Review Article

基于乙酰胆碱酯酶和丁酰胆碱酯酶的病理状态的诊断

卷 27, 期 18, 2020

页: [2994 - 3011] 页: 18

弟呕挨: 10.2174/0929867326666190130161202

价格: $65

摘要

两种胆碱酯酶存在:乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE)。AChE在神经传递中起着至关重要的作用,而BChE除了可以解毒一些药物和植物的次生代谢产物外,并没有特殊的功能。因此,AChE和BChE都可以作为多种病理的生化标志物。神经毒剂如沙林、索曼、塔本、VX、诺维乔克的中毒,以及阿尔茨海默病、重症肌无力等神经退行性疾病的药物过量,以及有机磷农药中毒,都与这个问题有关。但这些酶的变化似乎发生在其他过程中,包括氧化应激、炎症、某些类型的癌症和遗传性疾病。本文介绍了胆碱酯酶的研究进展,阐述了胆碱酯酶抑制剂的作用机理,并阐述了胆碱酯酶与疾病的关系。

关键词: 乙酰胆碱酯酶,麻醉,丁酰胆碱酯酶,诊断,肝功能检查,肌松药,神经毒剂,神经传递,农药,中毒。

[1]
de los Ríos, C. Cholinesterase inhibitors: a patent review (2007 - 2011). Expert Opin. Ther. Pat., 2012, 22(8), 853-869.
[http://dx.doi.org/10.1517/13543776.2012.701619] [PMID: 22764681]
[2]
Deardorff, W.J.; Feen, E.; Grossberg, G.T. The use of cholinesterase inhibitors across all stages of alzheimer’s disease. Drugs Aging, 2015, 32(7), 537-547.
[http://dx.doi.org/10.1007/s40266-015-0273-x] [PMID: 26033268]
[3]
Di Stefano, A.; Iannitelli, A.; Laserra, S.; Sozio, P. Drug delivery strategies for Alzheimer’s disease treatment. Expert Opin. Drug Deliv., 2011, 8(5), 581-603.
[http://dx.doi.org/10.1517/17425247.2011.561311] [PMID: 21391862]
[4]
Ehret, M.J.; Chamberlin, K.W. Current practices in the treatment of alzheimer disease: where is the evidence after the phase III Trials? Clin. Ther., 2015, 37(8), 1604-1616.
[http://dx.doi.org/10.1016/j.clinthera.2015.05.510] [PMID: 26122885]
[5]
Krall, W.J.; Sramek, J.J.; Cutler, N.R. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann. Pharmacother., 1999, 33(4), 441-450.
[http://dx.doi.org/10.1345/aph.18211] [PMID: 10332536]
[6]
Pohanka, M. Acetylcholinesterase inhibitors: a patent review (2008 - present). Expert Opin. Ther. Pat., 2012, 22(8), 871-886.
[http://dx.doi.org/10.1517/13543776.2012.701620] [PMID: 22768972]
[7]
Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2011, 155(3), 219-229.
[http://dx.doi.org/10.5507/bp.2011.036] [PMID: 22286807]
[8]
Young, R.A.; Opresko, D.M.; Watson, A.P.; Ross, R.H.; King, J.; Choudhury, H. Deriving toxicity values for organophosphate nerve agents: A position paper in support of the procedures and rationale for deriving oral RfDs for chemical warfare nerve agents. Hum. Ecol. Risk Assess., 1999, 5(3), 589-634.
[http://dx.doi.org/10.1080/10807039991289554]
[9]
Jokanović, M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett., 2009, 190(2), 107-115.
[http://dx.doi.org/10.1016/j.toxlet.2009.07.025] [PMID: 19651196]
[10]
Cannard, K. The acute treatment of nerve agent exposure. J. Neurol. Sci., 2006, 249(1), 86-94.
[http://dx.doi.org/10.1016/j.jns.2006.06.008] [PMID: 16945386]
[11]
Pope, C.N.; Brimijoin, S. Cholinesterases and the fine line between poison and remedy. Biochem. Pharmacol., 2018, 153(18), 205-216.
[http://dx.doi.org/10.1016/j.bcp.2018.01.044] [PMID: 29409903]
[12]
Thapa, S.; Lv, M.; Xu, H. Acetylcholinesterase: a primary target for drugs and insecticides. Mini Rev. Med. Chem., 2017, 17(17), 1665-1676.
[http://dx.doi.org/10.2174/1389557517666170120153930] [PMID: 28117022]
[13]
Loewi, O. Uber humorale ubertragbarkeit der Hernervenwirkung. I Mitt. Pflugers Arch., 1921, 189, 239-242.
[http://dx.doi.org/10.1007/BF01738910]
[14]
Sheng, Y.; Zhu, L. The crosstalk between autonomic nervous system and blood vessels. Int. J. Physiol. Pathophysiol. Pharmacol., 2018, 10(1), 17-28.
[PMID: 29593847]
[15]
Nishimune, H.; Shigemoto, K. Practical anatomy of the neuromuscular junction in health and disease. Neurol. Clin., 2018, 36(2), 231-240.
[http://dx.doi.org/10.1016/j.ncl.2018.01.009] [PMID: 29655446]
[16]
Woolf, N.J.; Butcher, L.L. Cholinergic systems mediate action from movement to higher consciousness. Behav. Brain Res., 2011, 221(2), 488-498.
[http://dx.doi.org/10.1016/j.bbr.2009.12.046] [PMID: 20060422]
[17]
Hepple, R.T.; Rice, C.L. Innervation and neuromuscular control in ageing skeletal muscle. J. Physiol., 2016, 594(8), 1965-1978.
[http://dx.doi.org/10.1113/JP270561] [PMID: 26437581]
[18]
Plomp, J.J.; Huijbers, M.G.M.; Verschuuren, J.J.G.M. Neuromuscular synapse electrophysiology in myasthenia gravis animal models. Ann. N. Y. Acad. Sci., 2018, 1412(1), 146-153.
[http://dx.doi.org/10.1111/nyas.13507] [PMID: 29068559]
[19]
Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci., 2014, 15(6), 9809-9825.
[http://dx.doi.org/10.3390/ijms15069809] [PMID: 24893223]
[20]
Tonhajzerova, I.; Mokra, D.; Visnovcova, Z. Vagal function indexed by respiratory sinus arrhythmia and cholinergic anti-inflammatory pathway. Respir. Physiol. Neurobiol., 2013, 187(1), 78-81.
[http://dx.doi.org/10.1016/j.resp.2013.02.002] [PMID: 23410913]
[21]
Rosas-Ballina, M.; Tracey, K.J. Cholinergic control of inflammation. J. Intern. Med., 2009, 265(6), 663-679.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02098.x] [PMID: 19493060]
[22]
Pohanka, M. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int. J. Mol. Sci., 2012, 13(2), 2219-2238.
[http://dx.doi.org/10.3390/ijms13022219] [PMID: 22408449]
[23]
Dorko, F.; Danko, J.; Flešárová, S.; Boroš, E.; Sobeková, A. Effect of pesticide bendiocarbamate on distribution of acetylcholine- and butyrylcholine-positive nerves in rabbit’s thymus. Eur. J. Histochem., 2011, 55(4)e37
[http://dx.doi.org/10.4081/ejh.2011.e37] [PMID: 22297443]
[24]
Murabayashi, H.; Kuramoto, H.; Ishikawa, K.; Iwamoto, J.; Miyakawa, K.; Tanaka, K.; Sekikawa, M.; Sasaki, M.; Kitamura, N.; Oomori, Y. Acetylcholinesterase activity, choline acetyltransferase and vesicular acetylcholine transporter immunoreactivities in the rat adrenal gland during postnatal development. Anat. Rec. (Hoboken), 2009, 292(3), 371-380.
[http://dx.doi.org/10.1002/ar.20856] [PMID: 19248156]
[25]
Kawashima, K.; Fujii, T. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front. Biosci., 2004, 9, 2063-2085.
[http://dx.doi.org/10.2741/1390] [PMID: 15353271]
[26]
Snyder, D.A.; Kelly, M.L.; Woodbury, D.J. SNARE complex regulation by phosphorylation. Cell Biochem. Biophys., 2006, 45(1), 111-123.
[http://dx.doi.org/10.1385/CBB:45:1:111] [PMID: 16679567]
[27]
McMahon, H.T.; Missler, M.; Li, C.; Südhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell, 1995, 83(1), 111-119.
[http://dx.doi.org/10.1016/0092-8674(95)90239-2] [PMID: 7553862]
[28]
Searl, T.J.; Silinsky, E.M. Modulation of calcium-dependent and -independent acetylcholine release from motor nerve endings. J. Mol. Neurosci., 2006, 30(1-2), 215-218.
[http://dx.doi.org/10.1385/JMN:30:1:215] [PMID: 17192679]
[29]
Sharrad, D.F.; Gai, W.P.; Brookes, S.J. Selective coexpression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J. Comp. Neurol., 2013, 521(11), 2523-2537.
[http://dx.doi.org/10.1002/cne.23296] [PMID: 23296877]
[30]
Wess, J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol. Sci., 2003, 24(8), 414-420.
[http://dx.doi.org/10.1016/S0165-6147(03)00195-0] [PMID: 12915051]
[31]
Wu, J.; Gao, M.; Taylor, D.H. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Acta Pharmacol. Sin., 2014, 35(3), 311-315.
[http://dx.doi.org/10.1038/aps.2013.181] [PMID: 24464050]
[32]
Changeux, J.P. The nicotinic acetylcholine receptor: a typical ‘allosteric machine’. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1749)pii: 20170174
[http://dx.doi.org/10.1098/rstb.2017.0174] [PMID: 29735728]
[33]
Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol., 2018, 70(8), 985-993.
[http://dx.doi.org/10.1111/jphp.12919] [PMID: 29663387]
[34]
Dobransky, T.; Rylett, R.J. Functional regulation of choline acetyltransferase by phosphorylation. Neurochem. Res., 2003, 28(3-4), 537-542.
[http://dx.doi.org/10.1023/A:1022873323561] [PMID: 12675142]
[35]
Dobransky, T.; Rylett, R.J. A model for dynamic regulation of choline acetyltransferase by phosphorylation. J. Neurochem., 2005, 95(2), 305-313.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03367.x] [PMID: 16135099]
[36]
Anne, C.; Gasnier, B. Vesicular neurotransmitter transporters: mechanistic aspects. Curr. Top. Membr., 2014, 73, 149-174.
[http://dx.doi.org/10.1016/B978-0-12-800223-0.00003-7] [PMID: 24745982]
[37]
Lawal, H.O.; Krantz, D.E. SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol. Aspects Med., 2013, 34(2-3), 360-372.
[http://dx.doi.org/10.1016/j.mam.2012.07.005] [PMID: 23506877]
[38]
Brimijoin, S.; Chen, V.P.; Pang, Y.P.; Geng, L.; Gao, Y. Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem. Biol. Interact., 2016, 259(Pt B), 271-275.
[http://dx.doi.org/10.1016/j.cbi.2016.02.013]
[39]
Schuman, R.F.; Brimfield, A.A.; Hunter, K.W. A micro-method for the detection of butyrylcholinesterase secreted by hepatocytes in vitro. Biosci. Rep., 1984, 4(2), 149-154.
[http://dx.doi.org/10.1007/BF01120311] [PMID: 6713085]
[40]
Kutty, K.M.; Payne, R.H. Serum pseudocholinesterase and very-low-density lipoprotein metabolism. J. Clin. Lab. Anal., 1994, 8(4), 247-250.
[http://dx.doi.org/10.1002/jcla.1860080411] [PMID: 7931819]
[41]
Ostergaard, D.; Viby-Mogensen, J.; Hanel, H.K.; Skovgaard, L.T. Half-life of plasma cholinesterase. Acta Anaesthesiol. Scand., 1988, 32(3), 266-269.
[http://dx.doi.org/10.1111/j.1399-6576.1988.tb02727.x] [PMID: 3364151]
[42]
Zhan, C.G.; Zheng, F.; Landry, D.W. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc., 2003, 125(9), 2462-2474.
[http://dx.doi.org/10.1021/ja020850+] [PMID: 12603134]
[43]
Browne, S.P.; Slaughter, E.A.; Couch, R.A.; Rudnic, E.M.; McLean, A.M. The influence of plasma butyrylcholinesterase concentration on the in vitro hydrolysis of cocaine in human plasma. Biopharm. Drug Dispos., 1998, 19(5), 309-314.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199807)19:5<309:AID-BDD108>3.0.CO;2-9] [PMID: 9673783]
[44]
Qiao, Y.; Han, K.; Zhan, C.G. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin. Biochemistry, 2013, 52(37), 6467-6479.
[http://dx.doi.org/10.1021/bi400709v] [PMID: 23992153]
[45]
Hou, S.; Zhan, M.; Zheng, X.; Zhan, C.G.; Zheng, F. Kinetic characterization of human butyrylcholinesterase mutants for the hydrolysis of cocaethylene. Biochem. J., 2014, 460(3), 447-457.
[http://dx.doi.org/10.1042/BJ20140360] [PMID: 24870023]
[46]
Nana, A.; Cardan, E.; Cucuianu, M. Pseudocholinesterase changes in anesthesia using pancuronium. Acta Anaesthesiol. Belg., 1977, 28(3), 183-187.
[PMID: 612115]
[47]
Yuan, J.; Yin, J.; Wang, E. Characterization of procaine metabolism as probe for the butyrylcholinesterase enzyme investigation by simultaneous determination of procaine and its metabolite using capillary electrophoresis with electrochemiluminescence detection. J. Chromatogr. A, 2007, 1154(1-2), 368-372.
[http://dx.doi.org/10.1016/j.chroma.2007.02.024] [PMID: 17507024]
[48]
Monedero, P.; Hess, P. High epidural block with chloroprocaine in a parturient with low pseudocholinesterase activity. Can. J. Anaesth., 2001, 48(3), 318-319.
[http://dx.doi.org/10.1007/BF03019772] [PMID: 11305839]
[49]
Galenko-Yaroshevskii, A.P.; Derlugov, L.P.; Ponomarev, V.V.; Dukhanin, A.S. Pharmacokinetics and pharmacodynamics of a new local anesthetic agent. Bull. Exp. Biol. Med., 2003, 136(2), 170-173.
[http://dx.doi.org/10.1023/A:1026323124831] [PMID: 14631501]
[50]
Dubbels, R.; Schloot, W. Studies on the metabolism of benoxinate by human pseudocholinesterase. Metab. Pediatr. Syst. Ophthalmol., 1983, 7(1), 37-43.
[PMID: 6621359]
[51]
Masson, P.; Froment, M.T.; Fortier, P.L.; Visicchio, J.E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta, 1998, 1387(1-2), 41-52.
[http://dx.doi.org/10.1016/S0167-4838(98)00104-6] [PMID: 9748494]
[52]
Zhou, G.; Marathe, G.K.; Hartiala, J.; Hazen, S.L.; Allayee, H.; Tang, W.H.; McIntyre, T.M. Aspirin hydrolysis in plasma is a variable function of butyrylcholinesterase and platelet-activating factor acetylhydrolase 1b2 (PAFAH1b2). J. Biol. Chem., 2013, 288(17), 11940-11948.
[http://dx.doi.org/10.1074/jbc.M112.427674] [PMID: 23508960]
[53]
Albertí, J.; Martinet, A.; Sentellas, S.; Salvà, M. Identification of the human enzymes responsible for the enzymatic hydrolysis of aclidinium bromide. Drug Metab. Dispos., 2010, 38(7), 1202-1210.
[http://dx.doi.org/10.1124/dmd.109.031724] [PMID: 20332199]
[54]
Ammundsen, H.B.; Sørensen, M.K.; Gätke, M.R. Succinylcholine resistance. Br. J. Anaesth., 2015, 115(6), 818-821.
[http://dx.doi.org/10.1093/bja/aev228] [PMID: 26183168]
[55]
Wichmann, S.; Færk, G.; Bundgaard, J.R.; Gätke, M.R. Patients with prolonged effect of succinylcholine or mivacurium had novel mutations in the butyrylcholinesterase gene. Pharmacogenet. Genomics, 2016, 26(7), 351-356.
[http://dx.doi.org/10.1097/FPC.0000000000000221] [PMID: 27031121]
[56]
Gätke, M.R.; Bundgaard, J.R.; Viby-Mogensen, J. Two novel mutations in the BCHE gene in patients with prolonged duration of action of mivacurium or succinylcholine during anaesthesia. Pharmacogenet. Genomics, 2007, 17(11), 995-999.
[http://dx.doi.org/10.1097/FPC.0b013e3282f06646] [PMID: 18075469]
[57]
Dafferner, A.J.; Lushchekina, S.; Masson, P.; Xiao, G.; Schopfer, L.M.; Lockridge, O. Characterization of butyrylcholinesterase in bovine serum. Chem. Biol. Interact., 2017, 266, 17-27.
[http://dx.doi.org/10.1016/j.cbi.2017.02.004] [PMID: 28189703]
[58]
Ruiz, C.A.; Rossi, S.G.; Rotundo, R.L. Rescue and stabilization of acetylcholinesterase in skeletal muscle by N-terminal peptides derived from the noncatalytic subunits. J. Biol. Chem., 2015, 290(34), 20774-20781.
[http://dx.doi.org/10.1074/jbc.M115.653741] [PMID: 26139603]
[59]
Jiang, S.; Wang, X.; Xi, R.; Zhang, Y. Research on the regulation of the spatial structure of acetylcholinesterase tetramer with high efficiency by AFM. Int. J. Nanomedicine, 2013, 8, 1095-1102.
[http://dx.doi.org/10.2147/IJN.S41591] [PMID: 23515568]
[60]
Gorfe, A.A.; Chang, C.E.; Ivanov, I.; McCammon, J.A. Dynamics of the acetylcholinesterase tetramer. Biophys. J., 2008, 94(4), 1144-1154.
[http://dx.doi.org/10.1529/biophysj.107.117879] [PMID: 17921202]
[61]
Xu, M.L.; Luk, W.K.W.; Bi, C.W.C.; Liu, E.Y.L.; Wu, K.Q.Y.; Yao, P.; Dong, T.T.X.; Tsim, K.W.K. Erythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J. Neurochem., 2018, 146(4), 390-402.
[http://dx.doi.org/10.1111/jnc.14448] [PMID: 29675901]
[62]
Shafferman, A.; Kronman, C.; Flashner, Y.; Leitner, M.; Grosfeld, H.; Ordentlich, A.; Gozes, Y.; Cohen, S.; Ariel, N.; Barak, D.; Harel, M.; Silman, I.; Sussman, J.L.; Velan, B. Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. J. Biol. Chem., 1992, 267(25), 17640-17648.
[PMID: 1517212]
[63]
Arredondo, J.; Lara, M.; Ng, F.; Gochez, D.A.; Lee, D.C.; Logia, S.P.; Nguyen, J.; Maselli, R.A. COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum. Genet., 2014, 133(5), 599-616.
[http://dx.doi.org/10.1007/s00439-013-1391-3] [PMID: 24281389]
[64]
Ohno, K.; Ito, M.; Kawakami, Y.; Krejci, E.; Engel, A.G. Specific binding of collagen Q to the neuromuscular junction is exploited to cure congenital myasthenia and to explore bases of myasthenia gravis. Chem. Biol. Interact., 2013, 203(1), 335-340.
[http://dx.doi.org/10.1016/j.cbi.2012.08.020] [PMID: 22981737]
[65]
Sigoillot, S.M.; Bourgeois, F.; Lambergeon, M.; Strochlic, L.; Legay, C. ColQ controls postsynaptic differentiation at the neuromuscular junction. J. Neurosci., 2010, 30(1), 13-23.
[http://dx.doi.org/10.1523/JNEUROSCI.4374-09.2010] [PMID: 20053883]
[66]
Tsui, C.C.; Gabreski, N.A.; Hein, S.J.; Pierchala, B.A. Lipid rafts are physiologic membrane microdomains necessary for the morphogenic and developmental functions of glial cell line-derived neurotrophic factor in vivo. J. Neurosci., 2015, 35(38), 13233-13243.
[http://dx.doi.org/10.1523/JNEUROSCI.2935-14.2015] [PMID: 26400951]
[67]
Kakani, E.G.; Bon, S.; Massoulié, J.; Mathiopoulos, K.D. Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochem. Mol. Biol., 2011, 41(3), 150-158.
[http://dx.doi.org/10.1016/j.ibmb.2010.11.005] [PMID: 21112395]
[68]
Bucht, G.; Wikström, P.; Hjalmarsson, K. Optimising the signal peptide for glycosyl phosphatidylinositol modification of human acetylcholinesterase using mutational analysis and peptide-quantitative structure-activity relationships. Biochim. Biophys. Acta, 1999, 1431(2), 471-482.
[http://dx.doi.org/10.1016/S0167-4838(99)00079-5] [PMID: 10350622]
[69]
Arsov, Z.; Schara, M.; Zorko, M.; Strancar, J. The membrane lateral domain approach in the studies of lipid-protein interaction of GPI-anchored bovine erythrocyte acetylcholinesterase. Eur. Biophys. J., 2004, 33(8), 715-725.
[http://dx.doi.org/10.1007/s00249-004-0417-0] [PMID: 15241570]
[70]
Chen, V.P.; Xie, H.Q.; Chan, W.K.; Leung, K.W.; Chan, G.K.; Choi, R.C.; Bon, S.; Massoulié, J.; Tsim, K.W. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain. J. Biol. Chem., 2010, 285(35), 27265-27278.
[http://dx.doi.org/10.1074/jbc.M110.113647] [PMID: 20566626]
[71]
Chen, V.P.; Choi, R.C.; Chan, W.K.; Leung, K.W.; Guo, A.J.; Chan, G.K.; Luk, W.K.; Tsim, K.W. The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization. J. Biol. Chem., 2011, 286(38), 32948-32961.
[http://dx.doi.org/10.1074/jbc.M111.261248] [PMID: 21795704]
[72]
Hicks, D.A.; Makova, N.Z.; Nalivaeva, N.N.; Turner, A.J. Characterisation of acetylcholinesterase release from neuronal cells. Chem. Biol. Interact., 2013, 203(1), 302-308.
[http://dx.doi.org/10.1016/j.cbi.2012.09.019] [PMID: 23047022]
[73]
Petrov, K. Macrocyclic derivatives of 6-methyluracil: New ligands of the peripheral anionic site of acetylcholinesterase. Int. J. Risk Saf. Med., 2015, 27(1)(Suppl. 1), S72-S73.
[http://dx.doi.org/10.3233/JRS-150695] [PMID: 26639720]
[74]
Nawaz, S.A.; Ayaz, M.; Brandt, W.; Wessjohann, L.A.; Westermann, B. Cation-π and π-π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochem. Biophys. Res. Commun., 2011, 404(4), 935-940.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.084] [PMID: 21185266]
[75]
Kilic, B.; Gulcan, H.O.; Aksakal, F.; Ercetin, T.; Oruklu, N.; Umit Bagriacik, E.; Dogruer, D.S. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase. Bioorg. Chem., 2018, 79, 235-249.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.006] [PMID: 29775949]
[76]
Skibiński, R.; Czarnecka, K.; Girek, M.; Bilichowski, I.; Chufarova, N.; Mikiciuk-Olasik, E.; Szymański, P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem. Biol. Drug Des., 2018, 91(2), 505-518.
[http://dx.doi.org/10.1111/cbdd.13111] [PMID: 28944565]
[77]
Masson, P.; Froment, M.T.; Bartels, C.F.; Lockridge, O. Asp7O in the peripheral anionic site of human butyrylcholinesterase. Eur. J. Biochem., 1996, 235(1-2), 36-48.
[http://dx.doi.org/10.1111/j.1432-1033.1996.00036.x] [PMID: 8631355]
[78]
Johnson, G.; Moore, S.W. The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des., 2006, 12(2), 217-225.
[http://dx.doi.org/10.2174/138161206775193127] [PMID: 16454738]
[79]
Barak, D.; Kronman, C.; Ordentlich, A.; Ariel, N.; Bromberg, A.; Marcus, D.; Lazar, A.; Velan, B.; Shafferman, A. Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J. Biol. Chem., 1994, 269(9), 6296-6305.
[PMID: 8119978]
[80]
Saxena, A.; Redman, A.M.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 1997, 36(48), 14642-14651.
[http://dx.doi.org/10.1021/bi971425+] [PMID: 9398183]
[81]
Ranjan, A.; Kumar, A.; Gulati, K.; Thakur, S.; Jindal, T. Role of aromatic amino acids in stabilizing organophosphate and human acetylcholinesterase Complex. J. Curr. Pharm. Res., 2015, 5(4), 1632-1639.
[http://dx.doi.org/10.33786/JCPR.2015.v05i04.006]
[82]
Colović, M.B.; Krstić, D.Z.; Lazarević-Pašti, T.D.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol., 2013, 11(3), 315-335.
[http://dx.doi.org/10.2174/1570159X11311030006] [PMID: 24179466]
[83]
Zhang, Y.; Kua, J.; McCammon, J.A. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J. Am. Chem. Soc., 2002, 124(35), 10572-10577.
[http://dx.doi.org/10.1021/ja020243m] [PMID: 12197759]
[84]
Bai, D.L.; Tang, X.C.; He, X.C.; Huperzine, A. Huperzine A, a potential therapeutic agent for treatment of Alzheimer’s disease. Curr. Med. Chem., 2000, 7(3), 355-374.
[http://dx.doi.org/10.2174/0929867003375281] [PMID: 10637369]
[85]
Zhang, J.M.; Hu, G.Y.; Huperzine, A. Huperzine A, a nootropic alkaloid, inhibits N-methyl-D-aspartate-induced current in rat dissociated hippocampal neurons. Neuroscience, 2001, 105(3), 663-669.
[http://dx.doi.org/10.1016/S0306-4522(01)00206-8] [PMID: 11516831]
[86]
Tayeb, H.O.; Yang, H.D.; Price, B.H.; Tarazi, F.I. Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Ther., 2012, 134(1), 8-25.
[http://dx.doi.org/10.1016/j.pharmthera.2011.12.002] [PMID: 22198801]
[87]
Cheewakriengkrai, L.; Gauthier, S. A 10-year perspective on donepezil. Expert Opin. Pharmacother., 2013, 14(3), 331-338.
[http://dx.doi.org/10.1517/14656566.2013.760543] [PMID: 23316713]
[88]
Teponnou, G.A.K.; Joubert, J.; Malan, S.F. Tacrine, trolox and tryptoline as lead compounds for the design and synthesis of multi-target agents for alzheimer’s disease therapy. Open Med. Chem. J., 2017, 11, 24-37.
[http://dx.doi.org/10.2174/1874104501711010024] [PMID: 28567126]
[89]
Pohanka, M. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ. Toxicol. Pharmacol., 2014, 37(1), 455-459.
[http://dx.doi.org/10.1016/j.etap.2014.01.001] [PMID: 24473150]
[90]
Pohanka, M.; Dobes, P. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. Int. J. Mol. Sci., 2013, 14(5), 9873-9882.
[http://dx.doi.org/10.3390/ijms14059873] [PMID: 23698772]
[91]
Pohanka, M. The effects of caffeine on the cholinergic system. Mini Rev. Med. Chem., 2014, 14(6), 543-549.
[http://dx.doi.org/10.2174/1389557514666140529223436] [PMID: 24873820]
[92]
Cometa, M.F.; Lorenzini, P.; Fortuna, S.; Volpe, M.T.; Meneguz, A.; Palmery, M. In vitro inhibitory effect of aflatoxin B1 on acetylcholinesterase activity in mouse brain. Toxicology, 2005, 206(1), 125-135.
[http://dx.doi.org/10.1016/j.tox.2004.07.009] [PMID: 15590113]
[93]
Arduini, F.; Errico, I.; Amine, A.; Micheli, L.; Palleschi, G.; Moscone, D. Enzymatic spectrophotometric method for aflatoxin B detection based on acetylcholinesterase inhibition. Anal. Chem., 2007, 79(9), 3409-3415.
[http://dx.doi.org/10.1021/ac061819j] [PMID: 17408242]
[94]
McGehee, D.S.; Krasowski, M.D.; Fung, D.L.; Wilson, B.; Gronert, G.A.; Moss, J. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology, 2000, 93(2), 510-519.
[http://dx.doi.org/10.1097/00000542-200008000-00031] [PMID: 10910502]
[95]
Lilienfeld, S. Galantamine--a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev., 2002, 8(2), 159-176.
[http://dx.doi.org/10.1111/j.1527-3458.2002.tb00221.x] [PMID: 12177686]
[96]
Mashkovsky, M.D.; Kruglikova-Lvova, R.P. On the pharmacology of the new alkaloid galantamine. Farmakologiea Toxicologia (Moscow), 1951, 14, 27-30.
[97]
Takata, K.; Kitamura, Y.; Saeki, M.; Terada, M.; Kagitani, S.; Kitamura, R.; Fujikawa, Y.; Maelicke, A.; Tomimoto, H.; Taniguchi, T.; Shimohama, S. Galantamine-induced amyloid-beta clearance mediated via stimulation of microglial nicotinic acetylcholine receptors. J. Biol. Chem., 2010, 285(51), 40180-40191.
[http://dx.doi.org/10.1074/jbc.M110.142356] [PMID: 20947502]
[98]
Rainer, M. Galanthamine in Alzheimer’s disease : a new alternative to tacrine? CNS Drugs, 1997, 7(2), 89-97.
[http://dx.doi.org/10.2165/00023210-199707020-00001] [PMID: 23338128]
[99]
Cavalli, A.; Bottegoni, G.; Raco, C.; De Vivo, M.; Recanatini, M. A computational study of the binding of propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem., 2004, 47(16), 3991-3999.
[http://dx.doi.org/10.1021/jm040787u] [PMID: 15267237]
[100]
Mazzanti, C.M.; Spanevello, R.M.; Obregon, A.; Pereira, L.B.; Streher, C.A.; Ahmed, M.; Mazzanti, A.; Graça, D.L.; Morsch, V.M.; Schetinger, M.R. Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro. Chem. Biol. Interact., 2006, 162(2), 121-127.
[http://dx.doi.org/10.1016/j.cbi.2006.05.013] [PMID: 16839531]
[101]
Zueva, I.V.; Semenov, V.E.; Mukhamedyarov, M.A.; Lushchekina, S.V.; Kharlamova, A.D.; Petukhova, E.O.; Mikhailov, A.S.; Podyachev, S.N.; Saifina, L.F.; Petrov, K.A.; Minnekhanova, O.A.; Zobov, V.V.; Nikolsky, E.E.; Masson, P.; Reznik, V.S. 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer’s disease. Int. J. Risk Saf. Med., 2015, 27(1)(Suppl. 1), S69-S71.
[http://dx.doi.org/10.3233/JRS-150694] [PMID: 26639718]
[102]
Martini, F.; Bruning, C.A.; Soares, S.M.; Nogueira, C.W.; Zeni, G. Inhibitory effect of ebselen on cerebral acetylcholinesterase activity in vitro: kinetics and reversibility of inhibition. Curr. Pharm. Des., 2015, 21(7), 920-924.
[http://dx.doi.org/10.2174/1381612820666141014124319] [PMID: 25312723]
[103]
da Silva Gonçalves, A.; França, T.C.; Vital de Oliveira, O. Computational studies of acetylcholinesterase complexed with fullerene derivatives: a new insight for Alzheimer disease treatment. J. Biomol. Struct. Dyn., 2016, 34(6), 1307-1316.
[http://dx.doi.org/10.1080/07391102.2015.1077345] [PMID: 26219766]
[104]
Kafurke, U.; Erijman, A.; Aizner, Y.; Shifman, J.M.; Eichler, J. Synthetic peptides mimicking the binding site of human acetylcholinesterase for its inhibitor fasciculin 2. J. Pept. Sci., 2015, 21(9), 723-730.
[http://dx.doi.org/10.1002/psc.2797] [PMID: 26200472]
[105]
Sharabi, O.; Peleg, Y.; Mashiach, E.; Vardy, E.; Ashani, Y.; Silman, I.; Sussman, J.L.; Shifman, J.M. Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase. Protein Eng. Des. Sel., 2009, 22(10), 641-648.
[http://dx.doi.org/10.1093/protein/gzp045] [PMID: 19643977]
[106]
Vanzolini, K.L.; Ainsworth, S.; Bruyneel, B.; Herzig, V.; Seraus, M.G.L.; Somsen, G.W.; Casewell, N.R.; Cass, Q.B.; Kool, J. Rapid ligand fishing for identification of acetylcholinesterase-binding peptides in snake venom reveals new properties of dendrotoxins. Toxicon, 2018, 152, 1-8.
[http://dx.doi.org/10.1016/j.toxicon.2018.06.080] [PMID: 29990530]
[107]
Sanchez-Hernandez, J.C.; Sanchez, B.M. Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environ. Toxicol. Chem., 2002, 21(11), 2319-2325.
[http://dx.doi.org/10.1002/etc.5620211109] [PMID: 12389909]
[108]
Keegan, T.J.; Carpenter, L.M.; Brooks, C.; Langdon, T.; Venables, K.M. Sarin exposures in a cohort of british military participants in human experimental research at porton down 1945-1987. Ann. Work Expo. Health, 2017, 62(1), 17-27.
[http://dx.doi.org/10.1093/annweh/wxx084] [PMID: 29136135]
[109]
Abou-Donia, M.B.; Siracuse, B.; Gupta, N.; Sobel Sokol, A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit. Rev. Toxicol., 2016, 46(10), 845-875.
[http://dx.doi.org/10.1080/10408444.2016.1220916] [PMID: 27705071]
[110]
Wright, L.K.; Lee, R.B.; Vincelli, N.M.; Whalley, C.E.; Lumley, L.A. Comparison of the lethal effects of chemical warfare nerve agents across multiple ages. Toxicol. Lett., 2016, 241, 167-174.
[http://dx.doi.org/10.1016/j.toxlet.2015.11.023] [PMID: 26621540]
[111]
Vale, J.A.; Marrs, T.C.; Maynard, R.L. Novichok: a murderous nerve agent attack in the UK. Clin. Toxicol. (Phila.), 2018, 56(11), 1093-1097.
[http://dx.doi.org/10.1080/15563650.2018.1469759] [PMID: 29757015]
[112]
Al-Hakka, Z.S.; Al-Azzawi, M.J.; Al-Adhamy, B.W.; Khalil, S.A. Inhibitory action of phosphine on acetylcholinesterase of Ephestia cautella (Lepidoptera: Pyralidae). J. Stored Prod. Res., 1989, 25(3), 171-174.
[http://dx.doi.org/10.1016/0022-474X(89)90039-8]
[113]
Cummings, J.L.; Nadel, A.; Masterman, D.; Cyrus, P.A. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease. J. Geriatr. Psychiatry Neurol., 2001, 14(2), 101-108.
[http://dx.doi.org/10.1177/089198870101400211] [PMID: 11419566]
[114]
Pohanka, M.; Novotny, L.; Pikula, J. Metrifonate alters antioxidant levels and caspase activity in cerebral cortex of Wistar rats. Toxicol. Mech. Methods, 2011, 21(8), 585-590.
[http://dx.doi.org/10.3109/15376516.2011.589089] [PMID: 21943232]
[115]
Eyer, F.; Meischner, V.; Kiderlen, D.; Thiermann, H.; Worek, F.; Haberkorn, M.; Felgenhauer, N.; Zilker, T.; Eyer, P. Human parathion poisoning. A toxicokinetic analysis. Toxicol. Rev., 2003, 22(3), 143-163.
[http://dx.doi.org/10.2165/00139709-200322030-00003] [PMID: 15181664]
[116]
Nigg, H.N.; Knaak, J.B. Blood cholinesterases as human biomarkers of organophosphorus pesticide exposure. Rev. Environ. Contam. Toxicol., 2000, 163, 29-111.
[http://dx.doi.org/10.1007/978-1-4757-6429-1_2] [PMID: 10771584]
[117]
Marrs, T.C.; Maynard, R.L. Neurotranmission systems as targets for toxicants: a review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[http://dx.doi.org/10.1007/s10565-013-9259-9] [PMID: 24036955]
[118]
Darvesh, S.; Darvesh, K.V.; McDonald, R.S.; Mataija, D.; Walsh, R.; Mothana, S.; Lockridge, O.; Martin, E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem., 2008, 51(14), 4200-4212.
[http://dx.doi.org/10.1021/jm8002075] [PMID: 18570368]
[119]
Mohammad, D.; Chan, P.; Bradley, J.; Lanctôt, K.; Herrmann, N. Acetylcholinesterase inhibitors for treating dementia symptoms - a safety evaluation. Expert Opin. Drug Saf., 2017, 16(9), 1009-1019.
[http://dx.doi.org/10.1080/14740338.2017.1351540] [PMID: 28678552]
[120]
Chelinho, S.; Dieter Sautter, K.; Cachada, A.; Abrantes, I.; Brown, G.; Costa Duarte, A.; Sousa, J.P. Carbofuran effects in soil nematode communities: using trait and taxonomic based approaches. Ecotoxicol. Environ. Saf., 2011, 74(7), 2002-2012.
[http://dx.doi.org/10.1016/j.ecoenv.2011.07.015] [PMID: 21868095]
[121]
Ashani, Y.; Peggins, J.O., III; Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun., 1992, 184(2), 719-726.
[http://dx.doi.org/10.1016/0006-291X(92)90649-6] [PMID: 1575745]
[122]
Rosenberg, Y.J.; Mao, L.; Jiang, X.; Lees, J.; Zhang, L.; Radic, Z.; Taylor, P. Post-exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chem. Biol. Interact., 2017, 274, 50-57.
[http://dx.doi.org/10.1016/j.cbi.2017.07.003] [PMID: 28693885]
[123]
Chambers, J.E.; Chambers, H.W.; Funck, K.E.; Meek, E.C.; Pringle, R.B.; Ross, M.K. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chem.Biol. Interact.,, 2016, 259(Pt B), 154-159.
[http://dx.doi.org/10.1016/j.cbi.2016.07.004]
[124]
Chambers, J.E.; Meek, E.C.; Chambers, H.W. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates. Ann. N. Y. Acad. Sci., 2016, 1374(1), 52-58.
[http://dx.doi.org/10.1111/nyas.13053] [PMID: 27153507]
[125]
Veszelka, S.; Tóth, A.; Walter, F.R.; Tóth, A.E.; Gróf, I.; Mészáros, M.; Bocsik, A.; Hellinger, É.; Vastag, M.; Rákhely, G.; Deli, M.A. Comparison of a rat primary cell-based blood-brain barrier model with epithelial and brain endothelial cell lines: gene expression and drug transport. Front. Mol. Neurosci., 2018, 11(166), 166.
[http://dx.doi.org/10.3389/fnmol.2018.00166] [PMID: 29872378]
[126]
Villarroya, M.; García, A.G.; Marco-Contelles, J.; López, M.G. An update on the pharmacology of galantamine. Expert Opin. Investig. Drugs, 2007, 16(12), 1987-1998.
[http://dx.doi.org/10.1517/13543784.16.12.1987] [PMID: 18042006]
[127]
Sugi, Y.; Nitahara, K.; Shiroshita, T.; Higa, K. Restoration of train-of-four ratio with neostigmine after insufficient recovery with sugammadex in a patient with myasthenia gravis. A A Case Rep., 2013, 1(3), 43-45.
[http://dx.doi.org/10.1097/ACC.0b013e3182953053] [PMID: 25611846]
[128]
Farmakidis, C.; Pasnoor, M.; Dimachkie, M.M.; Barohn, R.J. Treatment of myasthenia gravis. Neurol. Clin., 2018, 36(2), 311-337.
[http://dx.doi.org/10.1016/j.ncl.2018.01.011] [PMID: 29655452]
[129]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[130]
Peter, J.V.; Sudarsan, T.I.; Moran, J.L. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J. Crit. Care Med., 2014, 18(11), 735-745.
[http://dx.doi.org/10.4103/0972-5229.144017] [PMID: 25425841]
[131]
Ding, Q.; Fang, S.; Chen, X.; Wang, Y.; Li, J.; Tian, F.; Xu, X.; Attali, B.; Xie, X.; Gao, Z. TRPA1 channel mediates organophosphate-induced delayed neuropathy. Cell Discov., 2017, 3(17024), 17024.
[http://dx.doi.org/10.1038/celldisc.2017.24] [PMID: 28894590]
[132]
Vale, A.; Lotti, M. Organophosphorus and carbamate insecticide poisoning. Handb. Clin. Neurol., 2015, 131, 149-168.
[http://dx.doi.org/10.1016/B978-0-444-62627-1.00010-X] [PMID: 26563788]
[133]
Wang, J.; Shao, Y.; Shi, K.; Yang, H.; Li, M. Restricted diffusion in the splenium of the corpus callosum in organophosphate induced delayed neuropathy: case report and review of literatures. Int. J. Clin. Exp. Med., 2015, 8(8), 14246-14250.
[PMID: 26550404]
[134]
White, R.F.; Steele, L.; O’Callaghan, J.P.; Sullivan, K.; Binns, J.H.; Golomb, B.A.; Bloom, F.E.; Bunker, J.A.; Crawford, F.; Graves, J.C.; Hardie, A.; Klimas, N.; Knox, M.; Meggs, W.J.; Melling, J.; Philbert, M.A.; Grashow, R. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex, 2016, 74, 449-475.
[http://dx.doi.org/10.1016/j.cortex.2015.08.022] [PMID: 26493934]
[135]
Abdullah, L.; Evans, J.E.; Montague, H.; Reed, J.M.; Moser, A.; Crynen, G.; Gonzalez, A.; Zakirova, Z.; Ross, I.; Mullan, C.; Mullan, M.; Ait-Ghezala, G.; Crawford, F. Chronic elevation of phosphocholine containing lipids in mice exposed to Gulf War agents pyridostigmine bromide and permethrin. Neurotoxicol. Teratol., 2013, 40, 74-84.
[http://dx.doi.org/10.1016/j.ntt.2013.10.002] [PMID: 24140745]
[136]
Amourette, C.; Lamproglou, I.; Barbier, L.; Fauquette, W.; Zoppe, A.; Viret, R.; Diserbo, M. Gulf War illness: Effects of repeated stress and pyridostigmine treatment on blood-brain barrier permeability and cholinesterase activity in rat brain. Behav. Brain Res., 2009, 203(2), 207-214.
[http://dx.doi.org/10.1016/j.bbr.2009.05.002] [PMID: 19433115]
[137]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[138]
George, P.M.; Abernethy, M.H. Improved Ellman procedure for erythrocyte cholinesterase. Clin. Chem., 1983, 29(2), 365-368.
[http://dx.doi.org/10.1093/clinchem/29.2.365] [PMID: 6821947]
[139]
Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Anal. Lett., 2013, 46(12), 1849-1868.
[http://dx.doi.org/10.1080/00032719.2013.780240]
[140]
Pohanka, M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chem. Pap., 2015, 69(8), 1044-1049.
[http://dx.doi.org/10.1515/chempap-2015-0117]
[141]
Oropesa, A.L.; Gravato, C.; Sánchez, S.; Soler, F. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides. Ecotoxicol. Environ. Saf., 2013, 97, 131-138.
[http://dx.doi.org/10.1016/j.ecoenv.2013.07.022] [PMID: 23962622]
[142]
Dhananjayan, V.; Ravichandran, B.; Anitha, N.; Rajmohan, H.R. Assessment of acetylcholinesterase and butyrylcholinesterase activities in blood plasma of agriculture workers. Indian J. Occup. Environ. Med., 2012, 16(3), 127-130.
[http://dx.doi.org/10.4103/0019-5278.111755] [PMID: 23776322]
[143]
Li, B.; Ricordel, I.; Schopfer, L.M.; Baud, F.; Mégarbane, B.; Masson, P.; Lockridge, O. Dichlorvos, chlorpyrifos oxon and Aldicarb adducts of butyrylcholinesterase, detected by mass spectrometry in human plasma following deliberate overdose. J. Appl. Toxicol., 2010, 30(6), 559-565.
[http://dx.doi.org/10.1002/jat.1526] [PMID: 20809544]
[144]
Pohanka, M. Butyrylcholinesterase as a biochemical marker. Bratisl. Lek Listy, 2013, 114(12), 726-734.
[PMID: 24329513]
[145]
Jezyna, C. [Correlation of chnges in hypocholinesterasemia and hypoalbuminemia in virus hepatitis]. Przegl. Lek., 1969, 25(7), 515-519.
[PMID: 5343591]
[146]
Tomaszewska, L.; Schmidt, E. [Activity of serum cholinesterase in certain liver diseases, particularly in virus hepatitis]. Wiad. Lek., 1966, 19(10), 795-798.
[PMID: 5916300]
[147]
Tamarelle, C.; Quinton, A.; Bancons, J.; Dubarry, J.J. [Serum cholinesterase, test of liver cell failure]. Sem. Hop., 1973, 49(12), 859-864.
[PMID: 4352982]
[148]
Fintelmann, V.; Lindner, H. [Diagnostic significance of serum cholinesterase in liver diseases]. Dtsch. Med. Wochenschr., 1970, 95(9), 469-470.
[http://dx.doi.org/10.1055/s-0028-1108487] [PMID: 5412387]
[149]
Kemkes-Matthes, B.; Preissner, K.T.; Langenscheidt, F.; Matthes, K.J.; Müller-Berghaus, G. S protein/vitronectin in chronic liver diseases: correlations with serum cholinesterase, coagulation factor X and complement component C3. Eur. J. Haematol., 1987, 39(2), 161-165.
[http://dx.doi.org/10.1111/j.1600-0609.1987.tb00747.x] [PMID: 2444458]
[150]
Liu, W.; Hada, T.; Fukui, K.; Imanishi, H.; Matsuoka, N.; Iwasaki, A.; Higashino, K. Familial hypocholinesterasemia found in a family and a new confirmed mutation. Intern. Med., 1997, 36(1), 9-13.
[http://dx.doi.org/10.2169/internalmedicine.36.9] [PMID: 9058093]
[151]
Tajiri, J.; Nishizono, Y.; Fujiyama, S.; Sagara, K.; Sato, T.; Shibata, H. Hypercholinesterasemia in patients with hepatocellular carcinoma: a new paraneoplastic syndrome. Gastroenterol. Jpn., 1983, 18(2), 137-141.
[http://dx.doi.org/10.1007/BF02774688] [PMID: 6303885]
[152]
Vijayaraghavan, S.; Darreh-Shori, T.; Rongve, A.; Berge, G.; Sando, S.B.; White, L.R.; Auestad, B.H.; Witoelar, A.; Andreassen, O.A.; Ulstein, I.D.; Aarsland, D. Association of butyrylcholinesterase-K allele and apolipoprotein E ɛ4 allele with cognitive decline in dementia with lewy bodies and alzheimer’s disease. J. Alzheimers Dis., 2016, 50(2), 567-576.
[http://dx.doi.org/10.3233/JAD-150750] [PMID: 26757188]
[153]
De Beaumont, L. Pelleieux, S.; Lamarre-Theroux, L.; Dea, D.; Poirier, J., Butyrylcholinesterase K and Apolipoprotein E-varepsilon4 reduce the age of onset of alzheimer’s disease, accelerate cognitive decline, and modulate donepezil response in mild cognitively impaired subjects. J. Alzheimers Dis., 2016, 54(3), 913-922.
[http://dx.doi.org/10.3233/JAD-160373] [PMID: 27567841]
[154]
Sokolow, S.; Li, X.; Chen, L.; Taylor, K.D.; Rotter, J.I.; Rissman, R.A.; Aisen, P.S.; Apostolova, L.G. Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J. Alzheimers Dis., 2017, 56(1), 229-237.
[http://dx.doi.org/10.3233/JAD-160562] [PMID: 27911294]
[155]
Pongthanaracht, N.; Yanarojana, S.; Pinthong, D.; Unchern, S.; Thithapandha, A.; Assantachai, P.; Supavilai, P. Association between butyrylcholinesterase K variant and mild cognitive impairment in the Thai community-dwelling patients. Clin. Interv. Aging, 2017, 12, 897-901.
[http://dx.doi.org/10.2147/CIA.S137264] [PMID: 28603409]
[156]
Vahdati-Mashhadian, N.; Hassanzadeh, M.K.; Hosseini, J.; Saffareshargh, A.A. Ethnic differences in the frequency of distribution of serum cholinesterase activity in the Iranian population. Can. J. Physiol. Pharmacol., 2004, 82(5), 326-330.
[http://dx.doi.org/10.1139/y04-030] [PMID: 15213732]
[157]
Hashim, Y.; Shepherd, D.; Wiltshire, S.; Holman, R.R.; Levy, J.C.; Clark, A.; Cull, C.A. Butyrylcholinesterase K variant on chromosome 3 q is associated with Type II diabetes in white Caucasian subjects. Diabetologia, 2001, 44(12), 2227-2230.
[http://dx.doi.org/10.1007/s001250100033] [PMID: 11793025]
[158]
Manoharan, I.; Boopathy, R.; Darvesh, S.; Lockridge, O. A medical health report on individuals with silent butyrylcholinesterase in the Vysya community of India. Clin. Chim. Acta, 2007, 378(1-2), 128-135.
[http://dx.doi.org/10.1016/j.cca.2006.11.005] [PMID: 17182021]
[159]
Krasowski, M.D.; McGehee, D.S.; Moss, J. Natural inhibitors of cholinesterases: implications for adverse drug reactions. Can. J. Anaesth., 1997, 44(5 Pt 1), 525-534.
[http://dx.doi.org/10.1007/BF03011943] [PMID: 9161749]
[160]
Lockridge, O.; Norgren, R.B., Jr; Johnson, R.C.; Blake, T.A. Naturally occurring genetic variants of human acetylcholinesterase and butyrylcholinesterase and their potential impact on the risk of toxicity from cholinesterase inhibitors. Chem. Res. Toxicol., 2016, 29(9), 1381-1392.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00228] [PMID: 27551784]
[161]
Simão-Silva, D.P.; Bertolucci, P.H.; de Labio, R.W.; Payão, S.L.; Furtado-Alle, L.; Souza, R.L. Association analysis between K and -116A variants of butyrylcholinesterase and Alzheimer’s disease in a Brazilian population. Chem. Biol. Interact., 2013, 203(1), 358-360.
[http://dx.doi.org/10.1016/j.cbi.2012.09.008] [PMID: 23022600]
[162]
Gätke, M.R.; Viby-Mogensen, J.; Bundgaard, J.R. Rapid simultaneous genotyping of the frequent butyrylcholinesterase variants Asp70Gly and Ala539Thr with fluorescent hybridization probes. Scand. J. Clin. Lab. Invest., 2002, 62(5), 375-383.
[http://dx.doi.org/10.1080/00365510260296537] [PMID: 12387584]
[163]
Lejus, C.; Delaroche, O.; Trille, E.; Blanloeil, Y.; Pinaud, M. [Butyrylcholinesterase deficiency: how to analyse the cholinesterase activity in small children?]. Ann. Fr. Anesth. Reanim., 2006, 25(6), 657-660.
[http://dx.doi.org/10.1016/j.annfar.2006.02.009] [PMID: 16581221]
[164]
Bartels, C.F.; James, K.; La Du, B.N. DNA mutations associated with the human butyrylcholinesterase J-variant. Am. J. Hum. Genet., 1992, 50(5), 1104-1114.
[PMID: 1349196]
[165]
Cimasoni, G. Inhibition of cholinesterases by fluoride in vitro. Biochem. J., 1966, 99(1), 133-137.
[http://dx.doi.org/10.1042/bj0990133] [PMID: 6007454]
[166]
Mosca, A.; Bonora, R.; Ceriotti, F.; Franzini, C.; Lando, G.; Patrosso, M.C.; Zaninotto, M.; Panteghini, M. Italian society of clinical biochemistry and clinical molecular biology working group on enzymes. Assay using succinyldithiocholine as substrate: the method of choice for the measurement of cholinesterase catalytic activity in serum to diagnose succinyldicholine sensitivity. Clin. Chem. Lab. Med., 2003, 41(3), 317-322.
[http://dx.doi.org/10.1515/CCLM.2003.051] [PMID: 12705341]
[167]
Jasiecki, J.; Jonca, J.; Zuk, M.; Szczoczarz, A.; Janaszak-Jasiecka, A.; Lewandowski, K.; Waleron, K.; Wasag, B. Activity and polymorphisms of butyrylcholinesterase in a Polish population. Chem. Biol. Interact., 2016, 259(Pt B), 70-77.
[http://dx.doi.org/10.1016/j.cbi.2016.04.030]
[168]
de Oliveira, P.; Gomes, A.Q.; Pacheco, T.R.; Vitorino de Almeida, V.; Saldanha, C.; Calado, A. Cell-specific regulation of acetylcholinesterase expression under inflammatory conditions. Clin. Hemorheol. Microcirc., 2012, 51(2), 129-137.
[http://dx.doi.org/10.3233/CH-2011-1520] [PMID: 22240379]
[169]
Martínez-López de Castro, A.; Nieto-Cerón, S.; Aurelio, P.C.; Galbis-Martínez, L.; Latour-Pérez, J.; Torres-Lanzas, J.; Tovar-Zapata, I.; Martínez-Hernández, P.; Rodríguez-López, J.N.; Cabezas-Herrera, J. Cancer-associated differences in acetylcholinesterase activity in bronchial aspirates from patients with lung cancer. Clin. Sci. (Lond.), 2008, 115(8), 245-253.
[http://dx.doi.org/10.1042/CS20070393] [PMID: 18211261]
[170]
Xi, H.J.; Wu, R.P.; Liu, J.J.; Zhang, L.J.; Li, Z.S. Role of acetylcholinesterase in lung cancer. Thorac. Cancer, 2015, 6(4), 390-398.
[http://dx.doi.org/10.1111/1759-7714.12249] [PMID: 26273392]
[171]
Darreh-Shori, T.; Soininen, H. Effects of cholinesterase inhibitors on the activities and protein levels of cholinesterases in the cerebrospinal fluid of patients with Alzheimer’s disease: a review of recent clinical studies. Curr. Alzheimer Res., 2010, 7(1), 67-73.
[http://dx.doi.org/10.2174/156720510790274455] [PMID: 20205672]
[172]
Nordberg, A.; Darreh-Shori, T.; Peskind, E.; Soininen, H.; Mousavi, M.; Eagle, G.; Lane, R. Different cholinesterase inhibitor effects on CSF cholinesterases in Alzheimer patients. Curr. Alzheimer Res., 2009, 6(1), 4-14.
[http://dx.doi.org/10.2174/156720509787313961] [PMID: 19199870]
[173]
Amici, S.; Lanari, A.; Romani, R.; Antognelli, C.; Gallai, V.; Parnetti, L. Cerebrospinal fluid acetylcholinesterase activity after long-term treatment with donepezil and rivastigmina. Mech. Ageing Dev., 2001, 122(16), 2057-2062.
[http://dx.doi.org/10.1016/S0047-6374(01)00314-1] [PMID: 11589922]
[174]
Parnetti, L.; Amici, S.; Lanari, A.; Romani, C.; Antognelli, C.; Andreasen, N.; Minthon, L.; Davidsson, P.; Pottel, H.; Blennow, K.; Gallai, V. Cerebrospinal fluid levels of biomarkers and activity of acetylcholinesterase (AChE) and butyrylcholinesterase in AD patients before and after treatment with different AChE inhibitors. Neurol. Sci., 2002, 23(2)(Suppl. 2), S95-S96.
[http://dx.doi.org/10.1007/s100720200086] [PMID: 12548360]
[175]
Parnetti, L.; Chiasserini, D.; Andreasson, U.; Ohlson, M.; Hüls, C.; Zetterberg, H.; Minthon, L.; Wallin, A.K.; Andreasen, N.; Talesa, V.N.; Blennow, K. Changes in CSF acetyl- and butyrylcholinesterase activity after long-term treatment with AChE inhibitors in Alzheimer’s disease. Acta Neurol. Scand., 2011, 124(2), 122-129.
[http://dx.doi.org/10.1111/j.1600-0404.2010.01435.x] [PMID: 20880294]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy