Review Article

石墨烯氧化物在给药系统中的应用综述

卷 27, 期 22, 2020

页: [3665 - 3685] 页: 21

弟呕挨: 10.2174/13816128256661902011296290

价格: $65

conference banner
摘要

由于碳纳米管(CNTs)的成功应用,石墨烯和氧化石墨烯(GO)作为一种创新的药物纳米载体在以往的研究中得到了广泛的研究,可装载多种治疗药物、抗癌药物、低可溶性药物、抗生素、抗体、多肽、DNA、RNA和基因。石墨烯由于表面积大,具有超高的载药效率。石墨烯和氧化石墨烯由于其独特的特性而被广泛应用于生物医学领域: 二维平面结构、宽表面积、化学和机械稳定性、卓越的导电性和良好的生物相容性。由于这些独特的品质,氧化石墨烯的应用提供了先进的药物运输框架和运输广泛的治疗。在这篇综述中,我们讨论了石墨烯和氧化石墨烯在药物递送和纳米医学中的最新进展和改进。首先,我们描述了什么是石墨烯和氧化石墨烯。之后,我们讨论了石墨烯氧化物作为药物载体的性质,在药物传输应用中,利用靶向药物传输,抗癌药物的传送,化学控制药物释放,不同的药物的协同转运,氧化石墨烯与碳纳米管的比较,纳米石墨烯以及纳米石墨烯的毒性。最后,我们对目前的扩张和未来的潜在前景进行了总结。

关键词: 石墨烯,氧化石墨烯,纳米药物,给药系统,石墨烯DDS,高定向裂解石墨(HOPG)。

[1]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: a review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[2]
Geim, A.K. Graphene: status and prospects. Science, 2009, 324(5934), 1530-1534.
[http://dx.doi.org/10.1126/science.1158877]
[3]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[4]
Ruoff, R. Graphene: calling all chemists. Nat. Nanotechnol., 2008, 3(1), 10-11.
[http://dx.doi.org/10.1038/nnano.2007.432] [PMID: 18654440]
[5]
Yan, X.; Li, L-s. Solution-chemistry approach to graphene nanostructures. J. Mater. Chem., 2011, 21(10), 3295-3300.
[http://dx.doi.org/10.1039/c0jm02827d]
[6]
Lei, W.; Portehault, D.; Liu, D.; Qin, S.; Chen, Y. Porous boron nitride nanosheets for effective water cleaning. Nat. Commun., 2013, 4, 1777.
[http://dx.doi.org/10.1038/ncomms2818] [PMID: 23653189]
[7]
Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev., 2014, 43(3), 934-959.
[http://dx.doi.org/10.1039/C3CS60260E] [PMID: 24280706]
[8]
Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6), 2979-2993.
[http://dx.doi.org/10.1021/nn1006495] [PMID: 20462272]
[9]
Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett., 2009, 102(19)195505
[http://dx.doi.org/10.1103/PhysRevLett.102.195505] [PMID: 19518972]
[10]
Hu, S.; Lozada-Hidalgo, M.; Wang, F.C.; Mishchenko, A.; Schedin, F.; Nair, R.R.; Hill, E.W.; Boukhvalov, D.W.; Katsnelson, M.I.; Dryfe, R.A.; Grigorieva, I.V.; Wu, H.A.; Geim, A.K. Proton transport through one-atom-thick crystals. Nature, 2014, 516(7530), 227-230.
[http://dx.doi.org/10.1038/nature14015] [PMID: 25470058]
[11]
Zhu, Y.; Bando, Y.; Yin, L.; Golberg, D. Field nanoemitters: ultrathin BN nanosheets protruding from Si3N4 nanowires. Nano Lett., 2006, 6(12), 2982-2986.
[http://dx.doi.org/10.1021/nl061594s] [PMID: 17163744]
[12]
Zhao, T.; Zhang, L.; Li, L.; Zhang, G.; Shi, K. Synthesis, characterization and sensing properties of ZnO-modified BN-FeB49. J. Alloys Compd., 2014, 600, 130-136.
[http://dx.doi.org/10.1016/j.jallcom.2014.02.103]
[13]
Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Large‐scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater., 2009, 21(28), 2889-2893.
[http://dx.doi.org/10.1002/adma.200900323]
[14]
Chen, Z-G.; Zou, J.; Liu, G.; Li, F.; Wang, Y.; Wang, L.; Yuan, X-L.; Sekiguchi, T.; Cheng, H-M.; Lu, G.Q. Novel boron nitride hollow nanoribbons. ACS Nano, 2008, 2(10), 2183-2191.
[http://dx.doi.org/10.1021/nn8004922] [PMID: 19206466]
[15]
Li, L.; Yu, X.; Yang, X.; Zhang, X.; Xu, X.; Jin, P.; Zhao, J.; Wang, X.; Tang, C. Electronic properties and relative stabilities of heterogeneous edge-decorated zigzag boron nitride nanoribbons. J. Alloys Compd., 2015, 649, 1130-1135.
[http://dx.doi.org/10.1016/j.jallcom.2015.07.100]
[16]
Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; Ajayan, P.M. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett., 2010, 10(8), 3209-3215.
[http://dx.doi.org/10.1021/nl1022139] [PMID: 20698639]
[17]
Lee, C.; Li, Q.; Kalb, W.; Liu, X-Z.; Berger, H.; Carpick, R.W.; Hone, J. Frictional characteristics of atomically thin sheets. Science, 2010, 328(5974), 76-80.
[http://dx.doi.org/10.1126/science.1184167]
[18]
Niu, Y.; Wang, R.; Jiao, W.; Ding, G.; Hao, L.; Yang, F.; He, X. MoS2 graphene fiber based gas sensing devices. Carbon, 2015, 95, 34-41.
[http://dx.doi.org/10.1016/j.carbon.2015.08.002]
[19]
Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas sensors. Sens. Actuators B Chem., 2012, 173, 1-21.
[http://dx.doi.org/10.1016/j.snb.2012.07.092]
[20]
Yavari, F.; Koratkar, N. Graphene-based chemical sensors. J. Phys. Chem. Lett., 2012, 3(13), 1746-1753.
[http://dx.doi.org/10.1021/jz300358t] [PMID: 26291854]
[21]
He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. (Camb.), 2012, 3(6), 1764-1772.
[http://dx.doi.org/10.1039/c2sc20205k]
[22]
Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; Shvets, I.V.; Arora, S.K.; Stanton, G.; Kim, H.Y.; Lee, K.; Kim, G.T.; Duesberg, G.S.; Hallam, T.; Boland, J.J.; Wang, J.J.; Donegan, J.F.; Grunlan, J.C.; Moriarty, G.; Shmeliov, A.; Nicholls, R.J.; Perkins, J.M.; Grieveson, E.M.; Theuwissen, K.; McComb, D.W.; Nellist, P.D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017), 568-571.
[http://dx.doi.org/10.1126/science.1194975] [PMID: 21292974]
[23]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065), 197-200.
[http://dx.doi.org/10.1038/nature04233] [PMID: 16281030]
[24]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[25]
Viculis, L.M.; Mack, J.J.; Kaner, R.B. A chemical route to carbon nanoscrolls. Science, 2003, 299(5611), 1361-1361.
[http://dx.doi.org/10.1126/science.1078842] [PMID: 12610297]
[26]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol., 2008, 3(9), 563-568.
[http://dx.doi.org/10.1038/nnano.2008.215] [PMID: 18772919]
[27]
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932), 1312-1314.
[http://dx.doi.org/10.1126/science.1171245] [PMID: 19423775]
[28]
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A.N.; Conrad, E.H.; First, P.N.; de Heer, W.A. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777), 1191-1196.
[http://dx.doi.org/10.1126/science.1125925] [PMID: 16614173]
[29]
Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466(7305), 470-473.
[http://dx.doi.org/10.1038/nature09211] [PMID: 20651687]
[30]
Tomović, Z.; Watson, M.D.; Müllen, K. Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. Engl., 2004, 43(6), 755-758.
[http://dx.doi.org/10.1002/anie.200352855] [PMID: 14755713]
[31]
Treier, M.; Pignedoli, C.A.; Laino, T.; Rieger, R.; Müllen, K.; Passerone, D.; Fasel, R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem., 2011, 3(1), 61-67.
[http://dx.doi.org/10.1038/nchem.891] [PMID: 21160519]
[32]
Gilje, S.; Han, S.; Wang, M.; Wang, K.L.; Kaner, R.B. A chemical route to graphene for device applications. Nano Lett., 2007, 7(11), 3394-3398.
[http://dx.doi.org/10.1021/nl0717715] [PMID: 17944523]
[33]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduc-tion of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[34]
Kabiri, R.; Namazi, H. Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. J. Nanopart. Res., 2014, 16(7), 2474.
[http://dx.doi.org/10.1007/s11051-014-2474-3]
[35]
Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.Y.; Feng, R.; Dai, Z.; Marchenkov, A.N.; Conrad, E.H.; First, P.N. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B, 2004, 108(52), 19912-19916.
[http://dx.doi.org/10.1021/jp040650f]
[36]
Land, T.; Michely, T.; Behm, R.; Hemminger, J.; Comsa, G. STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition. Surf. Sci., 1992, 264(3), 261-270.
[http://dx.doi.org/10.1016/0039-6028(92)90183-7]
[37]
Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J-H.; Kim, P.; Choi, J-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457(7230), 706-710.
[http://dx.doi.org/10.1038/nature07719] [PMID: 19145232]
[38]
Eizenberg, M.; Blakely, J. Carbon monolayer phase condensation on Ni (111). Surf. Sci., 1979, 82(1), 228-236.
[http://dx.doi.org/10.1016/0039-6028(79)90330-3]
[39]
Brodie, B.C. XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. Lond., 1859, 149, 249-259.
[http://dx.doi.org/10.1098/rstl.1859.0013]
[40]
Hummers, W.S. Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[41]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges., 1898, 31(2), 1481-1487.
[http://dx.doi.org/10.1002/cber.18980310237]
[42]
Hofmann, U.; König, E. Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem., 1937, 234(4), 311-336.
[http://dx.doi.org/10.1002/zaac.19372340405]
[43]
Liu, Z.; Lau, S.P.; Yan, F. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev., 2015, 44(15), 5638-5679.
[http://dx.doi.org/10.1039/C4CS00455H] [PMID: 26024242]
[44]
Perreault, F.; Fonseca de Faria, A.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev., 2015, 44(16), 5861-5896.
[http://dx.doi.org/10.1039/C5CS00021A] [PMID: 25812036]
[45]
Chen, K.; Song, S.; Liu, F.; Xue, D. Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev., 2015, 44(17), 6230-6257.
[http://dx.doi.org/10.1039/C5CS00147A] [PMID: 26051987]
[46]
Guo, S.; Dong, S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev., 2011, 40(5), 2644-2672.
[http://dx.doi.org/10.1039/c0cs00079e] [PMID: 21283849]
[47]
Liu, Y.; Dong, X.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev., 2012, 41(6), 2283-2307.
[http://dx.doi.org/10.1039/C1CS15270J] [PMID: 22143223]
[48]
Xu, M.; Fujita, D.; Sagisaka, K.; Watanabe, E.; Hanagata, N. Production of extended single-layer graphene. ACS Nano, 2011, 5(2), 1522-1528.
[http://dx.doi.org/10.1021/nn103428k] [PMID: 21226512]
[49]
Pei, S.; Cheng, H-M. The reduction of graphene oxide. Carbon, 2012, 50(9), 3210-3228.
[http://dx.doi.org/10.1016/j.carbon.2011.11.010]
[50]
Gao, W.; Alemany, L.B.; Ci, L.; Ajayan, P.M. New insights into the structure and reduction of graphite oxide. Nat. Chem., 2009, 1(5), 403-408.
[http://dx.doi.org/10.1038/nchem.281] [PMID: 21378895]
[51]
Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 2008, 46(14), 1994-1998.
[http://dx.doi.org/10.1016/j.carbon.2008.08.013]
[52]
Yu, J.; Qin, L.; Hao, Y.; Kuang, S.; Bai, X.; Chong, Y-M.; Zhang, W.; Wang, E. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano, 2010, 4(1), 414-422.
[http://dx.doi.org/10.1021/nn901204c] [PMID: 20047271]
[53]
Zhu, Y.; Murali, S.; Stoller, M.D.; Velamakanni, A.; Piner, R.D.; Ruoff, R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 2010, 48(7), 2118-2122.
[http://dx.doi.org/10.1016/j.carbon.2010.02.001]
[54]
Schniepp, H.C.; Li, J-L.; McAllister, M.J.; Sai, H.; Herrera-Alonso, M.; Adamson, D.H.; Prud’homme, R.K.; Car, R.; Saville, D.A.; Aksay, I.A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B, 2006, 110(17), 8535-8539.
[http://dx.doi.org/10.1021/jp060936f] [PMID: 16640401]
[55]
Zacharia, R.; Ulbricht, H.; Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B Condens. Matter Mater. Phys., 2004, 69(15)155406
[http://dx.doi.org/10.1103/PhysRevB.69.155406]
[56]
Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S. Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc., 2011, 133(43), 17315-17321.
[http://dx.doi.org/10.1021/ja205168x] [PMID: 21846143]
[57]
Moon, I.K.; Lee, J.; Lee, H. Highly qualified reduced graphene oxides: the best chemical reduction. Chem. Commun. (Camb.), 2011, 47(34), 9681-9683.
[http://dx.doi.org/10.1039/c1cc13312h] [PMID: 21779603]
[58]
Gao, X.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C, 2009, 114(2), 832-842.
[http://dx.doi.org/10.1021/jp909284g]
[59]
Kumar, R.; Singh, R.K.; Dubey, P.K.; Singh, D.P.; Yadav, R.M.; Tiwari, R.S. Hydrothermal synthesis of a uniformly dispersed hybrid graphene TiO2 nanostructure for optical and enhanced electrochemical applications. RSC Advances, 2015, 5(10), 7112-7120.
[http://dx.doi.org/10.1039/C4RA06852A]
[60]
Park, S.; An, J.; Potts, J.R.; Velamakanni, A.; Murali, S.; Ruoff, R.S. Hydrazine-reduction of graphite and graphene oxide. Carbon, 2011, 49(9), 3019-3023.
[http://dx.doi.org/10.1016/j.carbon.2011.02.071]
[61]
Song, L.; Khoerunnisa, F.; Gao, W.; Dou, W.; Hayashi, T.; Kaneko, K.; Endo, M.; Ajayan, P.M. Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide. Carbon, 2013, 52, 608-612.
[http://dx.doi.org/10.1016/j.carbon.2012.09.060]
[62]
Zhang, Y.; Guo, L.; Wei, S.; He, Y.; Xia, H.; Chen, Q.; Sun, H-B.; Xiao, F-S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1), 15-20.
[http://dx.doi.org/10.1016/j.nantod.2009.12.009]
[63]
Zhou, Y.; Bao, Q.; Varghese, B.; Tang, L.A.L.; Tan, C.K.; Sow, C.H.; Loh, K.P. Microstructuring of graphene oxide nanosheets using direct laser writing. Adv. Mater., 2010, 22(1), 67-71.
[http://dx.doi.org/10.1002/adma.200901942] [PMID: 20217699]
[64]
Sokolov, D.A.; Shepperd, K.R.; Orlando, T.M. Formation of graphene features from direct laser-induced reduction of graphite oxide. J. Phys. Chem. Lett., 2010, 1(18), 2633-2636.
[http://dx.doi.org/10.1021/jz100790y]
[65]
Gilje, S.; Dubin, S.; Badakhshan, A.; Farrar, J.; Danczyk, S.A.; Kaner, R.B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Adv. Mater., 2010, 22(3), 419-423.
[http://dx.doi.org/10.1002/adma.200901902] [PMID: 20217732]
[66]
Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash reduction and patterning of graphite oxide and its polymer composite. J. Am. Chem. Soc., 2009, 131(31), 11027-11032.
[http://dx.doi.org/10.1021/ja902348k] [PMID: 19601624]
[67]
Li, X.H.; Chen, J.S.; Wang, X.; Schuster, M.E.; Schlögl, R.; Antonietti, M. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. Chem.Sus.Chem, 2012, 5(4), 642-646.
[http://dx.doi.org/10.1002/cssc.201100467] [PMID: 22415902]
[68]
Koinuma, M.; Ogata, C.; Kamei, Y.; Hatakeyama, K.; Tateishi, H.; Watanabe, Y.; Taniguchi, T.; Gezuhara, K.; Hayami, S.; Funatsu, A. Photochemical engineering of graphene oxide nanosheets. J. Phys. Chem. C, 2012, 116(37), 19822-19827.
[http://dx.doi.org/10.1021/jp305403r]
[69]
Stroyuk, A.; Andryushina, N.; Il’in, V.; Efanov, V.; Yanchuk, I.; Kuchmii, S.Y.; Pokhodenko, V. Photochemical reduction of graphene oxide in colloidal solution. Theor. Exp. Chem., 2012, 48(1), 2-13.
[http://dx.doi.org/10.1007/s11237-012-9235-0]
[70]
Tan, D.; Liu, X.; Dai, Y.; Ma, G.; Meunier, M.; Qiu, J. A universal photochemical approach to ultra‐small, well‐dispersed nanoparticle/reduced graphene oxide hybrids with enhanced nonlinear optical properties. Adv. Opt. Mater., 2015, 3(6), 836-841.
[http://dx.doi.org/10.1002/adom.201400560]
[71]
Kumar, R.; Dubey, P.K.; Singh, R.K.; Vaz, A.R.; Moshkalev, S.A. Catalyst-free synthesis of a three-dimensional nanoworm-like gallium oxide-graphene nanosheet hybrid structure with enhanced optical properties. RSC Advances, 2016, 6(21), 17669-17677.
[http://dx.doi.org/10.1039/C5RA24577J]
[72]
Kumar, R.; Singh, R.K.; Savu, R.; Dubey, P.K.; Kumar, P.; Moshkalev, S.A. Microwave-assisted synthesis of void-induced graphene-wrapped nickel oxide hybrids for supercapacitor applications. RSC Advances, 2016, 6(32), 26612-26620.
[http://dx.doi.org/10.1039/C6RA00426A]
[73]
Kumar, R.; Singh, R.K.; Singh, D.P.; Savu, R.; Moshkalev, S.A. Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies. Mater. Des., 2016, 111, 291-300.
[http://dx.doi.org/10.1016/j.matdes.2016.09.018]
[74]
Celiešiūtė, R.; Trusovas, R.; Niaura, G.; Švedas, V.; Račiukaitis, G.; Ruželė, Ž.; Pauliukaite, R. Influence of the laser irradiation on the electrochemical and spectroscopic peculiarities of graphene-chitosan composite film. Electrochim. Acta, 2014, 132, 265-276.
[http://dx.doi.org/10.1016/j.electacta.2014.03.137]
[75]
Trusovas, R.; Ratautas, K.; Račiukaitis, G.; Barkauskas, J.; Stankevičienė, I.; Niaura, G.; Mažeikienė, R. Reduction of graphite oxide to graphene with laser irradiation. Carbon, 2013, 52, 574-582.
[http://dx.doi.org/10.1016/j.carbon.2012.10.017]
[76]
Zhang, M.; Kelleher, E.; Popov, S.; Taylor, J. Ultrafast fibre laser sources: examples of recent developments. Opt. Fiber Technol., 2014, 20(6), 666-677.
[http://dx.doi.org/10.1016/j.yofte.2014.07.005]
[77]
Kittel, C. Introduction to solid state physics; Wiley Inc., 2005.
[78]
Ebert, H.P. Imaging defects and dopants. Mater. Today, 2003, 6(6), 36-43.
[http://dx.doi.org/10.1016/S1369-7021(03)00632-1]
[79]
Consonni, V.; Feuillet, G.; Barnes, J.; Donatini, F. Local redistribution of dopants and defects induced by annealing in polycrystalline compound semiconductors. Phys. Rev. B Condens. Matter Mater. Phys., 2009, 80(16)165207
[http://dx.doi.org/10.1103/PhysRevB.80.165207]
[80]
Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature, 2012, 490(7419), 192-200.
[http://dx.doi.org/10.1038/nature11458] [PMID: 23060189]
[81]
Gass, M.H.; Bangert, U.; Bleloch, A.L.; Wang, P.; Nair, R.R.; Geim, A.K. Free-standing graphene at atomic resolution. Nat. Nanotechnol., 2008, 3(11), 676-681.
[http://dx.doi.org/10.1038/nnano.2008.280] [PMID: 18989334]
[82]
Lee, G-D.; Wang, C.Z.; Yoon, E.; Hwang, N-M.; Kim, D-Y.; Ho, K.M. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett., 2005, 95(20)205501
[http://dx.doi.org/10.1103/PhysRevLett.95.205501] [PMID: 16384068]
[83]
Kim, G.; Jhi, S-H.; Lim, S.; Park, N. Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl. Phys. Lett., 2009, 94(17)173102
[http://dx.doi.org/10.1063/1.3126450]
[84]
Chen, J.; Huang, K.; Liu, S. Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim. Acta, 2009, 55(1), 1-5.
[http://dx.doi.org/10.1016/j.electacta.2009.04.017]
[85]
Hwang, E.H.; Adam, S.; Sarma, S.D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett., 2007, 98(18)186806
[http://dx.doi.org/10.1103/PhysRevLett.98.186806] [PMID: 17501596]
[86]
Aleiner, I.L.; Efetov, K.B. Effect of disorder on transport in graphene. Phys. Rev. Lett., 2006, 97(23)236801
[http://dx.doi.org/10.1103/PhysRevLett.97.236801] [PMID: 17280222]
[87]
Kumar, R.; Oh, J-H.; Kim, H-J.; Jung, J-H.; Jung, C-H.; Hong, W.G.; Kim, H-J.; Park, J-Y.; Oh, I-K. Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS Nano, 2015, 9(7), 7343-7351.
[http://dx.doi.org/10.1021/acsnano.5b02337] [PMID: 26061778]
[88]
Taluja, Y. SanthiBhushan, B.; Yadav, S.; Srivastava, A. Defect and functionalized graphene for supercapacitor electrodes. Superlattices Microstruct., 2016, 98, 306-315.
[http://dx.doi.org/10.1016/j.spmi.2016.08.044]
[89]
Huang, Q.; Zeng, D.; Tian, S.; Xie, C. Synthesis of defect graphene and its application for room temperature humidity sensing. Mater. Lett., 2012, 83, 76-79.
[http://dx.doi.org/10.1016/j.matlet.2012.05.074]
[90]
Zhang, L.; Xu, Q.; Niu, J.; Xia, Z. Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys., 2015, 17(26), 16733-16743.
[http://dx.doi.org/10.1039/C5CP02014J] [PMID: 26033301]
[91]
Yadav, S.; Zhu, Z.; Singh, C.V. Defect engineering of graphene for effective hydrogen storage. Int. J. Hydrogen Energy, 2014, 39(10), 4981-4995.
[http://dx.doi.org/10.1016/j.ijhydene.2014.01.051]
[92]
Oh, K-Y.; Epureanu, B.I. A phenomenological force model of Li-ion battery packs for enhanced performance and health management. J. Power Sources, 2017, 365, 220-229.
[http://dx.doi.org/10.1016/j.jpowsour.2017.08.058]
[93]
Danner, T.; Singh, M.; Hein, S.; Kaiser, J.; Hahn, H.; Latz, A. Thick electrodes for Li-ion batteries: a model based analysis. J. Power Sources, 2016, 334, 191-201.
[http://dx.doi.org/10.1016/j.jpowsour.2016.09.143]
[94]
Cheng, X-B.; Zhang, R.; Zhao, C-Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev., 2017, 117(15), 10403-10473.
[http://dx.doi.org/10.1021/acs.chemrev.7b00115] [PMID: 28753298]
[95]
Sharova, V.; Moretti, A.; Diemant, T.; Varzi, A.; Behm, R.J.; Passerini, S. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J. Power Sources, 2018, 375, 43-52.
[http://dx.doi.org/10.1016/j.jpowsour.2017.11.045]
[96]
Wang, G.; Shen, X.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009, 47(8), 2049-2053.
[http://dx.doi.org/10.1016/j.carbon.2009.03.053]
[97]
Chen, Y.; Yan, C.; Schmidt, O.G. Strain‐driven formation of multilayer graphene/GeO2 tubular nanostructures as high‐capacity and very long‐life anodes for lithium‐ion batteries. Adv. Energy Mater., 2013, 3(10), 1269-1274.
[http://dx.doi.org/10.1002/aenm201300575]
[98]
Wei, W.; Yang, S.; Zhou, H.; Lieberwirth, I.; Feng, X.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater., 2013, 25(21), 2909-2914.
[http://dx.doi.org/10.1002/adma.201300445] [PMID: 23606504]
[99]
Guo, R.; Yue, W.; An, Y.; Ren, Y.; Yan, X. Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta, 2014, 135, 161-167.
[http://dx.doi.org/10.1016/j.electacta.2014.04.160]
[100]
Yan, L.; Yu, J.; Luo, H. Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries. Applied Materials Today, 2017, 8, 31-34.
[http://dx.doi.org/10.1016/j.apmt.2017.02.001]
[101]
Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Maier, J.; Müllen, K. Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. Chem.Sus.Chem, 2010, 3(2), 236-239.
[http://dx.doi.org/10.1002/cssc.200900106] [PMID: 19816895]
[102]
Wu, Z-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H-M. Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4(6), 3187-3194.
[http://dx.doi.org/10.1021/nn100740x] [PMID: 20455594]
[103]
Samuel, E.; Lee, J-G.; Joshi, B.; Kim, T-G.; Kim, M-W.; Seong, I.W.; Yoon, W.Y.; Yoon, S.S. Supersonic cold spraying of titania nanoparticles on reduced graphene oxide for lithium ion battery anodes. J. Alloys Compd., 2017, 715, 161-169.
[http://dx.doi.org/10.1016/j.jallcom.2017.04.308]
[104]
Cao, Y.; Chai, D.; Luo, Z.; Jiang, M.; Xu, W.; Xiong, C.; Li, S.; Liu, H.; Fang, D. Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries. J. Colloid Interface Sci., 2017, 498, 210-216.
[http://dx.doi.org/10.1016/j.jcis.2017.03.002] [PMID: 28324727]
[105]
Wang, W.L.; Jang, J.; Nguyen, V.H.; Auxilia, F.M.; Song, H.; Jang, K.; Jin, E.M.; Lee, G-Y.; Gu, H-B.; Ham, M-H. Cerium vanadate and reduced graphene oxide composites for lithium-ion batteries. J. Alloys Compd., 2017, 724, 1075-1082.
[http://dx.doi.org/10.1016/j.jallcom.2017.07.051]
[106]
Kumar, R.; Joanni, E.; Singh, R.K.; Singh, D.P.; Moshkalev, S.A. Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Pror. Energy Combust. Sci., 2018, 67, 115-157.
[http://dx.doi.org/10.1016/j.pecs.2018.03.001]
[107]
Kiew, S.F.; Kiew, L.V.; Lee, H.B.; Imae, T.; Chung, L.Y. Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J. Control. Release, 2016, 226, 217-228.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.015] [PMID: 26873333]
[108]
Zhang, Y.L.; Guo, L.; Xia, H.; Chen, Q.D.; Feng, J.; Sun, H.B. Photoreduction of graphene oxides: methods, properties, and applications. Adv. Opt. Mater., 2014, 2(1), 10-28.
[http://dx.doi.org/10.1002/adom.201300317]
[109]
Foo, M.E.; Gopinath, S.C.B. Feasibility of graphene in biomedical applications. Biomed. Pharmacother., 2017, 94, 354-361.
[http://dx.doi.org/10.1016/j.biopha.2017.07.122] [PMID: 28772213]
[110]
Langer, R. Drug delivery. Drugs on target. Science, 2001, 293(5527), 58-59.
[http://dx.doi.org/10.1126/science.1063273] [PMID: 11441170]
[111]
Mainardes, R.M.; Silva, L.P. Drug delivery systems: past, present, and future. Curr. Drug Targets, 2004, 5(5), 449-455.
[http://dx.doi.org/10.2174/1389450043345407] [PMID: 15216911]
[112]
Chakrabarti, M.; Kiseleva, R.; Vertegel, A.; Ray, S.K. Carbon nanomaterials for drug delivery and cancer therapy. J. Nanosci. Nanotechnol., 2015, 15(8), 5501-5511.
[http://dx.doi.org/10.1166/jnn.2015.10614] [PMID: 26369109]
[113]
Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol., 2011, 29(5), 205-212.
[http://dx.doi.org/10.1016/j.tibtech.2011.01.008] [PMID: 21397350]
[114]
Feng, L.; Wu, L.; Qu, X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater., 2013, 25(2), 168-186.
[http://dx.doi.org/10.1002/adma.201203229] [PMID: 23161646]
[115]
Gonçalves, G.; Vila, M.; Portolés, M.T.; Vallet-Regi, M.; Gracio, J.; Marques, P.A.A. Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv. Healthc. Mater., 2013, 2(8), 1072-1090.
[http://dx.doi.org/10.1002/adhm.201300023] [PMID: 23526812]
[116]
Yang, K.; Feng, L.; Shi, X.; Liu, Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev., 2013, 42(2), 530-547.
[http://dx.doi.org/10.1039/C2CS35342C] [PMID: 23059655]
[117]
Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical applications of graphene. Theranostics, 2012, 2(3), 283-294.
[http://dx.doi.org/10.7150/thno.3642] [PMID: 22448195]
[118]
Feng, L.; Liu, Z. Graphene in biomedicine: opportunities and challenges. Nanomedicine (Lond.), 2011, 6(2), 317-324.
[http://dx.doi.org/10.2217/nnm.10.158] [PMID: 21385134]
[119]
Pan, Y.; Sahoo, N.G.; Li, L. The application of graphene oxide in drug delivery. Expert Opin. Drug Deliv., 2012, 9(11), 1365-1376.
[http://dx.doi.org/10.1517/17425247.2012.729575] [PMID: 23005029]
[120]
Liu, Z.; Robinson, J.T.; Tabakman, S.M.; Yang, K.; Dai, H. Carbon materials for drug delivery & cancer therapy. Mater. Today, 2011, 14(7-8), 316-323.
[http://dx.doi.org/10.1016/S1369-7021(11)70161-4]
[121]
Ghosh, D.; Chandra, S.; Chakraborty, A.; Ghosh, S.K.; Pramanik, P. A novel graphene oxide-para amino benzoic acid nanosheet as effective drug delivery system to treat drug resistant bacteria. Int. J. Pharm. Sci. Drug Res., 2010, 2(89), 127-133.
[122]
Mendes, R.G.; Bachmatiuk, A.; Büchner, B.; Cuniberti, G.; Rümmeli, M.H. Carbon nanostructures as multi-functional drug delivery platforms. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(4), 401-428.
[http://dx.doi.org/10.1039/C2TB00085G] [PMID: 32260810]
[123]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[http://dx.doi.org/10.1021/nn1007176] [PMID: 20481456]
[124]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[125]
Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater., 2013, 9(12), 9243-9257.
[http://dx.doi.org/10.1016/j.actbio.2013.08.016] [PMID: 23958782]
[126]
Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Appl. Mater. Interfaces, 2013, 5(5), 1761-1767.
[http://dx.doi.org/10.1021/am303005j] [PMID: 23402618]
[127]
Yang, R.; Wang, C.; Heng, C-L. Cell biocompatibility of functionalized graphene oxide. Wuli Huaxue Xuebao, 2012, 28(6), 1520-1524.
[128]
Yang, R.; Tang, Z.; Yan, J.; Kang, H.; Kim, Y.; Zhu, Z.; Tan, W. Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal. Chem., 2008, 80(19), 7408-7413.
[http://dx.doi.org/10.1021/ac801118p] [PMID: 18771233]
[129]
Hakimi, M.; Alimard, P. Graphene: synthesis and applications in biotechnology-a review. World Appl. Program., 2012, 2(6), 377-388.
[130]
Hu, H.; Yu, J.; Li, Y.; Zhao, J.; Dong, H. Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. A, 2012, 100(1), 141-148.
[http://dx.doi.org/10.1002/jbm.a.33252] [PMID: 21997951]
[131]
Zhang, R.; Hummelgård, M.; Lv, G.; Olin, H. Real time monitoring of the drug release of rhodamine B on graphene oxide. Carbon, 2011, 49(4), 1126-1132.
[http://dx.doi.org/10.1016/j.carbon.2010.11.026]
[132]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[133]
Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57(7), 1061-1105.
[http://dx.doi.org/10.1016/j.pmatsci.2012.03.002]
[134]
Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol., 2012, 25(1), 15-34.
[http://dx.doi.org/10.1021/tx200339h] [PMID: 21954945]
[135]
Ruiz, O.N.; Fernando, K.A.; Wang, B.; Brown, N.A.; Luo, P.G.; McNamara, N.D.; Vangsness, M.; Sun, Y-P.; Bunker, C.E. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano, 2011, 5(10), 8100-8107.
[http://dx.doi.org/10.1021/nn202699t] [PMID: 21932790]
[136]
Bussy, C.; Ali-Boucetta, H.; Kostarelos, K. Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc. Chem. Res., 2013, 46(3), 692-701.
[http://dx.doi.org/10.1021/ar300199e] [PMID: 23163827]
[137]
Li, D.; Müller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol., 2008, 3(2), 101-105.
[http://dx.doi.org/10.1038/nnano.2007.451] [PMID: 18654470]
[138]
Chen, J-T.; Fu, Y-J.; An, Q-F.; Lo, S-C.; Huang, S-H.; Hung, W-S.; Hu, C-C.; Lee, K-R.; Lai, J-Y. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films. Nanoscale, 2013, 5(19), 9081-9088.
[http://dx.doi.org/10.1039/c3nr02845c] [PMID: 23900571]
[139]
Wang, D-Y. Photoluminescence quenching of graphene oxide by metal ions in aqueous media. Carbon, 2015, 82, 24-30.
[http://dx.doi.org/10.1016/j.carbon.2014.10.017]
[140]
Mao, H.Y.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.A.; Mahmoudi, M. Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev., 2013, 113(5), 3407-3424.
[http://dx.doi.org/10.1021/cr300335p] [PMID: 23452512]
[141]
Wate, P.S.; Banerjee, S.S.; Jalota-Badhwar, A.; Mascarenhas, R.R.; Zope, K.R.; Khandare, J.; Misra, R.D.K. Cellular imaging using biocompatible dendrimer-functionalized graphene oxide-based fluorescent probe anchored with magnetic nanoparticles. Nanotechnology, 2012, 23(41)415101
[http://dx.doi.org/10.1088/0957-4484/23/41/415101] [PMID: 23010805]
[142]
Vila, M.; Portolés, M.T.; Marques, P.A.; Feito, M.J.; Matesanz, M.C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S.M.; Nieto, A.; Vallet-Regi, M. Cell uptake survey of pegylated nanographene oxide. Nanotechnology, 2012, 23(46)465103
[http://dx.doi.org/10.1088/0957-4484/23/46/465103] [PMID: 23093209]
[143]
Kim, H.; Lee, D.; Kim, J.; Kim, T.I.; Kim, W.J. Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano, 2013, 7(8), 6735-6746.
[http://dx.doi.org/10.1021/nn403096s] [PMID: 23829596]
[144]
Chowdhury, I.; Duch, M.C.; Mansukhani, N.D.; Hersam, M.C.; Bouchard, D. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Environ. Sci. Technol., 2014, 48(2), 961-969.
[http://dx.doi.org/10.1021/es403247k] [PMID: 24345218]
[145]
Liao, K-H.; Lin, Y-S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces, 2011, 3(7), 2607-2615.
[http://dx.doi.org/10.1021/am200428v] [PMID: 21650218]
[146]
Martín del Valle, E.M.; Galan, M.A.; Carbonell, R.G. Drug delivery technologies: the way forward in the new decade. Ind. Eng. Chem. Res., 2009, 48(5), 2475-2486.
[http://dx.doi.org/10.1021/ie800886m]
[147]
He, D.; He, X.; Wang, K.; Zou, Z.; Yang, X.; Li, X. Remote-controlled drug release from graphene oxide-capped mesoporous silica to cancer cells by photoinduced pH-jump activation. Langmuir, 2014, 30(24), 7182-7189.
[http://dx.doi.org/10.1021/la501075c] [PMID: 24924411]
[148]
Weaver, C.L.; LaRosa, J.M.; Luo, X.; Cui, X.T. Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano, 2014, 8(2), 1834-1843.
[http://dx.doi.org/10.1021/nn406223e] [PMID: 24428340]
[149]
Kurapati, R.; Raichur, A.M. Near-infrared light-responsive graphene oxide composite multilayer capsules: a novel route for remote controlled drug delivery. Chem. Commun. (Camb.), 2013, 49(7), 734-736.
[http://dx.doi.org/10.1039/C2CC38417E] [PMID: 23232330]
[150]
Zhao, X.; Liu, L.; Li, X.; Zeng, J.; Jia, X.; Liu, P. Biocompatible graphene oxide nanoparticle-based drug delivery platform for tumor microenvironment-responsive triggered release of doxorubicin. Langmuir, 2014, 30(34), 10419-10429.
[http://dx.doi.org/10.1021/la502952f] [PMID: 25109617]
[151]
Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2011, 49(3), 986-995.
[http://dx.doi.org/10.1016/j.carbon.2010.11.005]
[152]
Nasongkla, N.; Shuai, X.; Ai, H.; Weinberg, B.D.; Pink, J.; Boothman, D.A.; Gao, J. cRGD-functionalized polymer micelles for targeted doxorubicin delivery. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6323-6327.
[http://dx.doi.org/10.1002/anie.200460800] [PMID: 15558662]
[153]
Daniels, T.R.; Delgado, T.; Helguera, G.; Penichet, M.L. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin. Immunol., 2006, 121(2), 159-176.
[http://dx.doi.org/10.1016/j.clim.2006.06.006] [PMID: 16920030]
[154]
Dinauer, N.; Balthasar, S.; Weber, C.; Kreuter, J.; Langer, K.; von Briesen, H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials, 2005, 26(29), 5898-5906.
[http://dx.doi.org/10.1016/j.biomaterials.2005.02.038] [PMID: 15949555]
[155]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[156]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
[157]
Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem., 2011, 21(10), 3448-3454.
[http://dx.doi.org/10.1039/C0JM02494E]
[158]
Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X.M. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(49), 11644-11648.
[http://dx.doi.org/10.1002/anie.201105573] [PMID: 21990208]
[159]
Slichenmyer, W.J.; Rowinsky, E.K.; Donehower, R.C.; Kaufmann, S.H. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst., 1993, 85(4), 271-291.
[http://dx.doi.org/10.1093/jnci/85.4.271] [PMID: 8381186]
[160]
Li, Q-Y.; Zu, Y-G.; Shi, R-Z.; Yao, L-P. Review camptothecin: current perspectives. Curr. Med. Chem., 2006, 13(17), 2021-2039.
[http://dx.doi.org/10.2174/092986706777585004] [PMID: 16842195]
[161]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[162]
Sahoo, N.G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H.K.F.; Li, L.; Tan, L.P. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. (Camb.), 2011, 47(18), 5235-5237.
[http://dx.doi.org/10.1039/c1cc00075f] [PMID: 21451845]
[163]
Pan, Y.; Bao, H.; Sahoo, N.G.; Wu, T.; Li, L. Water‐soluble poly (N‐isopropylacrylamide)–graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater., 2011, 21(14), 2754-2763.
[http://dx.doi.org/10.1002/adfm.201100078]
[164]
Rana, V.K.; Choi, M.C.; Kong, J.Y.; Kim, G.Y.; Kim, M.J.; Kim, S.H.; Mishra, S.; Singh, R.P.; Ha, C.S. Synthesis and drug‐delivery behavior of chitosan‐functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng., 2011, 296(2), 131-140.
[http://dx.doi.org/10.1002/mame.201000307]
[165]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[166]
Kim, H.; Namgung, R.; Singha, K.; Oh, I-K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem., 2011, 22(12), 2558-2567.
[http://dx.doi.org/10.1021/bc200397j] [PMID: 22034966]
[167]
Liu, J.; Guo, S.; Han, L.; Wang, T.; Hong, W.; Liu, Y.; Wang, E. Synthesis of phospholipid monolayer membrane functionalized graphene for drug delivery. J. Mater. Chem., 2012, 22(38), 20634-20640.
[http://dx.doi.org/10.1039/c2jm34494g]
[168]
Jing, Y.; Zhu, Y.; Yang, X.; Shen, J.; Li, C. Ultrasound-triggered smart drug release from multifunctional core-shell capsules one-step fabricated by coaxial electrospray method. Langmuir, 2011, 27(3), 1175-1180.
[http://dx.doi.org/10.1021/la1042734] [PMID: 21182239]
[169]
Bai, H.; Li, C.; Wang, X.; Shi, G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun. (Camb.), 2010, 46(14), 2376-2378.
[http://dx.doi.org/10.1039/c000051e] [PMID: 20309457]
[170]
Kakran, M.; Sahoo, N.G.; Bao, H.; Pan, Y.; Li, L. Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic Acid. Curr. Med. Chem., 2011, 18(29), 4503-4512.
[http://dx.doi.org/10.2174/092986711797287548] [PMID: 21864287]
[171]
Wu, J.; Wang, Y.S.; Yang, X.Y.; Liu, Y.Y.; Yang, J.R.; Yang, R.; Zhang, N. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology, 2012, 23(35)355101
[http://dx.doi.org/10.1088/0957-4484/23/35/355101] [PMID: 22875697]
[172]
Lu, Y-J.; Yang, H-W.; Hung, S-C.; Huang, C-Y.; Li, S-M.; Ma, C-C.M.; Chen, P-Y.; Tsai, H-C.; Wei, K-C.; Chen, J-P. Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int. J. Nanomedicine, 2012, 7, 1737-1747.
[PMID: 22619524]
[173]
Jäger, M.; Schubert, S.; Ochrimenko, S.; Fischer, D.; Schubert, U.S. Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem. Soc. Rev., 2012, 41(13), 4755-4767.
[http://dx.doi.org/10.1039/c2cs35146c] [PMID: 22648524]
[174]
Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7(4), 460-464.
[http://dx.doi.org/10.1002/smll.201001522] [PMID: 21360803]
[175]
Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N.G.; Wu, T.; Li, L.; Li, J.; Gan, L.H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small, 2011, 7(11), 1569-1578.
[http://dx.doi.org/10.1002/smll.201100191] [PMID: 21538871]
[176]
Vashist, S.K.; Zheng, D.; Pastorin, G.; Al-Rubeaan, K.; Luong, J.H.; Sheu, F-S. Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 2011, 49(13), 4077-4097.
[http://dx.doi.org/10.1016/j.carbon.2011.05.049]
[177]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9(6), 674-679.
[http://dx.doi.org/10.1016/j.cbpa.2005.10.005] [PMID: 16233988]
[178]
Banks, C.E.; Crossley, A.; Salter, C.; Wilkins, S.J.; Compton, R.G. Carbon nanotubes contain metal impurities which are responsible for the “electrocatalysis” seen at some nanotube-modified electrodes. Angew. Chem. Int. Ed. Engl., 2006, 45(16), 2533-2537.
[http://dx.doi.org/10.1002/anie.200600033] [PMID: 16544355]
[179]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S-T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[180]
Depan, D.; Shah, J.; Misra, R. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C, 2011, 31(7), 1305-1312.
[http://dx.doi.org/10.1016/j.msec.2011.04.010]
[181]
Liu, K.; Zhang, J-J.; Cheng, F-F.; Zheng, T-T.; Wang, C.; Zhu, J-J. Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem., 2011, 21(32), 12034-12040.
[http://dx.doi.org/10.1039/c1jm10749f]
[182]
Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C, 2008, 112(45), 17554-17558.
[http://dx.doi.org/10.1021/jp806751k]
[183]
Yang, Y.; Zhang, Y.M.; Chen, Y.; Zhao, D.; Chen, J.T.; Liu, Y. Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery. Chemistry, 2012, 18(14), 4208-4215.
[http://dx.doi.org/10.1002/chem.201103445] [PMID: 22374621]
[184]
Ma, D.; Lin, J.; Chen, Y.; Xue, W.; Zhang, L-M. In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets. Carbon, 2012, 50(8), 3001-3007.
[http://dx.doi.org/10.1016/j.carbon.2012.02.083]
[185]
Wen, H.; Dong, C.; Dong, H.; Shen, A.; Xia, W.; Cai, X.; Song, Y.; Li, X.; Li, Y.; Shi, D. Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery. Small, 2012, 8(5), 760-769.
[http://dx.doi.org/10.1002/smll.201101613] [PMID: 22228696]
[186]
Zheng, X.T.; Li, C.M. Restoring basal planes of graphene oxides for highly efficient loading and delivery of β-lapachone. Mol. Pharm., 2012, 9(3), 615-621.
[http://dx.doi.org/10.1021/mp2005356] [PMID: 22264154]
[187]
Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res., 2012, 5(3), 199-212.
[http://dx.doi.org/10.1007/s12274-012-0200-y]
[188]
Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem., 2009, 19(18), 2710-2714.
[http://dx.doi.org/10.1039/b821416f]
[189]
Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2), 159-168.
[http://dx.doi.org/10.1021/tx400385x] [PMID: 24422439]
[190]
Faria, A.F.; Martinez, D.S.T.; Moraes, A.C.; Maia da Costa, M.E.; Barros, E.B.; Souza Filho, A.G.; Paula, A.J.; Alves, O.L. Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem. Mater., 2012, 24(21), 4080-4087.
[http://dx.doi.org/10.1021/cm301939s]
[191]
Papanikolaou, G.; Pantopoulos, K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol., 2005, 202(2), 199-211.
[http://dx.doi.org/10.1016/j.taap.2004.06.021] [PMID: 15629195]
[192]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[193]
Guo, L.; Morris, D.G.; Liu, X.; Vaslet, C.; Hurt, R.H.; Kane, A.B. Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem. Mater., 2007, 19(14), 3472-3478.
[http://dx.doi.org/10.1021/cm062691p]
[194]
Li, J.; Zhang, X.; Jiang, J.; Wang, Y.; Jiang, H.; Zhang, J.; Nie, X.; Liu, B. Systematic assessment of the toxicity and potential mechanism of graphene derivatives in vitro and in vivo. Toxicol. Sci., 2019, 67(1), 269-281.
[http://dx.doi.org/10.1093/toxsci/kfy235] [PMID: 30239936]
[195]
Koyama, S.; Kim, Y.A.; Hayashi, T.; Takeuchi, K.; Fujii, C.; Kuroiwa, N.; Koyama, H.; Tsukahara, T.; Endo, M. In vivo immunological toxicity in mice of carbon nanotubes with impurities. Carbon, 2009, 47(5), 1365-1372.
[http://dx.doi.org/10.1016/j.carbon.2009.01.028]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy