Review Article

农药的神经毒性:立体作用模式的路线图

卷 27, 期 1, 2020

页: [54 - 77] 页: 24

弟呕挨: 10.2174/0929867326666190704142354

价格: $65

摘要

如今,杀虫剂在全球范围内广泛使用。由于农业和动物产品消费的增加以及城市地区的发展,对具有这种生物活性物质的需求不断增加,这使得化学工业不断研究新的分子或改善其理化特性,增加生物活性,改善已知化合物的毒性。增加生物活性,改善已知化合物的毒性,结构活性研究,通过他们的在硅-在大脑的方法,是否用于植物和实验动物的体内外研究,因为它们可以通过统计方法或以数学方程或图形相关形式表达的生物活动模型来指示趋势,因此,一个研究方向可以发展,也可以放弃,节约财政资源,时间和实验动物。根据这一思路,本文综述了构效关系(SAR)的研究,并提出拓扑连接指数与11个有机磷化合物分子的生物活性或毒性之间的相关性,随机选择,其基本结构包括一个磷原子与一个氧原子或一个硫原子的双键,并与两个烷氧基(-甲氧基或-乙氧基)和另一个与烷氧基不同的官能团有三个简单共价键。分子被压在由三个相邻的立方体组成的立方体结构上,尊重拓扑效率原则,在这个立方体结构中占据最小的空间,一种叫做谱号法的方法。相关选择的中心拓扑指数为Wiener指数,由于可以用这种方法讨论与包装在立方结构上的有机磷化合物分子相对应的图中节点之间的不同邻接,因此,这些连接指数的“三维”变体可以被考虑,并进一步用于研究特定分子-酶相互作用复合物的定性-定量关系,包括维纳权重(对分子图总维纳指数的节点特异性贡献)与某些原子的生化反应活性之间的相关性。最后,从SAR过渡到Q(推定的)SAR研究,特别是采用目前先进的三次分子法(Clef法),对研究分子的神经毒性及其对目标酶-乙酰胆碱酯酶的抑制作用进行了较好的评价,可以看出,不同的模拟化合物的毒性和活性是可以预测的,促进体内实验或提高农药的使用。

关键词: 农药、毒性、有机磷、clef法、立方体系、维纳指数、维纳差、立方分子。

[1]
Pinto, M.I.; Burrows, H.D.; Sontag, G.; Vale, C.; Noronha, J.P. Priority pesticides in sediments of European coastal lagoons: A review. Mar. Pollut. Bull., 2016, 112(1-2), 6-16.
[http://dx.doi.org/10.1016/j.marpolbul.2016.06.101] [PMID: 27389458]
[2]
Foodprint Issue. Pesticides in Our Food System. Available at:. http://www.sustainabletable.org/263/pesticides
[3]
Randall, C. National Pesticide Applicator Certification Core Manual; Randall, C.; Hock, W.; Hudak-Wise, C; Kasai, J., Ed.; National Association of State Departments of Agriculture Research Foundation: Washington, DC, 2013, pp. 1-25.
[4]
Smith, A.E.; Secoy, D.M. Forerunners of pesticides in classical Greece and Rome. J. Agric. Food Chem., 1975, 23(6), 1050-1055.
[http://dx.doi.org/10.1021/jf60202a004] [PMID: 1104693]
[5]
Smith, E.H.; Kennedy, G.G. History of Pesticides in: Encyclopedia of Pest Management; Pimentel, D., Ed.; Marcel Dekker, Inc.: New York, 2002, pp. 376-381.
[6]
Ridding the world of pops: a guide to the stockholm convention on persistent organic pollutants (pdf). United Nations Environment Programme. Available at: http://www.pops.int
[7]
Gilden, R.C.; Huffling, K.; Sattler, B. Pesticides and health risks. J. Obstet. Gynecol. Neonatal Nurs., 2010, 39(1), 103-110.
[http://dx.doi.org/10.1111/j.1552-6909.2009.01092.x] [PMID: 20409108]
[8]
International code of conduct on the distribution and use of pesticides, revised version 2002. Available at: http://www.fao.org/docrep/005/y4544e/y4544e00.htm
[9]
National Pesticide Information Center. Types of Pesticides. Available at:. http://npic.orst.edu/ingred/ptype/index.html
[10]
Kamrin, M.A. Pesticide Profiles: toxicity, environmental impact, and fate; CRC Press: Boca Raton, Florida, 1997.
[http://dx.doi.org/10.1201/9781420049220]
[11]
Mula, J.; Raju, A.V.N.; Acharya, A. A retrospective study of incidence, clinical presentation and treatment outcome of organophosphorus poisoning in Konaseema region of Andhra Pradesh. J. Evid. Based Med. Health., 2016, 3(31), 1404-1406.
[http://dx.doi.org/10.18410/jebmh/2016/322]
[12]
Extension Entomology. UK college of Agriculture, Food and Environment. Available at: http://pest.ca.uky.edu/EXT/ukgh/Exposure.pdf
[13]
Alvarez-Munoz, D.; Llorca, M.; Blasco, J.; Barcelo, D. Contaminants in the marine environment in: Marine Ecotoxicology: Current Knowledge and Future Issues; Blasco, J.; Chapman, P.M.; Campana, O; Hampel, M., Ed.; Elsevier Inc.: London, 2016, pp. 2-8.
[14]
Linde, C.D. Student Intern Thesis, Enviromental Protection Agency, Department of Pesticide Regulation: Sacramento, California,, 1994.
[15]
Owen, L.A.; Pickering, K.T. An Introduction to Global Enviromental Issues, 2nd ed; Routledge: London, 1997.
[16]
Waxman, M.F. Agrochemical and Pesticide Safety Handbook; Lewis Publishers: Boca Raton, Florida, 1998.
[http://dx.doi.org/10.1201/9781420049251]
[17]
Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health, 2011, 8(5), 1402-1419.
[http://dx.doi.org/10.3390/ijerph8051402] [PMID: 21655127]
[18]
Moser, V.C.; Bushnell, P.J. In: Toxicology of Organophosphate & Carbamate Compounds; Gupta, R.C. Ed. Academic Press, San Diego, California, 2011; pp. 352-353Edgar.
[19]
Edgar, A.J. Natural toxicants as pesticides in: Pesticide Residues in Food and Drinking Water: Human Exposure and Risks; Hamilton, D; Crossley, S., Ed.; John Wiley & Sons: West Sussex, England, 2004, pp. 280-285.
[20]
Yassi, A. Basic Enviromental Health; Oxford University Press: Oxford, 2001.
[http://dx.doi.org/10.1093/acprof:oso/9780195135589.001.0001]
[21]
Lu, J.L. Risk factors to pesticide exposure and associated health symptoms among cut-flower farmers. Int. J. Environ. Health Res., 2005, 15(3), 161-169.
[http://dx.doi.org/10.1080/09603120500105638] [PMID: 16134479]
[22]
Gervais, J.A.; Luukinen, B.; Buhl, K.; Stone, D. Imidacloprid Technical Fact Sheet. Available at: http://npic.orst.edu/factsheets/archive/imidacloprid.html
[23]
Amdur, M.O.; Doull, J.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 4th ed; Pergamon Press, 1991.
[24]
Gorlinski, G. The History of Agriculture; Britannica Educational Publishing: London, 2013.
[25]
Francis Borgio, J.; Sahayaraj, K.; Alper Susurluk, I. Microbial Insecticides: Principles and Applications; Nova Publishers: USA, 2011.
[26]
Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 2006, 51, 45-66.
[http://dx.doi.org/10.1146/annurev.ento.51.110104.151146] [PMID: 16332203]
[27]
Pal, G.K.; Kumar, B. Antifungal activity of some common weed extracts against wilt causing fungi, Fusarium oxysporum. Curr. Disc., 2013, 2(1), 62-67.
[28]
Kiliç, A.; Akay, M.T. A three generation study with genetically modified Bt corn in rats: Biochemical and histopathological investigation. Food Chem. Toxicol., 2008, 46(3), 1164-1170.
[http://dx.doi.org/10.1016/j.fct.2007.11.016] [PMID: 18191319]
[29]
Benhamou, N.; Lafontaine, P.J.; Nicole, M. Induction of systemic resistance to fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology, 2012, 84(12), 1432-1444.
[http://dx.doi.org/10.1094/Phyto-84-1432]
[30]
Burges, H.D. Formulation of Microbial Biopesticides: beneficial microorganisms, nematodes and seed treatments; Kluwer Academic: Dordrecht, 1998.
[http://dx.doi.org/10.1007/978-94-011-4926-6]
[31]
Sarwar, M. Biopesticides: An Effective and Environmental Friendly Insect - Pests Inhibitor Line of Action. Int. J. Engin. Adv. Res. Technol., 2015, 1(2), 10-15.
[32]
Blankenship, J.D.; Spiering, M.J.; Wilkinson, H.H.; Fannin, F.F.; Bush, L.P.; Schardl, C.L. Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry, 2001, 58(3), 395-401.
[http://dx.doi.org/10.1016/S0031-9422(01)00272-2] [PMID: 11557071]
[33]
Cakmak, M.; Mayer, P.; Trauner, D. An efficient synthesis of loline alkaloids. Nat. Chem., 2011, 3(7), 543-545.
[http://dx.doi.org/10.1038/nchem.1072] [PMID: 21697875]
[34]
Neda, I.; Kaukorat, T. Fischer, A.K. Unusual stabilization of 1,2-diamino derivatives of quincorine and quincoridine by carbon dioxide: persistent crystalline prim-ammonium-carbamate salts and their reactivity towards isatoic acid anhydride. Eur. J. Org. Chem., 2003, 2003(19), 3784-3790.
[http://dx.doi.org/10.1002/ejoc.200300211]
[35]
Simon, M.; Csunderlik, C.; Cotarca, L.; Caproiu, M.T.; Neda, I.; Turoczi, M.C.; Volpicelli, R. Synthesis of new active O-nitrophenyl carbamates. Synth. Commun., 2005, 35(11), 1471-1479.
[http://dx.doi.org/10.1081/SCC-200057986]
[36]
Filimon, S.A.; Hrib, C.G.; Randoll, S.; Neda, I.; Jones, P.G.; Tamm, M. Quinine-derived imidazolidin-2-imine ligands: synthesis, coordination chemistry, and application in catalytic transfer hydrogenation. Z. Anorg. Allg. Chem., 2010, 636(5), 691-699.
[http://dx.doi.org/10.1002/zaac.200900485]
[37]
Maftei, C.V.; Fodor, E.; Jones, P.G.; Franz, M.H.; Kelter, G.; Fiebig, H.; Neda, I. Synthesis and characterization of novel bioactive 1,2,4-oxadiazole natural product analogs bearing the N-phenylmaleimide and N-phenylsuccinimide moieties. Beilstein J. Org. Chem., 2013, 9, 2202-2215.
[http://dx.doi.org/10.3762/bjoc.9.259] [PMID: 24222789]
[38]
Mihorianu, M.; Heiko Franz, M.; Jones, P.G.; Freytag, M.; Kelter, G.; Fiebig, H-H.; Tamm, M.; Neda, I. N-Heterocyclic carbenes derived from imidazo-[1,5-a]pyridines related to natural products: synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes. Appl. Organomet. Chem., 2016, 30(7), 581-589.
[http://dx.doi.org/10.1002/aoc.3474]
[39]
Maftei, E.; Maftei, C.V.; Jones, P.G.; Freytag, M.; Franz, M.H.; Kelter, G.; Fiebig, H-H.; Tamm, M.; Neda, I. Trifluoromethylpyridine-substituted n-heterocyclic carbenes (NHC) related to natural products: synthesis, structure and potential antitumor activity of some corresponding gold(I), rhodium(I) and iridium(I). Complexes. Helv. Chim. Acta, 2016, 99(6), 469-481.
[http://dx.doi.org/10.1002/hlca.201500529]
[40]
Neda, I.; Kaukorat, T.; Schmutzler, R.; Niemeyer, U.; Kutscher, B.; Pohl, J.; Engel, J. Benzodiaza-, benzoxaza-, and benzodioxaphosphorinones - formation, reactivity, structure, and biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2002, 162(1), 81-218.
[http://dx.doi.org/10.1080/10426500008045221]
[41]
Neda, I.; Farkens, M.; Fischer, A.; Jones, P.G.; Schmutzler, R. Chemistry of the l,3,5-triaza-2-phosphinane-4,6-diones, Part V synthesis of phosphoryl(III) (λ4P) and thiophosphoryl(III) (λ4P) derivatives of 1,3,5-triaza-2-phosphinane-4,6-diones. Reactions with ketones. Z. Naturforsch, 1993, 48(7), 860-866.
[http://dx.doi.org/10.1515/znb-1993-0702]
[42]
Kadyrov, A.A.; Neda, I.; Kaukorat, T.; Sonnenburg, R.; Fischer, A.; Jones, P.G.; Schmutzler, R. New phospholene and phosphepine derivatives from λ3-phosphorus compounds and hexafluoroacetone or perfluorinated α-diketones. Eur. J. Inorg. Chem., 1996, 129(6), 725-732.
[http://dx.doi.org/10.1002/cber.19961290620]
[43]
Neda, I.; Melnicky, C.; Vollbrecht, A.; Schmutzler, R. An unusual N-alkylation reaction during the oxidative addition of hexafluoroacetone and tetrachloro-o-benzoquinone to P-bis(2-chloroethyl)amino-substituted λ3P-compounds. Synthesis, 1996, 4, 473-474.
[http://dx.doi.org/10.1055/s-1996-4233]
[44]
Neda, I.; Farkens, M.; Fischer, A.; Jones, P.G.; Schmutzler, R. Zur chemie der 4,6-dioxo-1,3,5,2-triazaphosphinane, teil iii. darstellung von 4,6-dioxo-1,3,5,23-, 4,6-dioxo- 1,3,5,24- und 4,6-dioxo-1,3,5,25-triazaphosphinanen. Z. Naturforsch., 1993, 48(4), 443-451.
[http://dx.doi.org/10.1515/znb-1993-0408]
[45]
Matthews, G.A.; Bateman, R.P.; Miller, P.C.H. Pesticide Application Methods, 4th ed; John Wiley&Sons: London, 2014.
[http://dx.doi.org/10.1002/9781118351284]
[46]
Lacey, L.; Kaya, H. Field Manual of Techniques in Invertebrate Pathology, 2nd ed; Kluwer Academic: Dordrecht, 2007.
[http://dx.doi.org/10.1007/978-1-4020-5933-9]
[47]
Tomé, H.V.; Barbosa, W.F.; Martins, G.F.; Guedes, R.N.; Guedes, R.N.C. Spinosad in the native stingless bee Melipona quadrifasciata: regrettable non-target toxicity of a bioinsecticide. Chemosphere, 2015, 124, 103-109.
[http://dx.doi.org/10.1016/j.chemosphere.2014.11.038] [PMID: 25496737]
[48]
Sarwar, M. The killer chemicals for control of agriculture insect pests: the botanical insecticides. Int. J. Chem. Bimol. Sci., 2015, 1(3), 123-128.
[49]
Crickmore, N. Beyond the spore--past and future developments of Bacillus thuringiensis as a biopesticide. J. Appl. Microbiol., 2006, 101(3), 616-619.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02936.x] [PMID: 16907811]
[50]
Pigott, C.R.; Ellar, D.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev., 2007, 71(2), 255-281.
[http://dx.doi.org/10.1128/MMBR.00034-06] [PMID: 17554045]
[51]
Perez-Guerrero, S.; Aldebis, H.K.; Vargas-Osuna, E. Toxicity of six Bacillus thuringiensis Cry proteins against the olive moth Prays oleae. Bull. Insectol., 2012, 65(1), 119-122.
[52]
Moazami, N. Biotechnology - Biopesticide production, encyclopedia of life support systems (EOLSS); EOLSS Publishers Co.: Paris, France, 2007.
[53]
Francis, B.J.; Sahayaraj, K.; Alper, S.I. Microbial Insecticides: Principles and Applications; Nova Publishers: USA, 2011.
[54]
Levine, E.; Oloumi-Sadeghi, H.; Fisher, J.R. Discovery of multiyear diapause in Illinois and South Dakota Northern corn rootworm (Coleoptera: Cerambycidae) eggs and incidence of the prolonged diapause trait in Illinois. J. Econ. Entomol., 1992, 85, 262-267.
[http://dx.doi.org/10.1093/jee/85.1.262]
[55]
Onstad, D.W. Insect Resistance Management; Elsevier: Amsterdam, 2008.
[http://dx.doi.org/10.1016/B978-012373858-5.50016-2]
[56]
Service, R.F. Agriculture. What happens when weed killers stop killing? Science, 2013, 341(6152), 1329-1336.
[http://dx.doi.org/10.1126/science.341.6152.1329] [PMID: 24052282]
[57]
Calvert, G.M.; Karnik, J.; Mehler, L.; Beckman, J.; Morrissey, B.; Sievert, J.; Barrett, R.; Lackovic, M.; Mabee, L.; Schwartz, A.; Mitchell, Y.; Moraga-McHaley, S. Acute pesticide poisoning among agricultural workers in the United States, 1998-2005. Am. J. Ind. Med., 2008, 51(12), 883-898.
[http://dx.doi.org/10.1002/ajim.20623] [PMID: 18666136]
[58]
Feldmann, R.J.; Maibach, H.I. Percutaneous penetration of some pesticides and herbicides in man. Toxicol. Appl. Pharmacol., 1974, 28(1), 126-132.
[http://dx.doi.org/10.1016/0041-008X(74)90137-9] [PMID: 4853576]
[59]
Spencer, P.S.; Schaumburg, H.H.; Ludolph, A.C. Experimental and Clinical Neurotoxicology; Oxford University Press: Oxford, 2000.
[60]
Anthony, D.C.; Montine, T.J.; Valentine, W.M.; Graham, D.G. Casarett and Doull’s Toxicology. The Basic Science of Poisons; Klaassen, C.D., Ed.; McGraw-Hill: New York, 2001, pp. 535-563.
[61]
Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta, 2006, 366(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cca.2005.10.008] [PMID: 16337171]
[62]
Ricceri, L.; Markina, N.; Valanzano, A.; Fortuna, S.; Cometa, M.F.; Meneguz, A.; Calamandrei, G. Developmental exposure to chlorpyrifos alters reactivity to environmental and social cues in adolescent mice. Toxicol. Appl. Pharmacol., 2003, 191(3), 189-201.
[http://dx.doi.org/10.1016/S0041-008X(03)00229-1] [PMID: 13678652]
[63]
Ecobichon, D.J. Handbook of Pesticide Toxicology; Krieger, R., Ed.; Academic Press: San Diego, 2001, pp. 1087-1106.
[http://dx.doi.org/10.1016/B978-012426260-7/50055-0]
[64]
He, F.; Wang, S.; Liu, L.; Chen, S.; Zhang, Z.; Sun, J. Clinical manifestations and diagnosis of acute pyrethroid poisoning. Arch. Toxicol., 1989, 63(1), 54-58.
[http://dx.doi.org/10.1007/BF00334635] [PMID: 2742502]
[65]
Bruckner, J.; Warren, D.A. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed; Klaassen, C., Ed.; McGraw-Hill: New York, 2001, pp. 981-1052.
[66]
Moser, V.C.; Chanda, S.M.; Mortensen, S.R.; Padilla, S. Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol. Sci., 1998, 46(2), 211-222.
[http://dx.doi.org/10.1093/toxsci/46.2.211] [PMID: 10048124]
[67]
Sultatos, L.G. Mammalian toxicology of organophosphorus pesticides. J. Toxicol. Environ. Health, 1994, 43(3), 271-289.
[http://dx.doi.org/10.1080/15287399409531921] [PMID: 7966438]
[68]
Rozman, K.K.; Klaassen, C.D. Casarett and Doull’s Toxicology: The Basic Science of Poisons, 6th ed; Klaassen, C., Ed.; McGraw-Hill: New York, 2001, pp. 82-96.
[69]
Can, A. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides. Toxicol. Lett., 2014, 230(3), 434-443.
[http://dx.doi.org/10.1016/j.toxlet.2014.08.016] [PMID: 25149906]
[70]
Doull, J.; Borzelleca, J.F.; Becker, R.; Daston, G.; DeSesso, J.; Fan, A.; Fenner-Crisp, P.; Holsapple, M.; Holson, J.; Craig Llewellyn, G.; MacGregor, J.; Seed, J.; Walls, I.; Woo, Y.T.; Olin, S. Framework for use of toxicity screening tools in context-based decision-making. Food Chem. Toxicol., 2007, 45(5), 759-796.
[http://dx.doi.org/10.1016/j.fct.2006.10.025] [PMID: 17215066]
[71]
Putz, M.V.; Ori, O.; Cataldo, F.; Putz, A-M. Parabolic reactivity “coloring” molecular topology: application to carcinogenic PAHs. Curr. Org. Chem., 2013, 17(23), 2816-2830.
[http://dx.doi.org/10.2174/13852728113179990128]
[72]
Karcher, W.; Devillers, J. Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Enviromental Chemistry and Toxicology; Kluwer Academic Publishers: Dordrecht, Netherlands, 1990.
[73]
Estrada, E. Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A, 2002, 106(39), 9085-9091.
[http://dx.doi.org/10.1021/jp026238m]
[74]
Kier, L.B.; Hall, L.W. The meaning of molecular connectivity: a bimolecular accessibility model. Croat. Chem. Acta, 2002, 75(2), 371-382.
[75]
Camarda, K.V.; Maranas, C.D. Optimization in polymer design using connectivity indices. Ind. Eng. Chem. Res., 1999, 38(5), 1884-1892.
[http://dx.doi.org/10.1021/ie980682n]
[76]
Gutman, I.; Tošović, J.; Radenković, S.; Marković, S. On atom-bond connectivity index and its chemical applicability. Indian J. Chem., 2012, 51(5), 690-694.
[77]
Shobha, J.; Yadav, M.; Paradkar, L.; Anuraj, N.S.; Sharma, S. QSAR studies on bacterial growth by using connectivity type topological indices. Oxid. Commun., 2011, 34(3), 640-649.
[78]
Estrada, E.; Rodriguez, L. Edge-connectivity indices in QSPR/QSAR studies. 1. comparison to other topological indices in QSPR Studies. J. Chem. Inf. Comput. Sci., 1999, 39(6), 1037-1040.
[http://dx.doi.org/10.1021/ci990030p]
[79]
Sabljić, A.; Protić, M. Molecular connectivity: a novel method for prediction of bioconcentration factor of hazardous chemicals. Chem. Biol. Interact., 1982, 42(3), 301-310.
[http://dx.doi.org/10.1016/0009-2797(82)90074-6] [PMID: 7151232]
[80]
Sharma, V.; Goswami, R.; Madan, A.K. Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies. J. Chem. Inf. Comput. Sci., 1997, 37(2), 273-282.
[http://dx.doi.org/10.1021/ci960049h]
[81]
Putz, M.V.; Tudoran, M.A.; Ori, O. Topological organic chemistry: from distance matrix to timisoara eccentricity. Curr. Org. Chem., 2015, 19(3), 249-273.
[http://dx.doi.org/10.2174/1385272819666141216230705]
[82]
Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem., 2009, 46, 1252-1270.
[http://dx.doi.org/10.1007/s10910-008-9515-z]
[83]
Putz, M.V.; Dudaș, N.A. Variational principles for mechanistic quantitative structure–activity relationship (QSAR) studies: application on uracil derivatives’ anti-HIV action. Struct. Chem., 2013, 24(6), 1873-1893.
[http://dx.doi.org/10.1007/s11224-013-0249-6]
[84]
Putz, M.V.; Dudaş, N.A. Determining chemical reactivity driving biological activity from SMILES transformations: the bonding mechanism of anti-HIV pyrimidines. Molecules, 2013, 18(8), 9061-9116.
[http://dx.doi.org/10.3390/molecules18089061] [PMID: 23903183]
[85]
Li, X.; Yu, Q.; Zhu, L. An improved molecular connectivity index. Science in China Series B., 2000, 43(3), 288-294.
[http://dx.doi.org/10.1007/BF02969524]
[86]
Diudea, M.V. Phenylenic and naphthylenic tori. Fuller. Nanotub. Carbon Nanostruct., 2002, 10, 273-292.
[http://dx.doi.org/10.1081/FST-120016450]
[87]
Klavžar, S.; Gutman, I.; Rajapakse, A. Wiener number of pericondensed benzenoid hydrocarbons. Croat. Chem. Acta, 1997, 70(4), 979-999.
[88]
Koorepazan-Moftakhar, F.; Ashrafi, A.R.; Ori, O.; Putz, M.V. Topological invariants of nanocones and fullerenes. Curr. Org. Chem., 2015, 19, 1-9.
[http://dx.doi.org/10.2174/1385272819666141216230152]
[89]
Koorepazan-Moftakhar, F.; Ashrafi, A.R.; Ori, O.; Putz, M.V. Sphericality of some classes of fullerenes measured by topology in: Fullerenes: Chemistry, Natural Sources and Technological Applications; Ellis, S.B., Ed.; Nova Science Publishers, 2014, pp. 285-304.
[90]
Bonchev, D.; Balaban, A.T.; Mekenyan, O. Generalization of the graph center concept and derived topological centric indices. J. Chem. Inf. Comput. Sci., 1980, 20(2), 106-113.
[http://dx.doi.org/10.1021/ci60022a011]
[91]
Bonchev, D.; Mekenyan, O. A topological approach to the calculation of the π-electron energy and energy gap of infinite conjugated polymers. Zeitschrift für Naturforschung, 1980, 35(7), 739-747.
[http://dx.doi.org/10.1515/zna-1980-0713]
[92]
Ori, O.; Cataldo, F.; Vukičević, D.; Graovac, A. Wiener way to dimensionality. Iranian Journal of Mathematical Chemistry, 2010, 1(2), 5-15.
[93]
Bumbacila, B. Topological modeling of steric interactions in QSAR studies., PhD Thesis (West University of Timisoara, Prof. Mihai V. Putz supervisor)., 2018.
[94]
Routt Reigart, J.; Roberts, J.R. Recognition and Management of Pesticide Poisonings, 5th ed; Environmental Protection Agency: Washington, D.C., 1999.
[95]
Anthony, D.C.; Montine, T.J.; Valentine, W.M.; Graham, D.G. Casarett and Doull’s Toxicology. The Basic Science of Poisons; Klaassen, C.D., Ed.; McGraw-Hill: New York, 2001, pp. 535-563.
[96]
Costa, L.G. Organophosphorus compounds In: Recent Advances in Nervous System Toxicology; Galli, C.L.; Manzo, L.; Spencer; P.S., eds.; Plenum Publishing Corp.: New York., 1988; pp. 203-246.
[http://dx.doi.org/10.1007/978-1-4613-0887-4_11]
[97]
Lotti, M. Experimental and Clinical Neurotoxicology; Spencer, P.S.; Schaumburg, H.H; Ludolph, A.C., Ed.; Oxford University Press: Oxford, 2000, pp. 898-925.
[98]
Lotti, M. Clinical toxicology of anticholinesterase agents in humans in: Handbook of Pesticide Toxicology; Krieger, R., Ed.; Academic Press: San Diego, 2001, pp. 1043-1085.
[http://dx.doi.org/10.1016/B978-012426260-7.50054-9]
[99]
Senanayake, N.; Karalliedde, L. Neurotoxic effects of organophosphorus insecticides. An intermediate syndrome. N. Engl. J. Med., 1987, 316(13), 761-763.
[http://dx.doi.org/10.1056/NEJM198703263161301] [PMID: 3029588]
[100]
Lotti, M. The pathogenesis of organophosphate polyneuropathy. Crit. Rev. Toxicol., 1991, 21(6), 465-487.
[http://dx.doi.org/10.3109/10408449209089884] [PMID: 1666291]
[101]
Lotti, M.; Moretto, A. Organophosphate-induced delayed polyneuropathy. Toxicol. Rev., 2005, 24(1), 37-49.
[http://dx.doi.org/10.2165/00139709-200524010-00003] [PMID: 16042503]
[102]
Johnson, M.K. The target for initiation of delayed neurotoxicity by organophosphorus esters: biochemical studies and toxicological applications. Rev. Biochem. Toxicol., 1982, 4, 141-212.
[103]
Hansch, C.; Leo, A.; Hoekman, D. Exploring QSAR - Hydrophobic, Electronic, and Steric Constants; American Chemical Society: Washington, DC, 1995.
[104]
Wagner, S.L. Chemistry, Biochemistry and Toxicology of Pesticides; Witt, J.M., Ed.; Oregon State University Cooperative Extension Service: Corvallis, OR, 1989, pp. 125-153.
[105]
Gallo, M.A.; Lawryk, N.J. Handbook of Pesticide Toxicology; Academic Press: New York, NY, 1991.
[106]
Berg, G.L. Farm chemicals handbook; Meister Publishing Company: Willoughby, Ohio, 1986.
[107]
Kidd, H.; Hartley, D., Eds.; The agrochemicals handbook; Royal Society of Chemistry: Nottingham, England, 1983, pp. 123-180.
[108]
The Agrochemicals Handbook; The University of Nottingham: England, 1983.
[109]
Worthing, C.R. The Pesticide Manual: A World Compendium, 7th ed; The British Crop Protection Council, 1983.
[110]
Meister, R.T.; Berg, G.L.; Sine, C.; Meister, S.; Poplyk, J. Farm Chemicals Handbook. Pesticide dictionary; Meister Publishing Co., 1983.
[111]
R. E. Clinical toxicology of commercial products, 5th ed; Williams and Wilkins: Baltimore, MD, 1984.
[112]
Summary of acute dermal toxicity study on chlorpyrifos in Fischer 344 rats; Dow Chemical: Indianapolis, IN, 1986.
[113]
Hayes, W.J.; Laws, E.R. Handbook of Pesticide Toxicology; Academic Press, Inc.: NY, 1990.
[114]
Meister, R.T. Farm Chemicals Handbook ’92; Meister Publishing Company: Willoughby, OH, 1992.
[115]
MSDS for Methyl Parathion; OHS Inc.: Secaucus, NJ, 1991.
[116]
Hazardous Substance Databank. TOXNET, Medlars management Section, 1992.
[117]
Bethesda, M.D.; Philip, H. Fate and Exposure Data for Organic Chemicals. Pesticides; Lewis Publishers: Chelsea, MI, 1991.
[118]
Guthion (azinphos methyl): Organophosphorus insecticide. Res Rev., 1974, 51, 123-180.
[119]
Clayton, G.D.; Clayton, F.E. Patty’s industrial hygiene and toxicology, 3rd ed; John Wiley and Sons: New York, 1981.
[120]
Hartley, D.; Kidd, H. The agrochemicals handbook; Royal Society of Chemistry: Nottingham, England, 1983.
[121]
Hayes, W.J. The pesticide manual: A world compendium; Worthing, C.R., Ed.; The British Crop Protection Council: Croydon, England, 1985, pp. 78-109.
[122]
Berteau, P.E.; Deen, W.A. A comparison of oral and inhalation toxicities of four insecticides to mice and rats. Bull. Environ. Contam. Toxicol., 1978, 19(1), 113-120.
[http://dx.doi.org/10.1007/BF01685774] [PMID: 75750]
[123]
Weeks, M.H.; Lawson, M.A.; Angerhofer, R.A.; Davenport, C.D.; Pennington, N.E. Preliminary assessment of the acute toxicity of malathion in animals. Arch. Environ. Contam. Toxicol., 1977, 6(1), 23-31.
[http://dx.doi.org/10.1007/BF02097746] [PMID: 907373]
[124]
Bumbăcilă, B.; Putz, M.V. Clef topo-toxicity by cubic representations of organophosphates. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(2), 167-188.
[http://dx.doi.org/10.1080/1536383X.2018.1550746]
[125]
Katzung, B.G. Basic and clinical pharmacology: Introduction to autonomic pharmacology, 8th ed; The McGraw Hill Companies, 2001.
[126]
Quinn, D.M. Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev., 1987, 87(5), 955-979.
[http://dx.doi.org/10.1021/cr00081a005]
[127]
Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science, 1991, 253(5022), 872-879.
[http://dx.doi.org/10.1126/science.1678899] [PMID: 1678899]
[128]
Oliveira, R.; Ciro, A.; de Assis, S.; Cristina, H. AChE inhibition as a biomarker for pollutants contamination in tropical aquatic ecosystems.Recent Trends in the Acetylcholinesterase System; Parveen, M; Kumar, S., Ed.; IOS Press, 2005, pp. 103-124.
[129]
Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med., 2014, 18(11), 735-745.
[http://dx.doi.org/10.4103/0972-5229.144017] [PMID: 25425841]
[130]
Prashant, T.; Shubhangi, D.; Mukesh-Pratap, S.; Rahul, M.; Anish, C. Basic and modern concepts on cholinergic receptor: A review. Asian Pac. J. Trop. Dis., 2017, 3(5), 413-420.
[http://dx.doi.org/10.1016/S2222-1808(13)60094-8]
[131]
Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances, 3rd ed; John Wiley and Sons, 2007.
[http://dx.doi.org/10.1002/9780470134955]
[132]
Kasagami, T.; Miyamoto, T.; Yamamoto, I. Activated transformations of organophosphorus insecticides in the case of non-AChE inhibitory oxons. Pest Manag. Sci., 2002, 58(11), 1107-1117.
[http://dx.doi.org/10.1002/ps.546] [PMID: 12449529]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy