3(7), 726-734.
[http://dx.doi.org/10.1039/c1mt00015b] [PMID: 21442127]
[32]
Chez, M.G.; Buchanan, C.P.; Aimonovitch, M.C.; Becker, M.; Schaefer, K.; Black, C.; Komen, J. Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. J. Child Neurol., 2002, 17(11), 833-837.
[http://dx.doi.org/10.1177/08830738020170111501] [PMID: 12585724]
[33]
Baraniuk, J.N.; El-Amin, S.; Corey, R.; Rayhan, R.; Timbol, C. Carnosine treatment for gulf war illness: a randomized controlled trial. Glob. J. Health Sci., 2013, 5(3), 69-81.
[http://dx.doi.org/10.5539/gjhs.v5n3p69] [PMID: 23618477]
[34]
Mizuno, D.; Konoha-Mizuno, K.; Mori, M.; Sadakane, Y.; Koyama, H.; Ohkawara, S.; Kawahara, M. Protective activity of carnosine and anserine against zinc-induced neurotoxicity: a possible treatment for vascular dementia. Metallomics, 2015, 7(8), 1233-1239.
[http://dx.doi.org/10.1039/C5MT00049A] [PMID: 25846004]
[35]
Jackson, M.C.; Lenney, J.F. The distribution of carnosine and related dipeptides in rat and human tissues. Inflamm. Res., 1996, 45(3), 132-135.
[http://dx.doi.org/10.1007/BF02265166] [PMID: 8689392]
[36]
Cuzzocrea, S.; Genovese, T.; Failla, M.; Vecchio, G.; Fruciano, M.; Mazzon, E.; Di Paola, R.; Muià, C.; La Rosa, C.; Crimi, N.; Rizzarelli, E.; Vancheri, C. Protective effect of orally administered carnosine on bleomycin-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(5), L1095-L1104.
[http://dx.doi.org/10.1152/ajplung.00283.2006] [PMID: 17220373]
[37]
Tanaka, K.I.; Sugizaki, T.; Kanda, Y.; Tamura, F.; Niino, T.; Kawahara, M. Preventive effects of carnosine on lipopolysaccharide-induced lung injury. Sci. Rep., 2017, 7, 42813.
[http://dx.doi.org/10.1038/srep42813] [PMID: 28205623]
[38]
Xu, T.; Wang, C.; Zhang, R.; Xu, M.; Liu, B.; Wei, D.; Wang, G.; Tian, S. Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury. J. Gen. Virol., 2015, 96(10), 2939-2950.
[http://dx.doi.org/10.1099/jgv.0.000238] [PMID: 26233716]
[39]
Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev., 2013, 93(4), 1803-1845.
[http://dx.doi.org/10.1152/physrev.00039.2012] [PMID: 24137022]
[40]
Hipkiss, A.R. Carnosine and its possible roles in nutrition and health. Adv. Food Nutr. Res., 2009, 57, 87-154.
[http://dx.doi.org/10.1016/S1043-4526(09)57003-9] [PMID: 19595386]
[41]
Sarma, J.V.; Ward, P.A. Oxidants and redox signaling in acute lung injury. Compr. Physiol., 2011, 1(3), 1365-1381.
[http://dx.doi.org/10.1002/cphy.c100068] [PMID: 23733646]
[42]
Tasaka, S.; Amaya, F.; Hashimoto, S.; Ishizaka, A. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid. Redox Signal., 2008, 10(4), 739-753.
[http://dx.doi.org/10.1089/ars.2007.1940] [PMID: 18179359]
[43]
Mak, J.C. Pathogenesis of COPD. Part II. Oxidative-antioxidative imbalance. Int. J. Tuberc. Lung Dis., 2008, 12(4), 368-374.
[PMID: 18371260]
[44]
Kinnula, V.L.; Fattman, C.L.; Tan, R.J.; Oury, T.D. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am. J. Respir. Crit. Care Med., 2005, 172(4), 417-422.
[http://dx.doi.org/10.1164/rccm.200501-017PP] [PMID: 15894605]
[45]
Klebanov, G.I.; Teselkin YuO, ; Babenkova, I.V.; Popov, I.N.; Levin, G.; Tyulina, O.V.; Boldyrev, A.A.; Vladimirov YuA, Evidence for a direct interaction of superoxide anion radical with carnosine. Biochem. Mol. Biol. Int., 1997, 43(1), 99-106.
[http://dx.doi.org/10.1080/15216549700203861] [PMID: 9315287]
[46]
Zhang, Z.Y.; Sun, B.L.; Yang, M.F.; Li, D.W.; Fang, J.; Zhang, S. Carnosine attenuates early brain injury through its antioxidative and anti-apoptotic effects in a rat experimental subarachnoid hemorrhage model. Cell. Mol. Neurobiol., 2015, 35(2), 147-157.
[http://dx.doi.org/10.1007/s10571-014-0106-1] [PMID: 25179154]
[47]
Xie, R.X.; Li, D.W.; Liu, X.C.; Yang, M.F.; Fang, J.; Sun, B.L.; Zhang, Z.Y.; Yang, X.Y. Carnosine attenuates brain oxidative stress and apoptosis after intracerebral hemorrhage in rats. Neurochem. Res., 2017, 42(2), 541-551.
[http://dx.doi.org/10.1007/s11064-016-2104-9] [PMID: 27868153]
[48]
Sahin, S.; Burukoglu Donmez, D. Effects of Carnosine (Beta-Alanyl-L-Histidine) in an experimental rat model of acute kidney injury due to septic shock. Med. Sci. Monit., 2018, 24, 305-316.
[http://dx.doi.org/10.12659/MSM.905181] [PMID: 29334583]
[49]
Aydın, A.F.; Bingül, İ.; Küçükgergin, C.; Doğan-Ekici, I.; Doğru Abbasoğlu, S.; Uysal, M. Carnosine decreased oxidation and glycation products in serum and liver of high-fat diet and low-dose streptozotocin-induced diabetic rats. Int. J. Exp. Pathol., 2017, 98(5), 278-288.
[http://dx.doi.org/10.1111/iep.12252] [PMID: 29205589]
[50]
Ozdoğan, K.; Taşkın, E.; Dursun, N. Protective effect of carnosine on adriamycin-induced oxidative heart damage in rats. Anadolu Kardiyol. Derg., 2011, 11(1), 3-10.
[http://dx.doi.org/10.5152/akd.2011.003] [PMID: 21183419]
[51]
Hambidge, M. Human zinc deficiency. J Nutr., 2000, 130(5S Suppl), 1344S-1349S.
[http://dx.doi.org/10.1093/jn/130.5.1344S] [PMID: 10801941]
[52]
Prasad, A.S. Impact of the discovery of human zinc deficiency on health. J. Am. Coll. Nutr., 2009, 28(3), 257-265.
[http://dx.doi.org/10.1080/07315724.2009.10719780] [PMID: 20150599]
[53]
Sandstead, H.H. Subclinical zinc deficiency impairs human brain function. J. Trace Elem. Med. Biol., 2012, 26(2-3), 70-73.
[http://dx.doi.org/10.1016/j.jtemb.2012.04.018] [PMID: 22673824]
[54]
Hsu, H.H.; Tzao, C.; Chang, W.C.; Wu, C.P.; Tung, H.J.; Chen, C.Y.; Perng, W.C. Zinc chloride (smoke bomb) inhalation lung injury: clinical presentations, high-resolution CT findings, and pulmonary function test results. Chest, 2005, 127(6), 2064-2071.
[http://dx.doi.org/10.1378/chest.127.6.2064] [PMID: 15947321]
[55]
Phillips, J.I.; Green, F.Y.; Davies, J.C.; Murray, J. Pulmonary and systemic toxicity following exposure to nickel nanoparticles. Am. J. Ind. Med., 2010, 53(8), 763-767.
[http://dx.doi.org/10.1002/ajim.20855] [PMID: 20623660]
[56]
Fukui, H.; Iwahashi, H.; Endoh, S.; Nishio, K.; Yoshida, Y.; Hagihara, Y.; Horie, M. Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. J. Occup. Health, 2015, 57(2), 118-125.
[http://dx.doi.org/10.1539/joh.14-0161-OA] [PMID: 25735507]
[57]
Chang, X.H.; Zhu, A.; Liu, F.F.; Zou, L.Y.; Su, L.; Liu, S.K.; Zhou, H.H.; Sun, Y.Y.; Han, A.J.; Sun, Y.F.; Li, S.; Li, J.; Sun, Y.B. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-beta1 activation in rats. Hum. Exp. Toxicol., 2016.
[http://dx.doi.org/10.1177/0960327116666650] [PMID: 27596071]
[58]
Torreggiani, A.; Taddei, P.; Fini, G. Characterization of dioxygenated cobalt(II)-carnosine complexes by Raman and IR spectroscopy. Biopolymers, 2002, 67(1), 70-81.
[http://dx.doi.org/10.1002/bip.10025] [PMID: 11842416]
[59]
Trombley, P.Q.; Horning, M.S.; Blakemore, L.J. Interactions between carnosine and zinc and copper: implications for neuromodulation and neuroprotection. Biochemistry (Mosc.), 2000, 65(7), 807-816.
[PMID: 10951099]
[60]
Baran, E.J. Metal complexes of carnosine. Biochemistry (Mosc.), 2000, 65(7), 789-797.
[PMID: 10951097]
[61]
Fouad, A.A.; Qureshi, H.A.; Yacoubi, M.T.; Al-Melhim, W.N. Protective role of carnosine in mice with cadmium-induced acute hepatotoxicity. Food Chem. Toxicol., 2009, 47(11), 2863-2870.
[http://dx.doi.org/10.1016/j.fct.2009.09.009] [PMID: 19748544]
[62]
Hasanein, P.; Felegari, Z. Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats. Can. J. Physiol. Pharmacol., 2017, 95(12), 1426-1432.
[http://dx.doi.org/10.1139/cjpp-2016-0647] [PMID: 28675793]
[63]
Rubenfeld, G.D.; Caldwell, E.; Peabody, E.; Weaver, J.; Martin, D.P.; Neff, M.; Stern, E.J.; Hudson, L.D. Incidence and outcomes of acute lung injury. N. Engl. J. Med., 2005, 353(16), 1685-1693.
[http://dx.doi.org/10.1056/NEJMoa050333] [PMID: 16236739]
[64]
Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S.; Slutsky, A.S. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23), 2526-2533.
[http://dx.doi.org/10.1001/jama.2012.5669] [PMID: 22797452]
[65]
Dushianthan, A.; Grocott, M.P.; Postle, A.D.; Cusack, R. Acute respiratory distress syndrome and acute lung injury. Postgrad. Med. J., 2011, 87(1031), 612-622.
[http://dx.doi.org/10.1136/pgmj.2011.118398] [PMID: 21642654]
[66]
Han, S.; Mallampalli, R.K. The acute respiratory distress syndrome: from mechanism to translation. J. Immunol., 2015, 194(3), 855-860.
[http://dx.doi.org/10.4049/jimmunol.1402513] [PMID: 25596299]
[67]
Baron, R.M.; Levy, B.D. Recent advances in understanding and treating ARDS. F1000 Res., 2016, 5, 5.
[http://dx.doi.org/10.12688/f1000research.7646.1] [PMID: 27158460]
[68]
Lucas, R.; Verin, A.D.; Black, S.M.; Catravas, J.D. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem. Pharmacol., 2009, 77(12), 1763-1772.
[http://dx.doi.org/10.1016/j.bcp.2009.01.014] [PMID: 19428331]
[69]
Lamb, N.J.; Gutteridge, J.M.; Baker, C.; Evans, T.W.; Quinlan, G.J. Oxidative damage to proteins of bronchoalveolar lavage fluid in patients with acute respiratory distress syndrome: evidence for neutrophil-mediated hydroxylation, nitration, and chlorination. Crit. Care Med., 1999, 27(9), 1738-1744.
[http://dx.doi.org/10.1097/00003246-199909000-00007] [PMID: 10507592]
[70]
Quinlan, G.J.; Lamb, N.J.; Tilley, R.; Evans, T.W.; Gutteridge, J.M. Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am. J. Respir. Crit. Care Med., 1997, 155(2), 479-484.
[http://dx.doi.org/10.1164/ajrccm.155.2.9032182] [PMID: 9032182]
[71]
Han, W.; Li, H.; Segal, B.H.; Blackwell, T.S. Bioluminescence imaging of NADPH oxidase activity in different animal models. J. Vis. Exp., 2012, 3925(68), 3925.
[http://dx.doi.org/10.3791/3925] [PMID: 23117583]
[72]
Papaiahgari, S.; Yerrapureddy, A.; Reddy, S.R.; Reddy, N.M.; Dodd-O, J.M.; Crow, M.T.; Grigoryev, D.N.; Barnes, K.; Tuder, R.M.; Yamamoto, M.; Kensler, T.W.; Biswal, S.; Mitzner, W.; Hassoun, P.M.; Reddy, S.P. Genetic and pharmacologic evidence links oxidative stress to ventilator-induced lung injury in mice. Am. J. Respir. Crit. Care Med., 2007, 176(12), 1222-1235.
[http://dx.doi.org/10.1164/rccm.200701-060OC] [PMID: 17901416]
[73]
Sun, C.; Wu, Q.; Zhang, X.; He, Q.; Zhao, H. Mechanistic evaluation of the protective effect of carnosine on acute lung injury in sepsis rats. Pharmacology, 2017, 100(5-6), 292-300.
[http://dx.doi.org/10.1159/000479879] [PMID: 28848223]
[74]
Sahin, S.; Oter, S.; Burukoğlu, D.; Sutken, E. The effects of carnosine in an experimental rat model of septic shock. Med. Sci. Monit. Basic Res., 2013, 19, 54-61.
[http://dx.doi.org/10.12659/MSMBR.883758] [PMID: 23396325]
[75]
Ohata, S.; Moriyama, C.; Yamashita, A.; Nishida, T.; Kusumoto, C.; Mochida, S.; Minami, Y.; Nakada, J.; Shomori, K.; Inagaki, Y.; Ohta, Y.; Matsura, T. Polaprezinc protects mice against Endotoxin shock. J. Clin. Biochem. Nutr., 2010, 46(3), 234-243.
[http://dx.doi.org/10.3164/jcbn.09-125] [PMID: 20490319]
[76]
Porto, B.N.; Stein, R.T. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front. Immunol., 2016, 7, 311.
[http://dx.doi.org/10.3389/fimmu.2016.00311] [PMID: 27574522]
[77]
Yang, H.; Biermann, M.H.; Brauner, J.M.; Liu, Y.; Zhao, Y.; Herrmann, M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front. Immunol., 2016, 7, 302.
[http://dx.doi.org/10.3389/fimmu.2016.00302] [PMID: 27570525]
[78]
Stoiber, W.; Obermayer, A.; Steinbacher, P.; Krautgartner, W.D. (ETs) in Humans. Biomolecules, 2015, 5(2), 702-723.
[http://dx.doi.org/10.3390/biom5020702] [PMID: 25946076]
[79]
Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med., 2011, 17(3-4), 293-307.
[http://dx.doi.org/10.2119/molmed.2010.00138] [PMID: 21046059]
[80]
Grootjans, J.; Kaser, A.; Kaufman, R.J.; Blumberg, R.S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol., 2016, 16(8), 469-484.
[http://dx.doi.org/10.1038/nri.2016.62] [PMID: 27346803]
[81]
Wei, J.; Rahman, S.; Ayaub, E.A.; Dickhout, J.G.; Ask, K. Protein misfolding and endoplasmic reticulum stress in chronic lung disease. Chest, 2013, 143(4), 1098-1105.
[http://dx.doi.org/10.1378/chest.12-2133] [PMID: 23546482]
[82]
Kim, D.S.; Collard, H.R.; King, T.E., Jr Classification and natural history of the idiopathic interstitial pneumonias. Proc. Am. Thorac. Soc., 2006, 3(4), 285-292.
[http://dx.doi.org/10.1513/pats.200601-005TK] [PMID: 16738191]
[83]
Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; Johkoh, T.; Martinez, F.J.; Myers, J.; Protzko, S.L.; Richeldi, L.; Rind, D.; Selman, M.; Theodore, A.; Wells, A.U.; Hoogsteden, H.; Schünemann, H.J. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med., 2015, 192(2), e3-e19.
[http://dx.doi.org/10.1164/rccm.201506-1063ST] [PMID: 26177183]
[84]
Kinnula, V.L.; Myllärniemi, M. Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid. Redox Signal., 2008, 10(4), 727-738.
[http://dx.doi.org/10.1089/ars.2007.1942] [PMID: 18177235]
[85]
Sheppard, D. Transforming growth factor beta: a central modulator of pulmonary and airway inflammation and fibrosis. Proc. Am. Thorac. Soc., 2006, 3(5), 413-417.
[http://dx.doi.org/10.1513/pats.200601-008AW] [PMID: 16799084]
[86]
Alsheblak, M.M.; Elsherbiny, N.M.; El-Karef, A.; El-Shishtawy, M.M. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats. Eur. Cytokine Netw., 2016, 27(1), 6-15.
[http://dx.doi.org/10.1684/ecn.2016.0372] [PMID: 27094155]
[87]
Kono, T.; Asama, T.; Chisato, N.; Ebisawa, Y.; Okayama, T.; Imai, K.; Karasaki, H.; Furukawa, H.; Yoneda, M. Polaprezinc prevents ongoing thioacetamide-induced liver fibrosis in rats. Life Sci., 2012, 90(3-4), 122-130.
[http://dx.doi.org/10.1016/j.lfs.2011.10.022] [PMID: 22100444]
[88]
Shao, L.; Li, Q.H.; Tan, Z. L-carnosine reduces telomere damage and shortening rate in cultured normal fibroblasts. Biochem. Biophys. Res. Commun., 2004, 324(2), 931-936.
[http://dx.doi.org/10.1016/j.bbrc.2004.09.136] [PMID: 15474517]
[89]
Drakopanagiotakis, F.; Xifteri, A.; Polychronopoulos, V.; Bouros, D. Apoptosis in lung injury and fibrosis. Eur. Respir. J., 2008, 32(6), 1631-1638.
[http://dx.doi.org/10.1183/09031936.00176807] [PMID: 19043009]
[90]
Maher, T.M.; Evans, I.C.; Bottoms, S.E.; Mercer, P.F.; Thorley, A.J.; Nicholson, A.G.; Laurent, G.J.; Tetley, T.D.; Chambers, R.C.; McAnulty, R.J. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2010, 182(1), 73-82.
[http://dx.doi.org/10.1164/rccm.200905-0674OC] [PMID: 20203246]
[91]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[92]
Garofalo, M.; Iovine, B.; Kuryk, L.; Capasso, C.; Hirvinen, M.; Vitale, A.; Yliperttula, M.; Bevilacqua, M.A.; Cerullo, V. Oncolytic adenovirus loaded with L-carnosine as novel strategy to enhance the antitumor activity. Mol. Cancer Ther., 2016, 15(4), 651-660.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0559] [PMID: 26861248]
[93]
Zhang, Z.; Xu, J.; Zhou, T.; Yi, Y.; Li, H.; Sun, H.; Huang, W.; Wang, D.; Li, B.; Ying, G. Risk factors of radiation-induced acute esophagitis in non-small cell lung cancer patients treated with concomitant chemoradiotherapy. Radiat. Oncol., 2014, 9, 54.
[http://dx.doi.org/10.1186/1748-717X-9-54] [PMID: 24528546]
[94]
Yanase, K.; Funaguchi, N.; Iihara, H.; Yamada, M.; Kaito, D.; Endo, J.; Ito, F.; Ohno, Y.; Tanaka, H.; Itoh, Y.; Minatoguchi, S. Prevention of radiation esophagitis by polaprezinc (zinc L-carnosine) in patients with non-small cell lung cancer who received chemoradiotherapy. Int. J. Clin. Exp. Med., 2015, 8(9), 16215-16222.
[PMID: 26629136]
[95]
Severina, I.S.; Bussygina, O.G.; Pyatakova, N.V. Carnosine as a regulator of soluble guanylate cyclase. Biochemistry (Mosc.), 2000, 65(7), 783-788.
[PMID: 10951096]
[96]
Rabe, K.F.; Hurd, S.; Anzueto, A.; Barnes, P.J.; Buist, S.A.; Calverley, P.; Fukuchi, Y.; Jenkins, C.; Rodriguez-Roisin, R.; van Weel, C.; Zielinski, J. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2007, 176(6), 532-555.
[http://dx.doi.org/10.1164/rccm.200703-456SO] [PMID: 17507545]
[97]
Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; Frith, P.; Halpin, D.M.; López Varela, M.V.; Nishimura, M.; Roche, N.; Rodriguez-Roisin, R.; Sin, D.D.; Singh, D.; Stockley, R.; Vestbo, J.; Wedzicha, J.A.; Agustí, A. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. Am. J. Respir. Crit. Care Med., 2017, 195(5), 557-582.
[http://dx.doi.org/10.1164/rccm.201701-0218PP] [PMID: 28128970]
[98]
Vestbo, J.; Hurd, S.S.; Agustí, A.G.; Jones, P.W.; Vogelmeier, C.; Anzueto, A.; Barnes, P.J.; Fabbri, L.M.; Martinez, F.J.; Nishimura, M.; Stockley, R.A.; Sin, D.D.; Rodriguez-Roisin, R. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am. J. Respir. Crit. Care Med., 2013, 187(4), 347-365.
[http://dx.doi.org/10.1164/rccm.201204-0596PP] [PMID: 22878278]
[99]
Sadowska, A.M.; Manuel-Y-Keenoy, B.; De Backer, W.A. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm. Pharmacol. Ther., 2007, 20(1), 9-22.
[http://dx.doi.org/10.1016/j.pupt.2005.12.007] [PMID: 16458553]
[100]
Tanaka, K.; Tanaka, Y.; Miyazaki, Y.; Namba, T.; Sato, K.; Aoshiba, K.; Azuma, A.; Mizushima, T. Therapeutic effect of lecithinized superoxide dismutase on pulmonary emphysema. J. Pharmacol. Exp. Ther., 2011, 338(3), 810-818.
[http://dx.doi.org/10.1124/jpet.111.179051] [PMID: 21665943]
[101]
Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis., 2016, 8(1), E69-E74.
[PMID: 26904255]
[102]
Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet, 2002, 360(9341), 1233-1242.
[http://dx.doi.org/10.1016/S0140-6736(02)11274-8] [PMID: 12401268]
[103]
Li, R.; Kou, X.; Xie, L.; Cheng, F.; Geng, H. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats. Environ. Sci. Pollut. Res. Int., 2015, 22(24), 20167-20176.
[http://dx.doi.org/10.1007/s11356-015-5222-z] [PMID: 26304807]
[104]
Bekki, K.; Ito, T.; Yoshida, Y.; He, C.; Arashidani, K.; He, M.; Sun, G.; Zeng, Y.; Sone, H.; Kunugita, N.; Ichinose, T. PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ. Toxicol. Pharmacol., 2016, 45, 362-369.
[http://dx.doi.org/10.1016/j.etap.2016.06.022] [PMID: 27393915]
[105]
Mizushima, T. Drug discovery and development focusing on existing medicines: drug re-profiling strategy. J. Biochem., 2011, 149(5), 499-505.
[http://dx.doi.org/10.1093/jb/mvr032] [PMID: 21436140]
[106]
Tanaka, K.; Kurotsu, S.; Asano, T.; Yamakawa, N.; Kobayashi, D.; Yamashita, Y.; Yamazaki, H.; Ishihara, T.; Watanabe, H.; Maruyama, T.; Suzuki, H.; Mizushima, T. Superiority of pulmonary administration of mepenzolate bromide over other routes as treatment for chronic obstructive pulmonary disease. Sci. Rep., 2014, 4, 4510.
[http://dx.doi.org/10.1038/srep04510] [PMID: 24676126]
[107]
Asano, T.; Aida, S.; Suemasu, S.; Tahara, K.; Tanaka, K.; Mizushima, T. Aldioxa improves delayed gastric emptying and impaired gastric compliance, pathophysiologic mechanisms of functional dyspepsia. Sci. Rep., 2015, 5, 17519.
[http://dx.doi.org/10.1038/srep17519] [PMID: 26620883]
[108]
Tanaka, K.; Ishihara, T.; Sugizaki, T.; Kobayashi, D.; Yamashita, Y.; Tahara, K.; Yamakawa, N.; Iijima, K.; Mogushi, K.; Tanaka, H.; Sato, K.; Suzuki, H.; Mizushima, T. Mepenzolate bromide displays beneficial effects in a mouse model of chronic obstructive pulmonary disease. Nat. Commun., 2013, 4, 2686.
[http://dx.doi.org/10.1038/ncomms3686] [PMID: 24189798]
[109]
Fuji, Y.; Matsura, T.; Kai, M.; Kawasaki, H.; Yamada, K. Protection by polaprezinc, an anti-ulcer drug, against indomethacin-induced apoptosis in rat gastric mucosal cells. Jpn. J. Pharmacol., 2000, 84(1), 63-70.
[http://dx.doi.org/10.1254/jjp.84.63] [PMID: 11043455]
[110]
Sakae, K.; Yanagisawa, H. Oral treatment of pressure ulcers with polaprezinc (zinc L-carnosine complex): 8-week open-label trial. Biol. Trace Elem. Res., 2014, 158(3), 280-288.
[http://dx.doi.org/10.1007/s12011-014-9943-5] [PMID: 24691900]
[111]
Matsuda, K.; Yamaguchi, I.; Wada, H. Toxicity of the novel anti-peptic ulcer agent polaprezinc in beagle dogs. Arzneimittelforschung, 1995, 45(1), 52-60.
[PMID: 7893270]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy