Research Article

腺相关病毒9介导的TLR4小RNA干扰通过抑制大鼠NF-κB和MAPK信号通路减轻心肌缺血和再灌注损伤

卷 19, 期 2, 2019

页: [127 - 135] 页: 9

弟呕挨: 10.2174/1566524019666190311122521

价格: $65

conference banner
摘要

背景:尽管进行了深入研究,仍然需要有效的心肌I / R损伤治疗方法。目的:探讨腺相关病毒9(AAV9)介导的TLR4小干扰RNA治疗心肌缺血再灌注(I / R)损伤及其对NF-κB和MAPK信号通路的影响。 方法:将大鼠分为3组,即假手术组,AAV9-siRNA对照组和AAV9-TLR4 siRNA组。通过尾部注射siRNA溶液或生理盐水。然后建立大鼠心肌I / R损伤模型。 HE染色和TUNEL染色比较三组心肌细胞的病理变化。免疫组织化学染色和蛋白质印迹用于检测siRNA干扰下的TLR4表达。通过ELISA商业试剂盒测定血清炎症因子(IL-1β,TNF-α)的表达。确定MAPK(p38,JNK 1/2)和NF-κB(p65)信号传导途径中的关键蛋白质以鉴定TLR4 siRNA功能机制。 结果:心肌荧光显微图像显示AAV9介导的siRNA被有效转染到心肌中,与阴性对照组相比,AAV9-TLR4 siRNA可降低I / R损伤后的梗死面积(P <0.05)。 siRNA干扰显着降低TLR4蛋白表达(P <0.001)。 TLR4基因沉默组中凋亡相关因子BCL-2表达增加,而Bax表达减少。 Bax / BCL-2比率也降低,表明对心肌细胞具有保护作用。 TLR4基因沉默组的炎症因子低于siRNA对照组(P <0.001)。 MAPK和NF-κB信号通路在心肌I / R损伤中被激活;然而,这两种信号通路中的主要蛋白质在TLR4 siRNA干扰后下调,差异显着(P <0.05)。 结论:AAV9-TLR4 siRNA通过抑制MAPK和NF-κB信号通路对心肌I / R损伤有积极作用,可作为心肌I / R损伤的潜在治疗方法。

关键词: 心肌I / R损伤,AAV9-TLR4 siRNA,MAPK,NF-κB,炎症,缺血。

[1]
Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005; 14(4): 170-5.
[2]
Ma L, Liu H, Xie Z, et al. Ginsenoside Rb3 protects cardiomyocytes against ischemia-reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: A mouse cardiomyocyte model. PLoS One 2014; 9(8): e103628.
[3]
Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovas-cular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59(4): 418-58.
[4]
Yang J, Zhang XD, Yang J, et al. The cardioprotective effect of fluvastatin on ischemic injury via down-regulation of toll-like receptor 4. Mol Biol Rep 2011; 38(5): 3037-44.
[5]
Vilahur G, Badimon L. Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor. Front Physiol 2014; 5: 64.
[6]
Zhai Y, Ao L, Cleveland JC, et al. Toll-like receptor 4 mediates the inflammatory responses and matrix protein remodeling in remote non-ischemic myocardium in a mouse model of myocardial ischemia and reperfusion. PLoS One 2015; 10(3): e0121853.
[7]
Yuan L, Dai X, Fu H, et al. Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol 2018; 835: 132-9.
[8]
Chong AJ, Shimamoto A, Hampton CR, et al. Toll-like receptor 4 mediates ischemia/reperfusion injury of the heart. J Thorac Cardiovasc Surg 2004; 128(2): 170-9.
[9]
Cha J, Wang Z, Ao L, et al. Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 2008; 85(5): 1678-85.
[10]
Zhang X, Du Q, Yang Y, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother 2017; 91: 1042-52.
[11]
Wu H, Liu H, Zuo F, Zhang L. Adenoviruses-mediated RNA interference targeting cytosolic phospholipase A2α attenuates focal ischemic brain damage in mice. Mol Med Rep 2018; 17(4): 5601-10.
[12]
Poller W, Lennart S, Henry F, et al. Chronic Cardiac-Targeted RNA Interference for the Treatment of Severe Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy. Circulation 2009; 119(9): 1241-52.
[13]
Gao C, Liu Y, Yu Q, et al. TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregu-lating adiponectin. Am J Physiol Heart Circ Physiol 2015; 308(12): H1583-91.
[14]
Xue Q, Pei H, Liu Q, et al. MICU1 protects against myocardial ischemia/reperfusion injury and its control by the importer receptor Tom70. Cell Death Dis 2017; 8(7): e2923.
[15]
Balan I, Warnock KT, Puche A, Gondre-Lewis MC, June H, Aurelian L. The GABAA receptor α2 subunit activates a neuronal TLR4 signal in the ventral tegmental area that regulates alcohol and nicotine abuse. Brain Sci 2018; 8(4): E72.
[16]
Hao YL, Fang HC, Zhao HL, et al. The role of microRNA-1 targeting MAPK3 in myocardial ischemia/reperfusion injury in rats undergoing sevoflurane preconditioning via the PI3K/Akt pathway. Am J Physiol Cell Physiol 2018; 315(3): C380-8.
[17]
Liu Z, Kastis GA, Stevenson GD, et al. Quantitative analysis of acute myocardial infarct in rat hearts with ischemia–reperfusion using a high-resolution stationary SPECT system. J Nucl Med 2002; 43(7): 933-9.
[18]
Wu FX, Bian JJ, Miao XR, et al. Intrathecal siRNA against Toll-like receptor 4 reduces nociception in a rat model of neuropathic pain. Int J Med Sci 2010; 7(5): 251-9.
[19]
Ma XL, Kumar S, Gao F, et al. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 1999; 99(13): 1685-91.
[20]
Armstrong SC. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 2004; 61(3): 427-36.
[21]
Xia Z, Li H, Irwin MG. Myocardial ischaemia reperfusion injury: The challenge of translating ischaemic and anaesthetic protection from animal models to humans. Br J Anaesth 2016. 117(suppl_2): ii44-62
[22]
Pinto DS, Gibson CM. Reperfusion injury of the heart.UpToDate, Waltham, MA. (Accessed on January 04, 2016)
[23]
Chen H, Zhang RQ, Wei XG, Ren XM, Gao XQ. Mechanism of TLR-4/NF-κB pathway in myocardial ischemia reperfusion injury of mouse. Asian Pac J Trop Med 2016; 9(5): 503-7.
[24]
Wu B, Meng K, Ji Q, et al. Interleukin-37 ameliorates myocardial ischaemia/reperfusion injury in mice. Clin Exp Immunol 2014; 176(3): 438-51.
[25]
Schuster JM, Nelson PS. Toll receptors: An expanding role in our understanding of human disease. J Leukoc Biol 2000; 67(6): 767-73.
[26]
Xie Z, Koyama T, Suzuki J, et al. Coronary reperfusion following ischemia. Jpn Heart J 2001; 42(6): 759-70.
[27]
Hochhauser E, Kivity S, Offen D, et al. Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice. Am J Physiol Heart Circ Physiol 2003; 284(6): H2351-9.
[28]
Guo X, Shang J, Deng Y, Yuan X, Zhu D, Liu H. Alterations in left ventricular function during intermittent hypoxia: Possible involvement of O-GlcNAc protein and MAPK signaling. Int J Mol Med 2015; 36(1): 150-8.
[29]
Yang X, Yang J, Hu J, Li X, Zhang X, Li Z. Apigenin attenuates myocardial ischemia/reperfusion injury via the inactivation of p38 mitogen activated protein kinase. Mol Med Rep 2015; 12(5): 6873-8.
[30]
Vassalli G, Milano G, Moccetti T. Role of mitogen-activated protein kinases in myocardial ischemia-reperfusion injury during heart transplantation. J Transplant 2012; 2012: 928954.
[31]
Kumphune S, Surinkaew S, Chattipakorn SC, Chattipakorn N. Inhibition of p38 MAPK activation protects cardiac mitochondria from ischemia/reperfusion injury. Pharm Biol 2015; 53(12): 1831-41.
[32]
Maimaitiaili A, Li J, Aibibula A, Abudureheman M. Inhibition of nuclear factor kappa B pathway protects myocardial ischemia/reperfusion injury in rats under treatment with abnormal savda munziq. Am J Transl Res 2018; 10(1): 77-85.
[33]
Norman DA, Yacoub MH, Barton PJ. Nuclear factor NF-κB in myocardium: Developmental expression of subunits and activation by interleukin-1β in cardiac myocytes in vitro. Cardiovasc Res 1998; 39(2): 434-41.
[34]
Liang Z1,Liu LF, Yao TM, Huo Y, Han YL. Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/reperfusion injury in rats. J Geriatr Cardiol 2012; 9(2): 130-6.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy