Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Cocaine-induced Changes in the Expression of NMDA Receptor Subunits

Author(s): Irena Smaga*, Marek Sanak and Małgorzata Filip

Volume 17, Issue 11, 2019

Page: [1039 - 1055] Pages: 17

DOI: 10.2174/1570159X17666190617101726

Price: $65

Open Access Journals Promotions 2
Abstract

Cocaine use disorder is manifested by repeated cycles of drug seeking and drug taking. Cocaine exposure causes synaptic transmission in the brain to exhibit persistent changes, which are poorly understood, while the pharmacotherapy of this disease has not been determined. Multiple potential mechanisms have been indicated to be involved in the etiology of cocaine use disorder. The glutamatergic system, especially N-methyl-D-aspartate (NMDA) receptors, may play a role in several physiological processes (synaptic plasticity, learning and memory) and in the pathogenesis of cocaine use disorder. The composition of the NMDA receptor subunits changes after contingent and noncontingent cocaine administration and after drug abstinence in a region-specific and timedependent manner, as well as depending on the different protocols used for cocaine administration. Changes in the expression of NMDA receptor subunits may underlie the transition from cocaine abuse to dependence, as well as the transition from cocaine dependence to cocaine withdrawal. In this paper, we summarize the current knowledge regarding neuroadaptations within NMDA receptor subunits and scaffolding proteins observed following voluntary and passive cocaine intake, as well as the effects of NMDA receptor antagonists on cocaine-induced behavioral changes during cocaine seeking and relapse.

Keywords: Cocaine use disorder, contingent cocaine administration, noncontingent cocaine administration, NMDA receptor, NMDA receptor subunit, scaffolding protein.

Graphical Abstract
[1]
Cleva, R.M.; Gass, J.T.; Widholm, J.J.; Olive, M.F. Glutamatergic targets for enhancing extinction learning in drug addiction. Curr. Neuropharmacol., 2010, 8(4), 394-408.
[http://dx.doi.org/10.2174/157015910793358169] [PMID: 21629446]
[2]
Sibarov, D.A.; Antonov, S.M. Calcium-dependent desensitization of NMDA receptors. Biochemistry (Mosc.), 2018, 83(10), 1173-1183.
[http://dx.doi.org/10.1134/S0006297918100036] [PMID: 30472955]
[3]
Pomierny-Chamiolo, L.; Miszkiel, J.; Frankowska, M.; Pomierny, B.; Niedzielska, E.; Smaga, I.; Fumagalli, F.; Filip, M. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox. Res., 2015, 27(3), 246-258.
[http://dx.doi.org/10.1007/s12640-014-9502-z] [PMID: 25408547]
[4]
Radulovic, J.; Ren, L.Y.; Gao, C. N-Methyl D-aspartate receptor subunit signaling in fear extinction. Psychopharmacology (Berl.), 2019, 236(1), 239-250.
[5]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[6]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[7]
Ortinski, P.I. Cocaine-induced changes in NMDA receptor signaling. Mol. Neurobiol., 2014, 50(2), 494-506.
[http://dx.doi.org/10.1007/s12035-014-8636-6] [PMID: 24445951]
[8]
Petralia, R.S. Distribution of extrasynaptic NMDA receptors on neurons. Sci. World J.,, 2012.2012267120
[http://dx.doi.org/10.1100/2012/267120] [PMID: 22654580]
[9]
Sanz-Clemente, A.; Nicoll, R.A.; Roche, K.W. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist, 2013, 19(1), 62-75.
[http://dx.doi.org/10.1177/1073858411435129] [PMID: 22343826]
[10]
Dong, Y.; Nestler, E.J. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol. Sci., 2014, 35(8), 374-383.
[http://dx.doi.org/10.1016/j.tips.2014.05.005] [PMID: 24958329]
[11]
Lemay-Clermont, J.; Robitaille, C.; Auberson, Y.P.; Bureau, G.; Cyr, M. Blockade of NMDA receptors 2A subunit in the dorsal striatum impairs the learning of a complex motor skill. Behav. Neurosci., 2011, 125(5), 714-723.
[http://dx.doi.org/10.1037/a0025213] [PMID: 21859173]
[12]
Enoch, M.A.; Rosser, A.A.; Zhou, Z.; Mash, D.C.; Yuan, Q.; Goldman, D. Expression of glutamatergic genes in healthy humans across 16 brain regions; altered expression in the hippocampus after chronic exposure to alcohol or cocaine. Genes Brain Behav., 2014, 13(8), 758-768.
[http://dx.doi.org/10.1111/gbb.12179] [PMID: 25262781]
[13]
Tong, G.; Takahashi, H.; Tu, S.; Shin, Y.; Talantova, M.; Zago, W.; Xia, P.; Nie, Z.; Goetz, T.; Zhang, D.; Lipton, S.A.; Nakanishi, N. Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons. J. Neurophysiol., 2008, 99(1), 122-132.
[http://dx.doi.org/10.1152/jn.01044.2006] [PMID: 18003876]
[14]
Bloomfield, C.; O’Donnell, P.; French, S.J.; Totterdell, S. Cholinergic neurons of the adult rat striatum are immunoreactive for glutamatergic N-methyl-d-aspartate 2D but not N-methyl-d-aspartate 2C receptor subunits. Neuroscience, 2007, 150(3), 639-646.
[http://dx.doi.org/10.1016/j.neuroscience.2007.09.035] [PMID: 17961930]
[15]
Chen, B.T.; Bowers, M.S.; Martin, M.; Hopf, F.W.; Guillory, A.M.; Carelli, R.M.; Chou, J.K.; Bonci, A. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron, 2008, 59(2), 288-297.
[http://dx.doi.org/10.1016/j.neuron.2008.05.024] [PMID: 18667156]
[16]
Dobi, A.; Seabold, G.K.; Christensen, C.H.; Bock, R.; Alvarez, V.A. Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal. J. Neurosci., 2011, 31(5), 1895-1904.
[http://dx.doi.org/10.1523/JNEUROSCI.5375-10.2011] [PMID: 21289199]
[17]
Schumann, J.; Michaeli, A.; Yaka, R. Src-protein tyrosine kinases are required for cocaine-induced increase in the expression and function of the NMDA receptor in the ventral tegmental area. J. Neurochem., 2009, 108(3), 697-706.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05794.x] [PMID: 19046409]
[18]
Fitzgerald, L.W.; Ortiz, J.; Hamedani, A.G.; Nestler, E.J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: Common adaptations among cross-sensitizing agents. J. Neurosci., 1996, 16(1), 274-282.
[http://dx.doi.org/10.1523/JNEUROSCI.16-01-00274.1996] [PMID: 8613793]
[19]
Yamamoto, D.J.; Zahniser, N.R. Differences in rat dorsal striatal NMDA and AMPA receptors following acute and repeated cocaine-induced locomotor activation. PLoS One, 2012, 7(5)e37673
[http://dx.doi.org/10.1371/journal.pone.0037673] [PMID: 22655064]
[20]
Ghasemzadeh, M.B.; Nelson, L.C.; Lu, X.Y.; Kalivas, P.W. Neuroadaptations in ionotropic and metabotropic glutamate receptor mRNA produced by cocaine treatment. J. Neurochem., 1999, 72(1), 157-165.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0720157.x] [PMID: 9886066]
[21]
Blanco, E.; Pavón, F.J.; Palomino, A.; Luque-Rojas, M.J.; Serrano, A.; Rivera, P.; Bilbao, A.; Alen, F.; Vida, M.; Suárez, J.; Rodríguez de Fonseca, F. Cocaine-induced behavioral sensitization is associated with changes in the expression of endocannabinoid and glutamatergic signaling systems in the mouse prefrontal cortex. Int. J. Neuropsychopharmacol., 2014, 18(1)pyu024
[PMID: 25539508]
[22]
Hearing, M.C.; Zink, A.N.; Wickman, K. Cocaine-induced adaptations in metabotropic inhibitory signaling in the mesocorticolimbic system. Rev. Neurosci., 2012, 23(4), 325-351.
[http://dx.doi.org/10.1515/revneuro-2012-0045] [PMID: 22944653]
[23]
Liu, X.Y.; Chu, X.P.; Mao, L.M.; Wang, M.; Lan, H.X.; Li, M.H.; Zhang, G.C.; Parelkar, N.K.; Fibuch, E.E.; Haines, M.; Neve, K.A.; Liu, F.; Xiong, Z.G.; Wang, J.Q. Modulation of D2R-NR2B interactions in response to cocaine. Neuron, 2006, 52(5), 897-909.
[http://dx.doi.org/10.1016/j.neuron.2006.10.011] [PMID: 17145509]
[24]
Yamaguchi, M.; Suzuki, T.; Abe, S.; Hori, T.; Kurita, H.; Asada, T.; Okado, N.; Arai, H. Repeated cocaine administration differentially affects NMDA receptor subunit (NR1, NR2A-C) mRNAs in rat brain. Synapse, 2002, 46(3), 157-169.
[http://dx.doi.org/10.1002/syn.10132] [PMID: 12325043]
[25]
Schumann, J.; Matzner, H.; Michaeli, A.; Yaka, R. NR2A/B-containing NMDA receptors mediate cocaine-induced synaptic plasticity in the VTA and cocaine psychomotor sensitization. Neurosci. Lett., 2009, 461(2), 159-162.
[http://dx.doi.org/10.1016/j.neulet.2009.06.002] [PMID: 19524640]
[26]
Churchill, L.; Swanson, C.J.; Urbina, M.; Kalivas, P.W. Repeated cocaine alters glutamate receptor subunit levels in the nucleus accumbens and ventral tegmental area of rats that develop behavioral sensitization. J. Neurochem., 1999, 72(6), 2397-2403.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0722397.x] [PMID: 10349849]
[27]
Kalivas, P.W.; Duffy, P. Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J. Neurochem., 1998, 70(4), 1497-1502.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70041497.x] [PMID: 9523566]
[28]
Smith, J.A.; Mo, Q.; Guo, H.; Kunko, P.M.; Robinson, S.E. Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Res., 1995, 683(2), 264-269.
[http://dx.doi.org/10.1016/0006-8993(95)00383-2] [PMID: 7552364]
[29]
Le Grevès, P.; Zhou, Q.; Huang, W.; Nyberg, F. Effect of combined treatment with nandrolone and cocaine on the NMDA receptor gene expression in the rat nucleus accumbens and periaqueductal gray. Acta Psychiatr. Scand. Suppl., 2002, (412), 129-132.
[http://dx.doi.org/10.1034/j.1600-0447.106.s412.28.x] [PMID: 12072144]
[30]
Liu, Z.Q.; Gu, X.H.; Yang, Y.J.; Yin, X.P.; Xu, L.J.; Wang, W. D-Serine in the nucleus accumbens region modulates behavioral sensitization and extinction of conditioned place preference. Pharmacol. Biochem. Behav., 2016, 143, 44-56.
[http://dx.doi.org/10.1016/j.pbb.2016.02.002] [PMID: 26861675]
[31]
Huang, Y.H.; Lin, Y.; Mu, P.; Lee, B.R.; Brown, T.E.; Wayman, G.; Marie, H.; Liu, W.; Yan, Z.; Sorg, B.A.; Schlüter, O.M.; Zukin, R.S.; Dong, Y. In vivo cocaine experience generates silent synapses. Neuron, 2009, 63(1), 40-47.
[http://dx.doi.org/10.1016/j.neuron.2009.06.007] [PMID: 19607791]
[32]
Brown, T.E.; Lee, B.R.; Mu, P.; Ferguson, D.; Dietz, D.; Ohnishi, Y.N.; Lin, Y.; Suska, A.; Ishikawa, M.; Huang, Y.H.; Shen, H.; Kalivas, P.W.; Sorg, B.A.; Zukin, R.S.; Nestler, E.J.; Dong, Y.; Schlüter, O.M. A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J. Neurosci., 2011, 31(22), 8163-8174.
[http://dx.doi.org/10.1523/JNEUROSCI.0016-11.2011] [PMID: 21632938]
[33]
Zhang, X.; Lee, T.H.; Davidson, C.; Lazarus, C.; Wetsel, W.C.; Ellinwood, E.H. Reversal of cocaine-induced behavioral sensitization and associated phosphorylation of the NR2B and GluR1 subunits of the NMDA and AMPA receptors. Neuropsychopharmacology, 2007, 32(2), 377-387.
[http://dx.doi.org/10.1038/sj.npp.1301101] [PMID: 16794574]
[34]
Loftis, J.M.; Janowsky, A. The N-methyl-D-aspartate receptor subunit NR2B: localization, functional properties, regulation, and clinical implications. Pharmacol. Ther., 2003, 97(1), 55-85.
[http://dx.doi.org/10.1016/S0163-7258(02)00302-9] [PMID: 12493535]
[35]
Caffino, L.; Calabrese, F.; Giannotti, G.; Barbon, A.; Verheij, M.M.; Racagni, G.; Fumagalli, F. Stress rapidly dysregulates the glutamatergic synapse in the prefrontal cortex of cocaine-withdrawn adolescent rats. Addict. Biol., 2015, 20(1), 158-169.
[http://dx.doi.org/10.1111/adb.12089] [PMID: 24102978]
[36]
Caffino, L.; Messa, G.; Fumagalli, F. A single cocaine administration alters dendritic spine morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex of adolescent rats. Neuropharmacology, 2018, 140, 209-216.
[http://dx.doi.org/10.1016/j.neuropharm.2018.08.006] [PMID: 30092246]
[37]
Liddie, S.; Itzhak, Y. Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory. Addict. Biol., 2016, 21(2), 242-254.
[http://dx.doi.org/10.1111/adb.12191] [PMID: 25351485]
[38]
Wang, L.P.; Li, F.; Wang, D.; Xie, K.; Wang, D.; Shen, X.; Tsien, J.Z. NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron, 2011, 72(6), 1055-1066.
[http://dx.doi.org/10.1016/j.neuron.2011.10.019] [PMID: 22196339]
[39]
Caffino, L.; Frankowska, M.; Giannotti, G.; Miszkiel, J.; Sadakierska-Chudy, A.; Racagni, G.; Filip, M.; Fumagalli, F. Cocaine-induced glutamate receptor trafficking is abrogated by extinction training in the rat hippocampus. Pharmacol. Rep., 2014, 66(2), 198-204.
[http://dx.doi.org/10.1016/j.pharep.2013.09.002] [PMID: 24911070]
[40]
Loftis, J.M.; Janowsky, A. Regulation of NMDA receptor subunits and nitric oxide synthase expression during cocaine withdrawal. J. Neurochem., 2000, 75(5), 2040-2050.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0752040.x] [PMID: 11032893]
[41]
Crespo, J.A.; Oliva, J.M.; Ghasemzadeh, M.B.; Kalivas, P.W.; Ambrosio, E. Neuroadaptive changes in NMDAR1 gene expression after extinction of cocaine self-administration. Ann. N. Y. Acad. Sci., 2002, 965, 78-91.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04153.x] [PMID: 12105087]
[42]
Ferrario, C.R.; Li, X.; Wang, X.; Reimers, J.M.; Uejima, J.L.; Wolf, M.E. The role of glutamate receptor redistribution in locomotor sensitization to cocaine. Neuropsychopharmacology, 2010, 35(3), 818-833.
[http://dx.doi.org/10.1038/npp.2009.190] [PMID: 19924109]
[43]
Schumann, J.; Yaka, R. Prolonged withdrawal from repeated noncontingent cocaine exposure increases NMDA receptor expression and ERK activity in the nucleus accumbens. J. Neurosci., 2009, 29(21), 6955-6963.
[http://dx.doi.org/10.1523/JNEUROSCI.1329-09.2009] [PMID: 19474322]
[44]
Barr, J.L.; Forster, G.L.; Unterwald, E.M. Repeated cocaine enhances ventral hippocampal-stimulated dopamine efflux in the nucleus accumbens and alters ventral hippocampal NMDA receptor subunit expression. J. Neurochem., 2014, 130(4), 583-590.
[http://dx.doi.org/10.1111/jnc.12764] [PMID: 24832868]
[45]
Ary, A.W.; Szumlinski, K.K. Regional differences in the effects of withdrawal from repeated cocaine upon Homer and glutamate receptor expression: a two-species comparison. Brain Res., 2007, 1184, 295-305.
[http://dx.doi.org/10.1016/j.brainres.2007.09.035] [PMID: 17950706]
[46]
Otis, J.M.; Fitzgerald, M.K.; Mueller, D. Infralimbic BDNF/TrkB enhancement of GluN2B currents facilitates extinction of a cocaine-conditioned place preference. J. Neurosci., 2014, 34(17), 6057-6064.
[http://dx.doi.org/10.1523/JNEUROSCI.4980-13.2014] [PMID: 24760865]
[47]
Ungless, M.A.; Whistler, J.L.; Malenka, R.C.; Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 2001, 411(6837), 583-587.
[http://dx.doi.org/10.1038/35079077] [PMID: 11385572]
[48]
Hemby, S.E.; Horman, B.; Tang, W. Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res., 2005, 1064(1-2), 75-82.
[http://dx.doi.org/10.1016/j.brainres.2005.09.051] [PMID: 16277980]
[49]
Tang, W.; Wesley, M.; Freeman, W.M.; Liang, B.; Hemby, S.E. Alterations in ionotropic glutamate receptor subunits during binge cocaine self-administration and withdrawal in rats. J. Neurochem., 2004, 89(4), 1021-1033.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02392.x] [PMID: 15140200]
[50]
Caffino, L.; Verheij, M.M.M.; Que, L.; Guo, C.; Homberg, J.R.; Fumagalli, F. Increased cocaine self-administration in rats lacking the serotonin transporter: a role for glutamatergic signaling in the habenula. Addict. Biol., 2018.[Epub a head of print]..
[http://dx.doi.org/10.1111/adb.12673] [PMID: 30144237]
[51]
Tang, W.X.; Fasulo, W.H.; Mash, D.C.; Hemby, S.E. Molecular profiling of midbrain dopamine regions in cocaine overdose victims. J. Neurochem., 2003, 85(4), 911-924.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01740.x] [PMID: 12716423]
[52]
Hemby, S.E.; Tang, W.; Muly, E.C.; Kuhar, M.J.; Howell, L.; Mash, D.C. Cocaine-induced alterations in nucleus accumbens ionotropic glutamate receptor subunits in human and non-human primates. J. Neurochem., 2005, 95(6), 1785-1793.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03517.x] [PMID: 16363995]
[53]
Ferrario, C.R.; Goussakov, I.; Stutzmann, G.E.; Wolf, M.E. Withdrawal from cocaine self-administration alters NMDA receptor-mediated Ca2+ entry in nucleus accumbens dendritic spines. PLoS One, 2012, 7(8)e40898
[http://dx.doi.org/10.1371/journal.pone.0040898] [PMID: 22870207]
[54]
Lu, L.; Grimm, J.W.; Shaham, Y.; Hope, B.T. Molecular neuroadaptations in the accumbens and ventral tegmental area during the first 90 days of forced abstinence from cocaine self-administration in rats. J. Neurochem., 2003, 85(6), 1604-1613.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01824.x] [PMID: 12787079]
[55]
Hafenbreidel, M.; Rafa, T.C.; Twining, R.C.; Tuscher, J.J.; Mueller, D. Bidirectional effects of inhibiting or potentiating NMDA receptors on extinction after cocaine self-administration in rats. Psychopharmacology (Berl.), 2014, 231(24), 4585-4594.
[http://dx.doi.org/10.1007/s00213-014-3607-1] [PMID: 24847958]
[56]
Ortinski, P.I.; Turner, J.R.; Pierce, R.C. Extrasynaptic targeting of NMDA receptors following D1 dopamine receptor activation and cocaine self-administration. J. Neurosci., 2013, 33(22), 9451-9461.
[http://dx.doi.org/10.1523/JNEUROSCI.5730-12.2013] [PMID: 23719812]
[57]
Ghasemzadeh, M.B.; Vasudevan, P.; Mueller, C.R.; Seubert, C.; Mantsch, J.R. Region-specific alterations in glutamate receptor expression and subcellular distribution following extinction of cocaine self-administration. Brain Res., 2009, 1267, 89-102.
[http://dx.doi.org/10.1016/j.brainres.2009.01.047] [PMID: 19368820]
[58]
Self, D.W.; Choi, K.H.; Simmons, D.; Walker, J.R.; Smagula, C.S. Extinction training regulates neuroadaptive responses to withdrawal from chronic cocaine self-administration. Learn. Mem., 2004, 11(5), 648-657.
[http://dx.doi.org/10.1101/lm.81404] [PMID: 15466321]
[59]
Szumlinski, K.K.; Wroten, M.G.; Miller, B.W.; Sacramento, A.D.; Cohen, M.; Ben-Shahar, O.; Kippin, T.E. Cocaine self-Administration elevates GluN2B within dmPFC mediating heightened Cue-elicited operant responding. J. Drug Abuse, 2016, 2(2), 22.
[http://dx.doi.org/10.21767/2471-853X.100022] [PMID: 27478879]
[60]
Ben-Shahar, O.; Obara, I.; Ary, A.W.; Ma, N.; Mangiardi, M.A.; Medina, R.L.; Szumlinski, K.K. Extended daily access to cocaine results in distinct alterations in Homer 1b/c and NMDA receptor subunit expression within the medial prefrontal cortex. Synapse, 2009, 63(7), 598-609.
[http://dx.doi.org/10.1002/syn.20640] [PMID: 19306440]
[61]
Ben-Shahar, O.; Keeley, P.; Cook, M.; Brake, W.; Joyce, M.; Nyffeler, M.; Heston, R.; Ettenberg, A. Changes in levels of D1, D2, or NMDA receptors during withdrawal from brief or extended daily access to IV cocaine. Brain Res., 2007, 1131(1), 220-228.
[http://dx.doi.org/10.1016/j.brainres.2006.10.069] [PMID: 17161392]
[62]
García-Fuster, M.J.; Flagel, S.B.; Mahmood, S.T.; Mayo, L.M.; Thompson, R.C.; Watson, S.J.; Akil, H. Decreased proliferation of adult hippocampal stem cells during cocaine withdrawal: Possible role of the cell fate regulator FADD. Neuropsychopharmacology, 2011, 36(11), 2303-2317.
[http://dx.doi.org/10.1038/npp.2011.119] [PMID: 21796105]
[63]
Pulvirenti, L.; Swerdlow, N.R.; Koob, G.F. Nucleus accumbens NMDA antagonist decreases locomotor activity produced by cocaine, heroin or accumbens dopamine, but not caffeine. Pharmacol. Biochem. Behav., 1991, 40(4), 841-845.
[http://dx.doi.org/10.1016/0091-3057(91)90095-J] [PMID: 1687766]
[64]
Schenk, S.; Valadez, A.; Worley, C.M.; McNamara, C. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK-801 (dizocilpine). Behav. Pharmacol., 1993, 4(6), 652-659.
[http://dx.doi.org/10.1097/00008877-199312000-00011] [PMID: 11224234]
[65]
Uzbay, I.T.; Wallis, C.J.; Lal, H.; Forster, M.J. Effects of NMDA receptor blockers on cocaine-stimulated locomotor activity in mice. Behav. Brain Res., 2000, 108(1), 57-61.
[http://dx.doi.org/10.1016/S0166-4328(99)00129-1] [PMID: 10680757]
[66]
Rodríguez-Borrero, E.; Bernardo Colón, A.; Burgos-Mártir, M.A.; Alvarez Carillo, J.E.; del Campo, Y.E.; Abella-Ramírez, C.; Maldonado-Vlaar, C.S. NMDA antagonist AP-5 increase environmentally induced cocaine-conditioned locomotion within the nucleus accumbens. Pharmacol. Biochem. Behav., 2006, 85(1), 178-184.
[http://dx.doi.org/10.1016/j.pbb.2006.07.034] [PMID: 16963113]
[67]
Wolf, M.E.; Jeziorski, M. Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Res., 1993, 613(2), 291-294.
[http://dx.doi.org/10.1016/0006-8993(93)90913-8] [PMID: 8186979]
[68]
Carey, R.J.; Dai, H.; Krost, M.; Huston, J.P. The NMDA receptor and cocaine: evidence that MK-801 can induce behavioral sensitization effects. Pharmacol. Biochem. Behav., 1995, 51(4), 901-908.
[http://dx.doi.org/10.1016/0091-3057(95)00074-7] [PMID: 7675875]
[69]
Pulvirenti, L.; Balducci, C.; Koob, G.F. Dextromethorphan reduces intravenous cocaine self-administration in the rat. Eur. J. Pharmacol., 1997, 321(3), 279-283.
[http://dx.doi.org/10.1016/S0014-2999(96)00970-3] [PMID: 9085038]
[70]
Allen, R.M. Continuous exposure to dizocilpine facilitates escalation of cocaine consumption in male Sprague-Dawley rats. Drug Alcohol Depend., 2014, 134, 38-43.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.09.005] [PMID: 24103127]
[71]
Famous, K.R.; Schmidt, H.D.; Pierce, R.C. When administered into the nucleus accumbens core or shell, the NMDA receptor antagonist AP-5 reinstates cocaine-seeking behavior in the rat. Neurosci. Lett., 2007, 420(2), 169-173.
[http://dx.doi.org/10.1016/j.neulet.2007.04.063] [PMID: 17513051]
[72]
Park, W.K.; Bari, A.A.; Jey, A.R.; Anderson, S.M.; Spealman, R.D.; Rowlett, J.K.; Pierce, R.C. Cocaine administered into the medial prefrontal cortex reinstates cocaine-seeking behavior by increasing AMPA receptor-mediated glutamate transmission in the nucleus accumbens. J. Neurosci., 2002, 22(7), 2916-2925.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02916.2002] [PMID: 11923456]
[73]
Heusner, C.L.; Palmiter, R.D. Expression of mutant NMDA receptors in dopamine D1 receptor-containing cells prevents cocaine sensitization and decreases cocaine preference. J. Neurosci., 2005, 25(28), 6651-6657.
[http://dx.doi.org/10.1523/JNEUROSCI.1474-05.2005] [PMID: 16014726]
[74]
Feltenstein, M.W.; See, R.E. NMDA receptor blockade in the basolateral amygdala disrupts consolidation of stimulus-reward memory and extinction learning during reinstatement of cocaine-seeking in an animal model of relapse. Neurobiol. Learn. Mem., 2007, 88(4), 435-444.
[http://dx.doi.org/10.1016/j.nlm.2007.05.006] [PMID: 17613253]
[75]
Brown, T.E.; Lee, B.R.; Sorg, B.A. The NMDA antagonist MK-801 disrupts reconsolidation of a cocaine-associated memory for conditioned place preference but not for self-administration in rats. Learn. Mem., 2008, 15(12), 857-865.
[http://dx.doi.org/10.1101/lm.1152808] [PMID: 19050157]
[76]
Kelamangalath, L.; Swant, J.; Stramiello, M.; Wagner, J.J. The effects of extinction training in reducing the reinstatement of drug-seeking behavior: involvement of NMDA receptors. Behav. Brain Res., 2007, 185(2), 119-128.
[http://dx.doi.org/10.1016/j.bbr.2007.08.001] [PMID: 17826849]
[77]
Hafenbreidel, M.; Rafa Todd, C.; Mueller, D. Infralimbic GluN2A-containing NMDA receptors modulate reconsolidation of cocaine self-administration memory. Neuropsychopharmacology, 2017, 42(5), 1113-1125.
[http://dx.doi.org/10.1038/npp.2016.288] [PMID: 28042872]
[78]
Botreau, F.; Paolone, G.; Stewart, J. d-Cycloserine facilitates extinction of a cocaine-induced conditioned place preference. Behav. Brain Res., 2006, 172(1), 173-178.
[http://dx.doi.org/10.1016/j.bbr.2006.05.012] [PMID: 16769132]
[79]
Lee, J.L.; Milton, A.L.; Everitt, B.J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci., 2006, 26(39), 10051-10056.
[http://dx.doi.org/10.1523/JNEUROSCI.2466-06.2006] [PMID: 17005868]
[80]
Myers, K.M.; Carlezon, W.A., Jr D-cycloserine effects on extinction of conditioned responses to drug-related cues. Biol. Psychiatry, 2012, 71(11), 947-955.
[http://dx.doi.org/10.1016/j.biopsych.2012.02.030] [PMID: 22579305]
[81]
Kelley, J.B.; Anderson, K.L.; Itzhak, Y. Long-term memory of cocaine-associated context: disruption and reinstatement. Neuroreport, 2007, 18(8), 777-780.
[http://dx.doi.org/10.1097/WNR.0b013e3280c1e2e7] [PMID: 17471065]
[82]
Paolone, G.; Botreau, F.; Stewart, J. The facilitative effects of D-cycloserine on extinction of a cocaine-induced conditioned place preference can be long lasting and resistant to reinstatement. Psychopharmacology (Berl.), 2009, 202(1-3), 403-409.
[http://dx.doi.org/10.1007/s00213-008-1280-y] [PMID: 18695929]
[83]
Thanos, P.K.; Bermeo, C.; Wang, G.J.; Volkow, N.D. D-cycloserine accelerates the extinction of cocaine-induced conditioned place preference in C57bL/c mice. Behav. Brain Res., 2009, 199(2), 345-349.
[http://dx.doi.org/10.1016/j.bbr.2008.12.025] [PMID: 19152811]
[84]
Nic Dhonnchadha, B.A.; Szalay, J.J.; Achat-Mendes, C.; Platt, D.M.; Otto, M.W.; Spealman, R.D.; Kantak, K.M. D-cycloserine deters reacquisition of cocaine self-administration by augmenting extinction learning. Neuropsychopharmacology, 2010, 35(2), 357-367.
[http://dx.doi.org/10.1038/npp.2009.139] [PMID: 19741593]
[85]
Torregrossa, M.M.; Sanchez, H.; Taylor, J.R. D-cycloserine reduces the context specificity of pavlovian extinction of cocaine cues through actions in the nucleus accumbens. J. Neurosci., 2010, 30(31), 10526-10533.
[http://dx.doi.org/10.1523/JNEUROSCI.2523-10.2010] [PMID: 20685995]
[86]
DePoy, L.M.; Zimmermann, K.S.; Marvar, P.J.; Gourley, S.L. Induction and blockade of adolescent cocaine-induced habits. Biol. Psychiatry, 2017, 81(7), 595-605.
[http://dx.doi.org/10.1016/j.biopsych.2016.09.023] [PMID: 27871669]
[87]
Pascoli, V.; Besnard, A.; Hervé, D.; Pagès, C.; Heck, N.; Girault, J.A.; Caboche, J.; Vanhoutte, P. Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biol. Psychiatry, 2011, 69(3), 218-227.
[http://dx.doi.org/10.1016/j.biopsych.2010.08.031] [PMID: 21055728]
[88]
Bespalov, A.Y.; Dravolina, O.A.; Zvartau, E.E.; Beardsley, P.M.; Balster, R.L. Effects of NMDA receptor antagonists on cocaine-conditioned motor activity in rats. Eur. J. Pharmacol., 2000, 390(3), 303-311.
[http://dx.doi.org/10.1016/S0014-2999(99)00927-9] [PMID: 10708738]
[89]
Go, B.S.; Barry, S.M.; McGinty, J.F. Glutamatergic neurotransmission in the prefrontal cortex mediates the suppressive effect of intra-prelimbic cortical infusion of BDNF on cocaine-seeking. Eur. Neuropsychopharmacol., 2016, 26(12), 1989-1999.
[http://dx.doi.org/10.1016/j.euroneuro.2016.10.002] [PMID: 27765467]
[90]
Xie, X.; Arguello, A.A.; Wells, A.M.; Reittinger, A.M.; Fuchs, R.A. Role of a hippocampal SRC-family kinase-mediated glutamatergic mechanism in drug context-induced cocaine seeking. Neuropsychopharmacology, 2013, 38(13), 2657-2665.
[http://dx.doi.org/10.1038/npp.2013.175] [PMID: 23872878]
[91]
deBacker, J.; Hawken, E.R.; Normandeau, C.P.; Jones, A.A.; Di Prospero, C.; Mechefske, E.; Gardner Gregory, J.; Hayton, S.J.; Dumont, E.C. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats. Neuropsychopharmacology, 2015, 40(2), 394-405.
[http://dx.doi.org/10.1038/npp.2014.182] [PMID: 25035084]
[92]
Wells, A.M.; Xie, X.; Higginbotham, J.A.; Arguello, A.A.; Healey, K.L.; Blanton, M.; Fuchs, R.A. Contribution of an SFK-mediated signaling pathway in the Dorsal Hippocampus to cocaine-memory reconsolidation in rats. Neuropsychopharmacology, 2016, 41(3), 675-685.
[http://dx.doi.org/10.1038/npp.2015.217] [PMID: 26202103]
[93]
Santa Ana, E.J.; Prisciandaro, J.J.; Saladin, M.E.; McRae-Clark, A.L.; Shaftman, S.R.; Nietert, P.J.; Brady, K.T. D-cycloserine combined with cue exposure therapy fails to attenuate subjective and physiological craving in cocaine dependence. Am. J. Addict., 2015, 24(3), 217-224.
[http://dx.doi.org/10.1111/ajad.12191] [PMID: 25808169]
[94]
Price, K.L.; Baker, N.L.; McRae-Clark, A.L.; Saladin, M.E.; Desantis, S.M.; Santa Ana, E.J.; Brady, K.T. A randomized, placebo-controlled laboratory study of the effects of D-cycloserine on craving in cocaine-dependent individuals. Psychopharmacology (Berl.), 2013, 226(4), 739-746.
[http://dx.doi.org/10.1007/s00213-011-2592-x] [PMID: 22234379]
[95]
Kennedy, A.P.; Gross, R.E.; Whitfield, N.; Drexler, K.P.; Kilts, C.D. A controlled trial of the adjunct use of D-cycloserine to facilitate cognitive behavioral therapy outcomes in a cocaine-dependent population. Addict. Behav., 2012, 37(8), 900-907.
[http://dx.doi.org/10.1016/j.addbeh.2012.03.008] [PMID: 22578380]
[96]
Bisaga, A.; Aharonovich, E.; Cheng, W.Y.; Levin, F.R.; Mariani, J.J.; Raby, W.N.; Nunes, E.V. A placebo-controlled trial of memantine for cocaine dependence with high-value voucher incentives during a pre-randomization lead-in period. Drug Alcohol Depend., 2010, 111(1-2), 97-104.
[http://dx.doi.org/10.1016/j.drugalcdep.2010.04.006] [PMID: 20537812]
[97]
Vosburg, S.K.; Hart, C.L.; Haney, M.; Foltin, R.W. An evaluation of the reinforcing effects of memantine in cocaine-dependent humans. Drug Alcohol Depend., 2005, 79(2), 257-260.
[http://dx.doi.org/10.1016/j.drugalcdep.2005.01.020] [PMID: 16002035]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy