[1]
Al-Shahrani, S.; Ansari, M.J. Solubility evaluations of osimertinib mesylate in physiological buffers. Indo. Am. J. Pharm. Sci., 2018, 5(4), 2610-2615.
[2]
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B, 2015, 5(5), 442-453.
[3]
Li, Y.; Wang, Y.; Zhang, R.; Liu, C.; Wei, Y.; Sun, J.; He, Z.; Xu, Y.; Zhang, T. Improving the oral bioavailability of tapentadol via a carbamate prodrug approach: Synthesis, bioactivation, and pharmacokinetics. Drug Del. Transl. Res., 2018, 8, 1335-1344.
[4]
Poce, G.; Consalvi, S.; Cocozza, M.; Fernandez-Menendez, R.; Bates, R.H.; Muro, F.O.; Aguirre, D.B.; Ballell, L.; Biava, M. Pharmaceutical salt of BM635 with improved bioavailability. Eur. J. Pharm. Sci., 2017, 99, 17-23.
[5]
Ansari, M.J. Formulation and physicochemical characterization of sodium carboxy methyl cellulose and beta cyclodextrin mediated ternary inclusion complexes of silymarin. Int. J. Pharm. Sci. Res., 2016, 7(3), 984-990.
[6]
Daeihamed, M.; Haeri, A.; Ostad, S.; Akhlaghi, M.; Dadashzadeh, S. Doxorubicin-loaded liposomes: Enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine, 2017, 12, 1187-1202.
[7]
Yin, Y.; Cui, F.; Mu, C.; Choi, M.; Kim, J.; Chung, S.; Shim, C.; Kim, D. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J. Cont. Rel., 2009, 140, 86-94.
[8]
Vyas, T.K.; Shahiwala, A.; Amiji, M.M. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int. J. Pharm., 2008, 347(1), 93-101.
[9]
Ghosh, I.; Bose, S.; Vippagunta, R.; Harmon, F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int. J. Pharm., 2011, 409(1-2), 260-268.
[10]
Ansari, M.; Anwer, M.; Jamil, S.; Al-Shdefat, R.; Ali, B.; Ahmad, M.; Ansari, M. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats. Drug Del., 2016, 23(6), 1972-1979.
[11]
Delie, F.; Blanco-Príeto, M. Polymeric particulates to improve oral bioavailability of peptide drugs. Molecules, 2005, 10(1), 65-80.
[12]
Abdelbary, G.; Makhlouf, A. Adoption of polymeric micelles to enhance the oral bioavailability of dexibuprofen: formulation, in-vitro evaluation and in-vivo pharmacokinetic study in healthy human volunteers. Pharm. Dev. Technol., 2014, 19(6), 717-727.
[13]
Zhang, G.; Zhang, J. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats. Drug Des. Devel. Ther., 2018, 12, 2509-2518.
[14]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem. Cent. J., 2018, 12(1), 65-79.
[15]
Makadia, H.K.; and Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[16]
Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23), 2475-2490.
[17]
Mir, M.; Ahmed, N.; Rehman, A.U. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[18]
Song, X.; Zhao, X.; Zhou, Y.; Li, S.; Ma, Q. Pharmacokinetics and disposition of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) nanoparticles. Curr. Drug Metab., 2010, 11(10), 859-869.
[19]
Martins, L.G.; Khalil, N.M.; Mainardes, R.M. PLGA nanoparticles and polysorbate-80-coated PLGA nanoparticles increase the in vitro antioxidant activity of melatonin. Curr. Drug Deliv., 2018, 15(4), 554-563.
[20]
Rafiei, P.; Haddadi, A. Pharmacokinetic consequences of PLGA nanoparticles in docetaxel drug delivery. Pharm. Nanotechnol., 2017, 5(1), 3-23.
[21]
Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C.E.; Cai, J. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale, 2017, 9(42), 16365-16374.
[22]
Alshetaili, A.S.; Anwer, M.K.; Alshahrani, S.M.; Alalaiwe, A.; Alsulays, B.B.; Ansari, M.J.; Imam, F. Sultan, Alshehri. Characteristics and anticancer properties of Sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines. Trop. J. Pharm. Res., 2018, 17(7), 1263-1269.
[23]
Anwer, M.K.; Al-Shdefat, R.; Ezzeldin, E.; Alshahrani, S.M.; Alshetaili, A.S.; Iqbal, M. Preparation, evaluation and bioavailability studies of eudragit coated plga nanoparticles for sustained release of eluxadoline for the treatment of irritable bowel syndrome. Front. Pharmacol., 2017, 8, 844.
[24]
Badran, M.M.; Alomrani, A.H.; Harisa, G.I.; Ashour, A.E.; Kumar, A.; Yassin, A.E. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed. Pharmacotherapy., 2018, 106, 1461-1468.
[25]
Singh, G.; Pai, R.S. Optimized PLGA nanoparticle platform for orally dosed trans-resveratrol with enhanced bioavailability potential. Expert Opin. Drug Deliv., 2014, 11(5), 647-659.
[26]
Anzar, N.; Mirza, M.A.; Anwer, M.K.; Khuroo, T.; Alshetaili, A.S.; Alshahrani, S.M.; Meena, J.; Hasan, N.; Talegaonkar, S.; Panda, A.K.; Iqbal, Z. Preparation, evaluation and pharmacokinetic studies of spray dried PLGA polymeric submicron particles of simvastatin for the effective treatment of breast cancer. J. Mol. Liquids., 2018, 249, 609-616.
[27]
Lee, C.S.; Rattu, M.A.; and Kim, S.S. A review of a novel, Bruton’s tyrosine kinase inhibitor, ibrutinib. J. Oncol. Pharm. Pract., 2016, 22(1), 92-104.
[28]
Siu, F.Y.; Ye, S.; Lin, H.; Li, S. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. Int. J. Nanomedicine, 2018, 13, 4133-4144.
[31]
de Vries, R.; Smit, J.W.; Hellemans, P.; Jiao, J.; Murphy, J.; Skee, D.; Snoeys, J.; Sukbuntherng, J.; Vliegen, M.; de Zwart, L.; and Mannaert, E. Stable isotope‐labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. Br. J. Clin. Pharmacol., 2016, 81(2), 235-245.
[32]
Shakeel, F.; Iqbal, M.; and Ezzeldin, E. Bioavailability enhancement and pharmacokinetic profile of an anticancer drug ibrutinib by self‐nanoemulsifying drug delivery system. J. Pharm. Pharmacol., 2016, 68(6), 772-780.
[33]
Qiu, Q.; Lu, M.; Li, C.; Luo, X.; Liu, X.; Hu, L.; Liu, M.; Zheng, H.; Zhang, H.; Liu, M.; and Lai, C. Novel self-assembled ibrutinib-phospholipid complex for potently peroral delivery of poorly soluble drugs with pH-Dependent solubility. AAPS PharmSciTech, 2018, 19(8), 3571-3583.
[34]
Anwer, M.K.; Jamil, S.; Ansari, M.J.; Iqbal, M.; Imam, F.; Shakeel, F. Development and evaluation of olmesartan medoxomil loaded PLGA nanoparticles. Mat. Res. Innov., 2016, 20(3), 193-197.
[35]
Ansari, M.J. Factors affecting preparation and properties of nanoparticles by nanoprecipitation method. Indo. Am. J. P. Sci., 2017, 4(12), 4854-4858.
[36]
Iqbal, M.; Shakeel, F.; and Anwer, T. Simple and sensitive UPLC-MS/MS method for high-throughput analysis of ibrutinib in rat plasma: optimization by box-behnken experimental design. J. AOAC Int., 2016, 99, 618-625.
[37]
Guo, Y.; Yang, Y.; He, L.; Sun, R.; Pu, C.; Xie, B.; He, H.; Zhang, Y.; Yin, T.; Wang, Y.; and Tang, X. Injectable sustained-release depots of PLGA microspheres for insoluble drugs prepared by hot-melt extrusion. Pharm. Res., 2017, 34(10), 2211-2222.
[38]
Jakimska, A.; Kot-Wasik, A.; Namieśnik, J. The current state-of-the-art in the determination of pharmaceutical residues in environmental matrices using hyphenated techniques. Crit. Rev. Anal. Chem., 2014, 44(3), 277-298.
[39]
Sarbu, M.; Zamfir, A. Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis. Electrophoresis, 2018, 39, 1155-1170.
[40]
Tjandrawinata, R.R.; Setiawati, E.; Yunaidi, D.A.; Santoso, I.D.; Setiawati, A.; Susanto, L.W. Bioequivalence study of 2 formulations of film-coated tablets containing a fixed dose combination of bisoprolol fumarate 5 mg and hydrochlorothiazide 6.25 mg in healthy subjects. Drug Res., 2013, 63(5), 243-249.
[41]
Joshi, G.; Kumar, A.; Sawant, K. Enhanced bioavailability and intestinal uptake of Gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur. J. Pharm. Sci., 2014, 60, 80-89.
[42]
Joshi, G.; Kumar, A.; Sawant, K. Bioavailability enhancement, Caco-2 cells uptake and intestinal transport of orally administered lopinavir-loaded PLGA nanoparticles. Drug Del., 2016, 23(9), 3492-3504.
[43]
Zhang, H.; Xu, J. Enhanced oral bioavailability of salmeterol by loaded PLGA microspheres: preparation, in vitro, and in vivo evaluation. Drug Del., 2016, 23(1), 248-253.
[44]
Ma, Y.; Zhao, X.; Li, J.; Shen, Q. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability. Int. J. Nanomed., 2012, 7, 559-570.
[45]
Xie, X.; Tao, Q.; Zou, Y.; Zhang, F.; Guo, M.; Wang, Y.; Wang, H.; Zhou, Q.; Yu, S. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. J. Agr. Food Chem., 2011, 59, 9280-9289.
[46]
Scheers, E.; Leclercq, L.; de Jong, J.; Bode, N.; Bockx, M.; Laenen, A.; Cuyckens, F.; Skee, D.; Murphy, J.; Sukbuntherng, J.; Mannens, G. Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: An open-label, phase I, single-dose study in healthy men. Drug Metab. Dispos., 2015, 43(2), 289-297.
[47]
Veeraraghavan, S.; Viswanadha, S.; Thappali, S.; Govindarajulu, B.; Vakkalanka, S.; and Rangasamy, M. Simultaneous quantification of lenalidomide, ibrutinib and its active metabolite PCI-45227 in rat plasma by LC-MS/MS: application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2015, 107, 151-158.