Review Article

多肽抗寨卡病毒的治疗应用:综述

卷 27, 期 23, 2020

页: [3906 - 3923] 页: 18

弟呕挨: 10.2174/0929867326666190111115132

价格: $65

摘要

寨卡病毒(ZIKV)属于黄病毒种类,可由伊蚊传播。寨卡病毒引起的急性感染、神经系统疾病和先天性小头畸形病例迅速增加,因此,世界卫生组织在2016年宣布了全球“国际关注的公共卫生紧急事件”。近年来,全球范围内抗ZIKV病毒的治疗和疫苗开发战略不断发展,但迄今为止还没有能够拯救人类生命的明确的和安全的治疗方法。目前,针对ZIKV的肽疗法相对于小的药物分子和基于抗体的抗病毒药物,其安全性高、开发成本低,越来越受到人们的关注。本文综述了肽类抑制剂(包括e-蛋白衍生肽、抗菌肽、蛙皮肽和益生菌肽)对ZIKV的抑制作用。有报道称,肽抑制剂可以抑制NS5、NS2B-NS3蛋白酶和蛋白酶体,从而抑制ZIKV感染。本文综述了肽基治疗和疫苗的最新进展,并对其在防治ZIKV感染方面的前景进行了展望。

关键词: 寨卡病毒,多肽,疫苗,治疗,寨卡病毒抑制剂,蚊媒病,抗寨卡病毒,病毒抗体。

[1]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects-reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[2]
Arzuza-Ortega, L.; Polo, A.; Pérez-Tatis, G.; López-García, H.; Parra, E.; Pardo-Herrera, L.C.; Rico-Turca, A.M.; Villamil-Gómez, W.; Rodríguez-Morales, A.J. Fatal sickle cell disease and zika virus infection in girl from Colombia. Emerg. Infect. Dis., 2016, 22(5), 925-927.
[http://dx.doi.org/10.3201/eid2205.151934] [PMID: 27089120]
[3]
Ashraf, U.; Zhu, B.; Ye, J.; Wan, S.; Nie, Y.; Chen, Z.; Cui, M.; Wang, C.; Duan, X.; Zhang, H.; Chen, H.; Cao, S. MicroRNA-19b-3p modulates Japanese encephalitis virus-mediated inflammation via targeting RNF11. J. Virol., 2016, 90(9), 4780-4795.
[http://dx.doi.org/10.1128/JVI.02586-15] [PMID: 26937036]
[4]
Gulland, A. Zika virus is a global public health emergency, declares WHO. BMJ, 2016, 352, i657.
[http://dx.doi.org/10.1136/bmj.i657] [PMID: 26839247]
[5]
Lanciotti, R.S.; Kosoy, O.L.; Laven, J.J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis., 2008, 14(8), 1232-1239.
[http://dx.doi.org/10.3201/eid1408.080287] [PMID: 18680646]
[6]
Gautam, R.; Mishra, S.; Milhotra, A.; Nagpal, R.; Mohan, M.; Singhal, A.; Kumari, P. Challenges with mosquito-borne viral diseases: outbreak of the monsters. Curr. Top. Med. Chem., 2017, 17(19), 2199-2214.
[http://dx.doi.org/10.2174/1568026617666170130122921] [PMID: 28137229]
[7]
Lindenbach, B.D.; Thiel, H.J.; Rice, C.M. Flaviviridae: the viruses and their replication.Fields Virol, 2007, 1101-1133.
[8]
Unni, S.K.; Růžek, D.; Chhatbar, C.; Mishra, R.; Johri, M.K.; Singh, S.K. Japanese encephalitis virus: from genome to infectome. Microbes Infect., 2011, 13(4), 312-321.
[http://dx.doi.org/10.1016/j.micinf.2011.01.002] [PMID: 21238600]
[9]
Hayes, E.B. Zika virus outside Africa. Emerg. Infect. Dis., 2009, 15(9), 1347-1350.
[http://dx.doi.org/10.3201/eid1509.090442] [PMID: 19788800]
[10]
Weissenböck, H.; Hubálek, Z.; Bakonyi, T.; Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol., 2010, 140(3-4), 271-280.
[http://dx.doi.org/10.1016/j.vetmic.2009.08.025] [PMID: 19762169]
[11]
Dick, G.W.; Kitchen, S.F.; Haddow, A.J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg., 1952, 46(5), 509-520.
[http://dx.doi.org/10.1016/0035-9203(52)90042-4] [PMID: 12995440]
[12]
Moore, D.L.; Causey, O.R.; Carey, D.E.; Reddy, S.; Cooke, A.R.; Akinkugbe, F.M.; David-West, T.S.; Kemp, G.E. Arthropod-borne viral infections of man in Nigeria, 1964-1970. Ann. Trop. Med. Parasitol., 1975, 69(1), 49-64.
[http://dx.doi.org/10.1080/00034983.1975.11686983] [PMID: 1124969]
[13]
Smithburn, K.C. Neutralizing antibodies against certain recently isolated viruses in the sera of human beings residing in East Africa. J. Immunol., 1952, 69(2), 223-234.
[PMID: 14946416]
[14]
MacNamara, F.N. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg., 1954, 48(2), 139-145.
[http://dx.doi.org/10.1016/0035-9203(54)90006-1] [PMID: 13157159]
[15]
Olson, J.G.; Ksiazek, T.G.; Suhandiman, ; Triwibowo, Zika virus, a cause of fever in Central Java, Indonesia. Trans. R. Soc. Trop. Med. Hyg., 1981, 75(3), 389-393.
[http://dx.doi.org/10.1016/0035-9203(81)90100-0] [PMID: 6275577]
[16]
Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; Guillaumot, L.; Griggs, A.; Bel, M.; Lambert, A.J.; Laven, J.; Kosoy, O.; Panella, A.; Biggerstaff, B.J.; Fischer, M.; Hayes, E.B. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med., 2009, 360(24), 2536-2543.
[http://dx.doi.org/10.1056/NEJMoa0805715] [PMID: 19516034]
[17]
European Centre for Disease Prevention and Control Rapid risk assessment: Zika virus infection outbreak, French Polynesia, 2014.Available at:. https://ecdc.europa. eu/en/publications-data/rapid-risk-assessment-zika-virus-infection-outbreak-french-polynesia
[18]
European Centre for Disease Prevention and Control Rapid risk assessment: Zika virus disease epidemic: potential association with microcephaly and Guillain-Barré syndrome - 6th update, 2016.Available at:. https://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-zika-virus-disease-epidemic-potential-association-4
[19]
Roth, A.; Mercier, A.; Lepers, C.; Hoy, D.; Duituturaga, S.; Benyon, E.; Guillaumot, L.; Souares, Y. Concurrent outbreaks of dengue, chikungunya and Zika virus infections - an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012-2014. Euro Surveill., 2014, 19(41), 20929.
[http://dx.doi.org/10.2807/1560-7917.es2014.19.41.20929] [PMID: 25345518]
[20]
Dupont-Rouzeyrol, M.; Biron, A.; O’Connor, O.; Huguon, E.; Descloux, E. Infectious Zika viral particles in breastmilk. Lancet, 2016, 387(10023), 1051.
[http://dx.doi.org/10.1016/S0140-6736(16)00624-3] [PMID: 26944028]
[21]
Campos, G.S.; Bandeira, A.C.; Sardi, S.I. Zika virus outbreak, Bahia, Brazil. Emerg. Infect. Dis., 2015, 21(10), 1885-1886.
[http://dx.doi.org/10.3201/eid2110.150847] [PMID: 26401719]
[22]
World Health Organization. Zika virus outbreaks in the Americas. Weekly Epidemiological Record: Relevé épidémiologique hebdomadaire, 2015, 90(45), 609-616.Available at:. http://www.who.int/wer/2015/wer9045. pdf?ua=1
[23]
Gatherer, D.; Kohl, A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J. Gen. Virol., 2016, 97(2), 269-273.
[http://dx.doi.org/10.1099/jgv.0.000381] [PMID: 26684466]
[24]
Hennessey, M.; Fischer, M.; Staples, J.E. Zika virus spreads to new areas- region of the Americas, May 2015-January 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(3), 55-58.
[http://dx.doi.org/10.15585/mmwr.mm6503e1] [PMID: 26820163]
[25]
Fauci, A.S.; Morens, D.M. Zika virus in the Americas yet another arbovirus threat. N. Engl. J. Med., 2016, 374(7), 601-604.
[http://dx.doi.org/10.1056/NEJMp1600297] [PMID: 26761185]
[26]
Chen, L.H.; Hamer, D.H. Zika virus: rapid spread in the Western Hemisphere. Ann. Intern. Med., 2016, 164(9), 613-615.
[http://dx.doi.org/10.7326/M16-0150] [PMID: 26832396]
[27]
Lednicky, J.; Beau De Rochars, V.M.; El Badry, M.; Loeb, J.; Telisma, T.; Chavannes, S.; Anilis, G.; Cella, E.; Ciccozzi, M.; Rashid, M.; Okech, B.; Salemi, M.; Morris, J.G., Jr Zika virus outbreak in Haiti in 2014: molecular and clinical data. PLoS Negl. Trop. Dis., 2016, 10(4)e0004687
[http://dx.doi.org/10.1371/journal.pntd.0004687] [PMID: 27111294]
[28]
Hajra, A.; Bandyopadhyay, D.; Hajra, S.K. Zika virus: a global threat to humanity: a comprehensive review and current developments. N. Am. J. Med. Sci., 2016, 8(3), 123-128.
[http://dx.doi.org/10.4103/1947-2714.179112] [PMID: 27114968]
[29]
Centers for Disease Control and Prevention CDC adds countries to interim travel guidance related to Zika virus,, 2012.Available at:. https://www.cdc.gov/media/releases/ 2016/s0122-zika-travel-guidance.html
[30]
Kindhauser, M.K.; Allen, T.; Frank, V.; Santhana, R.S.; Dye, C. Zika: the origin and spread of a mosquito-borne virus. Bull. World Health Organ., 2016, 94(9), 675-686C.
[http://dx.doi.org/10.2471/BLT.16.171082] [PMID: 27708473]
[31]
Zhu, J.; Trang, P.; Kim, K.; Zhou, T.; Deng, H.; Liu, F. Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc. Natl. Acad. Sci. USA, 2004, 101(24), 9073-9078.
[http://dx.doi.org/10.1073/pnas.0403164101] [PMID: 15184661]
[32]
Düzgüneş, N.; Simões, S.; Slepushkin, V.; Pretzer, E.; Flasher, D.; Salem, I.I.; Steffan, G.; Konopka, K.; Pedroso de Lima, M.C. Delivery of antiviral agents in liposomes. Methods Enzymol., 2005, 391, 351-373.
[http://dx.doi.org/10.1016/S0076-6879(05)91020-3] [PMID: 15721391]
[33]
Clayton, R.; Ohagen, A.; Nicol, F.; Del Vecchio, A.M.; Jonckers, T.H.M.; Goethals, O.; Van Loock, M.; Michiels, L.; Grigsby, J.; Xu, Z.; Zhang, Y.P.; Gutshall, L.L.; Cunningham, M.; Jiang, H.; Bola, S.; Sarisky, R.T.; Hertogs, K. Sustained and specific in vitro inhibition of HIV-1 replication by a protease inhibitor encapsulated in gp120-targeted liposomes. Antiviral Res., 2009, 84(2), 142-149.
[http://dx.doi.org/10.1016/j.antiviral.2009.08.003] [PMID: 19699239]
[34]
Pan, W.H.; Xin, P.; Morrey, J.D.; Clawson, G.A. A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and hepatitis B virus. Mol. Ther., 2004, 9(4), 596-606.
[http://dx.doi.org/10.1016/j.ymthe.2003.12.013] [PMID: 15093190]
[35]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[36]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[37]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[38]
Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An update on Zika virus infection. Lancet, 2017, 390(10107), 2099-2109.
[http://dx.doi.org/10.1016/S0140-6736(17)31450-2] [PMID: 28647173]
[39]
Loe, M.W.C.; Lee, R.C.H.; Chu, J.J.H. Antiviral activity of the FDA-approved drug candesartan cilexetil against Zika virus infection. Antiviral Res., 2019, 172, 104637
[http://dx.doi.org/10.1016/j.antiviral.2019.104637] [PMID: 31669333]
[40]
Savidis, G.; Perreira, J.M.; Portmann, J.M.; Meraner, P.; Guo, Z.; Green, S.; Brass, A.L. The IFITMs inhibit zika virus replication. Cell Rep., 2016, 15(11), 2323-2330.
[http://dx.doi.org/10.1016/j.celrep.2016.05.074] [PMID: 27268505]
[41]
Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; Jacob, F.; Nguyen, H.N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S.G.; Simeonov, A.; Huang, W.; Christian, K.M.; Goate, A.; Brennand, K.J.; Huang, R.; Xia, M.; Ming, G.L.; Zheng, W.; Song, H.; Tang, H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 2016, 22(10), 1101-1107.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[42]
Bullard-Feibelman, K.M.; Govero, J.; Zhu, Z.; Salazar, V.; Veselinovic, M.; Diamond, M.S.; Geiss, B.J. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res., 2017, 137, 134-140.
[http://dx.doi.org/10.1016/j.antiviral.2016.11.023] [PMID: 27902933]
[43]
Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med., 2016, 374(16), 1552-1563.
[http://dx.doi.org/10.1056/NEJMra1602113] [PMID: 27028561]
[44]
Musso, D.; Roche, C.; Robin, E.; Nhan, T.; Teissier, A.; Cao-Lormeau, V.M. Potential sexual transmission of Zika virus. Emerg. Infect. Dis., 2015, 21(2), 359-361.
[http://dx.doi.org/10.3201/eid2102.141363] [PMID: 25625872]
[45]
Oster, A.M.; Brooks, J.T.; Stryker, J.E.; Kachur, R.E.; Mead, P.; Pesik, N.T.; Petersen, L.R. Interim guidelines for prevention of sexual transmission of zika virus- United States, 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(5), 120-121.
[http://dx.doi.org/10.15585/mmwr.mm6505e1] [PMID: 26866485]
[46]
Musso, D.; Nhan, T.; Robin, E.; Roche, C.; Bierlaire, D.; Zisou, K.; Shan Yan, A.; Cao-Lormeau, V.M.; Broult, J. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill., 2014, 19(14), 20761.
[http://dx.doi.org/10.2807/1560-7917.ES2014.19.14.20761] [PMID: 24739982]
[47]
Aubry, M.; Finke, J.; Teissier, A.; Roche, C.; Broult, J.; Paulous, S.; Desprès, P.; Cao-Lormeau, V.M.; Musso, D. Seroprevalence of arboviruses among blood donors in French Polynesia, 2011-2013. Int. J. Infect. Dis., 2015, 41, 11-12.
[http://dx.doi.org/10.1016/j.ijid.2015.10.005] [PMID: 26482390]
[48]
Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev., 2016, 29(3), 487-524.
[http://dx.doi.org/10.1128/CMR.00072-15] [PMID: 27029595]
[49]
Rasmussen, S.A.; Jamieson, D.J.; Honein, M.A.; Petersen, L.R. Zika virus and birth defects-reviewing the evidence for causality. N. Engl. J. Med., 2016, 374(20), 1981-1987.
[http://dx.doi.org/10.1056/NEJMsr1604338] [PMID: 27074377]
[50]
Petersen, E.E.; Polen, K.N.D.; Meaney-Delman, D.; Ellington, S.R.; Oduyebo, T.; Cohn, A.; Oster, A.M.; Russell, K.; Kawwass, J.F.; Karwowski, M.P.; Powers, A.M.; Bertolli, J.; Brooks, J.T.; Kissin, D.; Villanueva, J.; Muñoz-Jordan, J.; Kuehnert, M.; Olson, C.K.; Honein, M.A.; Rivera, M.; Jamieson, D.J.; Rasmussen, S.A. Update: Interim guidance for health care providers caring for women of reproductive age with possible zika virus exposure-united states, 2016. MMWR Morb. Mortal. Wkly. Rep., 2016, 65(12), 315-322.
[http://dx.doi.org/10.15585/mmwr.mm6512e2] [PMID: 27031943]
[51]
Johansson, M.A.; Mier-y-Teran-Romero, L.; Reefhuis, J.; Gilboa, S.M.; Hills, S.L. Zika and the risk of microcephaly. N. Engl. J. Med., 2016, 375(1), 1-4.
[http://dx.doi.org/10.1056/NEJMp1605367] [PMID: 27222919]
[52]
Abushouk, A.I.; Negida, A.; Ahmed, H. An updated review of Zika virus. J. Clin. Virol., 2016, 84, 53-58.
[http://dx.doi.org/10.1016/j.jcv.2016.09.012] [PMID: 27721110]
[53]
Moghadam, S.R.J.; Bayrami, S.; Moghadam, S.J.; Golrokhi, R.; Pahlaviani, F.G. SayedAlinaghi, S. Zika virus: a review of literature. Asian Pac. J. Trop. Biomed., 2016, 6, 989-994.
[http://dx.doi.org/10.1016/j.apjtb.2016.09.007]
[54]
CENTERS FOR DISEASE CONTROL AND PREVENTION Zika Virus, 2016.Available at:. http://ww.cdc.gov/ zika/pdfs/denvchikvzikv-testing-algorithm.pdf
[55]
Yuan, L.; Huang, X.Y.; Liu, Z.Y.; Zhang, F.; Zhu, X.L.; Yu, J.Y.; Ji, X.; Xu, Y.P.; Li, G.; Li, C.; Wang, H.J.; Deng, Y.Q.; Wu, M.; Cheng, M.L.; Ye, Q.; Xie, D.Y.; Li, X.F.; Wang, X.; Shi, W.; Hu, B.; Shi, P.Y.; Xu, Z.; Qin, C.F. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358(6365), 933-936.
[http://dx.doi.org/10.1126/science.aam7120] [PMID: 28971967]
[56]
Cunha, A.J.; de Magalhães-Barbosa, M.C.; Lima-Setta, F.; Medronho, R.A.; Prata-Barbosa, A. Microcephaly case fatality rate associated with zika virus infection in Brazil: current estimates. Pediatr. Infect. Dis. J., 2017, 36(5), 528-530.
[http://dx.doi.org/10.1097/INF.0000000000001486] [PMID: 28403061]
[57]
Fosgerau, K.; Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today, 2015, 20(1), 122-128.
[http://dx.doi.org/10.1016/j.drudis.2014.10.003] [PMID: 25450771]
[58]
Buchwald, H.; Dorman, R.B.; Rasmus, N.F.; Michalek, V.N.; Landvik, N.M.; Ikramuddin, S. Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: implications for ileal transposition. Surg. Obes. Relat. Dis., 2014, 10(5), 780-786.
[http://dx.doi.org/10.1016/j.soard.2014.01.032] [PMID: 24837556]
[59]
Padhi, A.; Sengupta, M.; Sengupta, S.; Roehm, K.H.; Sonawane, A. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb.), 2014, 94(4), 363-373.
[http://dx.doi.org/10.1016/j.tube.2014.03.011] [PMID: 24813349]
[60]
Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63.
[http://dx.doi.org/10.3389/fneur.2014.00063] [PMID: 24808888]
[61]
Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS One, 2014, 9(2)e87648
[http://dx.doi.org/10.1371/journal.pone.0087648] [PMID: 24505301]
[62]
Puttagunta, A.L.; Toth, E.L. Insulin lispro (Humalog), the first marketed insulin analogue: indications, contraindications and need for further study. CMAJ, 1998, 158(4), 506-511.
[PMID: 9627564]
[63]
Recio, C.; Maione, F.; Iqbal, A.J.; Mascolo, N.; De Feo, V. The potential therapeutic application of peptides and peptidomimetics in cardiovascular disease. Front. Pharmacol., 2017, 7, 526.
[http://dx.doi.org/10.3389/fphar.2016.00526] [PMID: 28111551]
[64]
Lax, R.; Meenan, C. Challenges for therapeutic peptides part1: on the inside, looking out. Innov. Pharm.Technol., 2012, 42(42), 54-56.
[65]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[66]
Bruckdorfer, T.; Marder, O.; Albericio, F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr. Pharm. Biotechnol., 2004, 5(1), 29-43.
[http://dx.doi.org/10.2174/1389201043489620] [PMID: 14965208]
[67]
Zompra, A.A.; Galanis, A.S.; Werbitzky, O.; Albericio, F. Manufacturing peptides as active pharmaceutical ingredients. Future Med. Chem., 2009, 1(2), 361-377.
[http://dx.doi.org/10.4155/fmc.09.23] [PMID: 21425973]
[68]
Tripathi, S.; Wang, G.; White, M.; Qi, L.; Taubenberger, J.; Hartshorn, K.L. Antiviral activity of the human cathelicidin, LL37, and derived peptides on seasonal and pandemic influenza A viruses. PLoS One, 2015, 10(4)e0124706
[http://dx.doi.org/10.1371/journal.pone.0124706] [PMID: 25909853]
[69]
Hou, M.; Zhang, N.; Yang, J.; Meng, X.; Yang, R.; Li, J.; Sun, T. Antimicrobial peptide LL-37 and IDR-1 ameliorate MRSA pneumonia in vivo. Cell. Physiol. Biochem., 2013, 32(3), 614-623.
[http://dx.doi.org/10.1159/000354465] [PMID: 24021961]
[70]
Belaid, A.; Aouni, M.; Khelifa, R.; Trabelsi, A.; Jemmali, M.; Hani, K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol., 2002, 66(2), 229-234.
[http://dx.doi.org/10.1002/jmv.2134] [PMID: 11782932]
[71]
Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy, 2014, 6(6), 755-774.
[http://dx.doi.org/10.2217/imt.14.37] [PMID: 25186605]
[72]
Sun, G.; Larsen, C.N.; Baumgarth, N.; Klem, E.B.; Scheuermann, R.H. Comprehensive annotation of mature peptides and genotypes for zika virus. PLoS One, 2017, 12(1)e0170462
[http://dx.doi.org/10.1371/journal.pone.0170462] [PMID: 28125631]
[73]
Kuhn, R.J.; Zhang, W.; Rossmann, M.G.; Pletnev, S.V.; Corver, J.; Lenches, E.; Jones, C.T.; Mukhopadhyay, S.; Chipman, P.R.; Strauss, E.G.; Baker, T.S.; Strauss, J.H. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002, 108(5), 717-725.
[http://dx.doi.org/10.1016/S0092-8674(02)00660-8] [PMID: 11893341]
[74]
Modis, Y.; Ogata, S.; Clements, D.; Harrison, S.C. Structure of the dengue virus envelope protein after membrane fusion. Nature, 2004, 427(6972), 313-319.
[http://dx.doi.org/10.1038/nature02165] [PMID: 14737159]
[75]
Klein, D.E.; Choi, J.L.; Harrison, S.C. Structure of a dengue virus envelope protein late-stage fusion intermediate. J. Virol., 2013, 87(4), 2287-2293.
[http://dx.doi.org/10.1128/JVI.02957-12] [PMID: 23236058]
[76]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog., 2010, 6(4)e1000851
[http://dx.doi.org/10.1371/journal.ppat.1000851] [PMID: 20386713]
[77]
Lok, S.M.; Costin, J.M.; Hrobowski, Y.M.; Hoffmann, A.R.; Rowe, D.K.; Kukkaro, P.; Holdaway, H.; Chipman, P.; Fontaine, K.A.; Holbrook, M.R.; Garry, R.F.; Kostyuchenko, V.; Wimley, W.C.; Isern, S.; Rossmann, M.G.; Michael, S.F. Release of dengue virus genome induced by a peptide inhibitor. PLoS One, 2012, 7(11)e50995
[http://dx.doi.org/10.1371/journal.pone.0050995] [PMID: 23226444]
[78]
Schmidt, A.G.; Yang, P.L.; Harrison, S.C. Peptide inhibitors of flavivirus entry derived from the E protein stem. J. Virol., 2010, 84(24), 12549-12554.
[http://dx.doi.org/10.1128/JVI.01440-10] [PMID: 20881042]
[79]
Phoo, W.W.; Li, Y.; Zhang, Z.; Lee, M.Y.; Loh, Y.R.; Tan, Y.B.; Ng, E.Y.; Lescar, J.; Kang, C.; Luo, D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun., 2016, 7, 13410.
[http://dx.doi.org/10.1038/ncomms13410] [PMID: 27845325]
[80]
Wang, L.; Liang, R.; Gao, Y.; Li, Y.; Deng, X.; Xiang, R.; Zhang, Y.; Ying, T.; Jiang, S.; Yu, F. Development of small-molecule inhibitors against zika virus infection. Front. Microbiol., 2019, 10, 2725.
[http://dx.doi.org/10.3389/fmicb.2019.02725] [PMID: 31866959]
[81]
Choksupmanee, O.; Hodge, K.; Katzenmeier, G.; Chimnaronk, S. Structural platform for the autolytic activity of an intact NS2B-NS3 protease complex from dengue virus. Biochemistry, 2012, 51(13), 2840-2851.
[http://dx.doi.org/10.1021/bi2018267] [PMID: 22401173]
[82]
Kang, C.; Keller, T.H.; Luo, D. Zika virus protease: an antiviral drug target. Trends Microbiol., 2017, 25(10), 797-808.
[http://dx.doi.org/10.1016/j.tim.2017.07.001] [PMID: 28789826]
[83]
Poulsen, A.; Kang, C.; Keller, T.H. Drug design for flavivirus proteases: what are we missing? Curr. Pharm. Des., 2014, 20(21), 3422-3427.
[http://dx.doi.org/10.2174/13816128113199990633] [PMID: 24001226]
[84]
Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J.; Wu, P.; Menon, R.; Saade, G.; Fernandez-Salas, I.; Rossi, S.L.; Vasilakis, N.; Routh, A.; Bradrick, S.S.; Garcia-Blanco, M.A. A Screen of FDA-approved drugs for inhibitors of zika virus infection. Cell Host Microbe, 2016, 20(2), 259-270.
[http://dx.doi.org/10.1016/j.chom.2016.07.004] [PMID: 27476412]
[85]
Phoo, W.W.; Zhang, Z.; Wirawan, M.; Chew, E.J.C.; Chew, A.B.L.; Kouretova, J.; Steinmetzer, T.; Luo, D. Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antiviral Res., 2018, 160, 17-24.
[http://dx.doi.org/10.1016/j.antiviral.2018.10.006] [PMID: 30315877]
[86]
Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res., 2018, 155, 76-88.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.005] [PMID: 29758235]
[87]
Chen, L.; Liu, Y.; Wang, S.; Sun, J.; Wang, P.; Xin, Q.; Zhang, L.; Xiao, G.; Wang, W. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res., 2017, 141, 140-149.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.009] [PMID: 28232248]
[88]
Kaufmann, B.; Rossmann, M.G. Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect., 2011, 13(1), 1-9.
[http://dx.doi.org/10.1016/j.micinf.2010.09.005] [PMID: 20869460]
[89]
Zhang, X.; Jia, R.; Shen, H.; Wang, M.; Yin, Z.; Cheng, A. Structures and functions of the envelope glycoprotein in flavivirus infections. Viruses, 2017, 9(11), 338.
[http://dx.doi.org/10.3390/v9110338] [PMID: 29137162]
[90]
Yu, Y.; Deng, Y.Q.; Zou, P.; Wang, Q.; Dai, Y.; Yu, F.; Du, L.; Zhang, N.N.; Tian, M.; Hao, J.N.; Meng, Y.; Li, Y.; Zhou, X.; Fuk-Woo Chan, J.; Yuen, K.Y.; Qin, C.F.; Jiang, S.; Lu, L. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun., 2017, 8, 15672.
[http://dx.doi.org/10.1038/ncomms15672] [PMID: 28742068]
[91]
Lorin, C.; Saidi, H.; Belaid, A.; Zairi, A.; Baleux, F.; Hocini, H.; Bélec, L.; Hani, K.; Tangy, F. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology, 2005, 334(2), 264-275.
[http://dx.doi.org/10.1016/j.virol.2005.02.002] [PMID: 15780876]
[92]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10)e25333
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[93]
Currie, S.M.; Findlay, E.G.; McHugh, B.J.; Mackellar, A.; Man, T.; Macmillan, D.; Wang, H.; Fitch, P.M.; Schwarze, J.; Davidson, D.J. The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PLoS One, 2013, 8(8)e73659
[http://dx.doi.org/10.1371/journal.pone.0073659] [PMID: 24023689]
[94]
Howell, M.D.; Jones, J.F.; Kisich, K.O.; Streib, J.E.; Gallo, R.L.; Leung, D.Y.M. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol., 2004, 172(3), 1763-1767.
[http://dx.doi.org/10.4049/jimmunol.172.3.1763] [PMID: 14734759]
[95]
He, M.; Zhang, H.; Li, Y.; Wang, G.; Tang, B.; Zhao, J.; Huang, Y.; Zheng, J. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and Interferon pathway. Front. Immunol., 2018, 9, 722.
[http://dx.doi.org/10.3389/fimmu.2018.00722] [PMID: 29706959]
[96]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]
[97]
NEWS, N.B.C. Infected Mosquitoes Can't Transmit Zika Virus, Study Finds,, 2016.Available at:. https://www. nbcnews.com/storyline/zika-virus-outbreak/infected-mosquitoes-can-t-transmit-zika-virus-study-finds-n568261
[98]
Park, Y.H.; Lim, J.H.; Seo, B.J. Rice-fermented food composition containing a rice-sweetened liquid, fermented by means of kimchi lactobacillus, as an effective ingredient, and having antibacterial and antiviraleffects., U.S. Patent: 20140356338. 2014.
[99]
Liderot, K.; Ahl, M.; Ozenci, V. Secondary bacterial infections in patients with seasonal influenza A and pandemic H1N1. BioMed Res. Int., 2013, 2013, 376219
[http://dx.doi.org/10.1155/2013/376219] [PMID: 23865050]
[100]
Bajpai, V.K.; Chandra, V.; Kim, N.H.; Rai, R.; Kumar, P.; Kim, K.; Aeron, A.; Kang, S.C.; Maheshwari, D.K.; Na, M.; Rather, I.A.; Park, Y.H. Ghost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat. Crit. Rev. Biotechnol., 2018, 38(3), 438-454.
[http://dx.doi.org/10.1080/07388551.2017.1368445] [PMID: 28877637]
[101]
Zhang, Z.; Li, Y.; Loh, Y.R.; Phoo, W.W.; Hung, A.W.; Kang, C.; Luo, D. Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science, 2016, 354(6319), 1597-1600.
[http://dx.doi.org/10.1126/science.aai9309] [PMID: 27940580]
[102]
Erbel, P.; Schiering, N.; D’Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S.P.; Yin, Z.; Keller, T.H.; Vasudevan, S.G.; Hommel, U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol., 2006, 13(4), 372-373.
[http://dx.doi.org/10.1038/nsmb1073] [PMID: 16532006]
[103]
Gruba, N.; Rodriguez Martinez, J.I.; Grzywa, R.; Wysocka, M.; Skoreński, M.; Burmistrz, M.; Łęcka, M.; Lesner, A.; Sieńczyk, M.; Pyrć, K. Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett., 2016, 590(20), 3459-3468.
[http://dx.doi.org/10.1002/1873-3468.12443] [PMID: 27714789]
[104]
Nitsche, C.; Zhang, L.; Weigel, L.F.; Schilz, J.; Graf, D.; Bartenschlager, R.; Hilgenfeld, R.; Klein, C.D. Peptide-boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J. Med. Chem., 2017, 60(1), 511-516.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01021] [PMID: 27966962]
[105]
Lei, J.; Hansen, G.; Nitsche, C.; Klein, C.D.; Zhang, L.; Hilgenfeld, R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science, 2016, 353(6298), 503-505.
[http://dx.doi.org/10.1126/science.aag2419] [PMID: 27386922]
[106]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Wang, W.; Liu, S.; Chen, M.W.; Hung, A.W.; Keller, T.H.; Luo, D.; Kang, C. Structural dynamics of zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure, 2017, 25(8), 1242-1250.e3.
[http://dx.doi.org/10.1016/j.str.2017.06.006] [PMID: 28689970]
[107]
Lin, K-H.; Ali, A.; Rusere, L.; Soumana, D.I.; Kurt Yilmaz, N.; Schiffer, C.A. Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. J. Virol., 2017, 91(10), e00045-e17.
[http://dx.doi.org/10.1128/JVI.00045-17] [PMID: 28298600]
[108]
Zhao, B.; Yi, G.; Du, F.; Chuang, Y.C.; Vaughan, R.C.; Sankaran, B.; Kao, C.C.; Li, P. Structure and function of the Zika virus full-length NS5 protein. Nat. Commun., 2017, 8, 14762.
[http://dx.doi.org/10.1038/ncomms14762] [PMID: 28345656]
[109]
Best, S.M. The Many Faces of the Flavivirus NS5 protein in antagonism of type I interferon signaling. J. Virol., 2017, 91(3), e01970-e16.
[http://dx.doi.org/10.1128/JVI.01970-16] [PMID: 27881649]
[110]
Wang, C.; Yang, S.N.Y.; Smith, K.; Forwood, J.K.; Jans, D.A. Nuclear import inhibitor N-(4-hydroxyphenyl) retinamide targets Zika virus (ZIKV) nonstructural protein 5 to inhibit ZIKV infection. Biochem. Biophys. Res. Commun., 2017, 493(4), 1555-1559.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.016] [PMID: 28988109]
[111]
Jans, D.A.; Martin, A.J. Nucleocytoplasmic trafficking of dengue non-structural protein 5 as a target for antivirals. Adv. Exp. Med. Biol., 2018, 1062, 199-213.
[http://dx.doi.org/10.1007/978-981-10-8727-1_15] [PMID: 29845535]
[112]
Xin, Q-L.; Deng, C-L.; Chen, X.; Wang, J.; Wang, S-B.; Wang, W.; Deng, F.; Zhang, B.; Xiao, G.; Zhang, L-K. Quantitative proteomic analysis of mosquito C6/36 cells reveals host proteins involved in zika virus infection. J. Virol., 2017, 91(12), e00554-e17.
[http://dx.doi.org/10.1128/JVI.00554-17] [PMID: 28404849]
[113]
Kisselev, A.F.; van der Linden, W.A.; Overkleeft, H.S. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol., 2012, 19(1), 99-115.
[http://dx.doi.org/10.1016/j.chembiol.2012.01.003] [PMID: 22284358]
[114]
Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A.A.; Dick, L.R.; Grenier, L.; Klunder, J.M.; Ma, Y.T.; Plamondon, L.; Stein, R.L. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett., 1998, 8(4), 333-338.
[http://dx.doi.org/10.1016/S0960-894X(98)00029-8] [PMID: 9871680]
[115]
UPI Skin mucus of South Indian frog kills flu virus,, 2017.Available at:. https://www.upi.com/Science_News/ 2017/04/18/Skin-mucus-of-South-Indian-frog-kills-flu-virus/1771492534343/
[116]
Gopala Reddy, S.B.; Chin, W.X.; Shivananju, N.S. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem. Pharmacol., 2018, 154, 54-63.
[http://dx.doi.org/10.1016/j.bcp.2018.04.008] [PMID: 29674002]
[117]
Lescar, J.; Soh, S.; Lee, L.T.; Vasudevan, S.G.; Kang, C.; Lim, S.P. The dengue virus replication complex: From RNA replication to protein-protein interactions to evasion of innate immunity. Adv. Exp. Med. Biol., 2018, 1062, 115-129.
[http://dx.doi.org/10.1007/978-981-10-8727-1_9] [PMID: 29845529]
[118]
Zhu, Z.; Chan, J.F-W.; Tee, K-M.; Choi, G.K-Y.; Lau, S.K-P.; Woo, P.C-Y.; Tse, H.; Yuen, K-Y. Comparative genomic analysis of pre-epidemic and epidemic zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg. Microbes Infect,, 2016. 5e22
[http://dx.doi.org/10.1038/emi.2016.48]
[119]
Laureti, M.; Narayanan, D.; Rodriguez-Andres, J.; Fazakerley, J.K.; Kedzierski, L. Flavivirus receptors: diversity, identity, and cell entry. Front. Immunol., 2018, 9, 2180.
[http://dx.doi.org/10.3389/fimmu.2018.02180] [PMID: 30319635]
[120]
Kazmirchuk, T.; Dick, K.; Burnside, D.J.; Barnes, B.; Moteshareie, H.; Hajikarimlou, M.; Omidi, K.; Ahmed, D.; Low, A.; Lettl, C.; Hooshyar, M.; Schoenrock, A.; Pitre, S.; Babu, M.; Cassol, E.; Samanfar, B.; Wong, A.; Dehne, F.; Green, J.R.; Golshani, A. Designing anti-Zika virus peptides derived from predicted human-Zika virus protein-protein interactions. Comput. Biol. Chem., 2017, 71, 180-187.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.10.011] [PMID: 29112936]
[121]
Shan, C.; Muruato, A.E.; Nunes, B.T.D.; Luo, H.; Xie, X.; Medeiros, D.B.A.; Wakamiya, M.; Tesh, R.B.; Barrett, A.D.; Wang, T.; Weaver, S.C.; Vasconcelos, P.F.C.; Rossi, S.L.; Shi, P.Y. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat. Med., 2017, 23(6), 763-767.
[http://dx.doi.org/10.1038/nm.4322] [PMID: 28394328]
[122]
Levine, M.M.; Sztein, M.B. Vaccine development strategies for improving immunization: the role of modern immunology. Nat. Immunol., 2004, 5(5), 460-464.
[http://dx.doi.org/10.1038/ni0504-460] [PMID: 15116108]
[123]
Englund, J.A.; Karron, R.A.; Cunningham, C.K.; Larussa, P.; Melvin, A.; Yogev, R.; Handelsman, E.; Siberry, G.K.; Thumar, B.; Schappell, E.; Bull, C.V.; Chu, H.Y.; Schaap-Nutt, A.; Buchholz, U.; Collins, P.L.; Schmidt, A.C. International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) P1096 Study Group. Safety and infectivity of two doses of live-attenuated recombinant cold-passaged human parainfluenza type 3 virus vaccine rHPIV3cp45 in HPIV3-seronegative young children. Vaccine, 2013, 31(48), 5706-5712.
[http://dx.doi.org/10.1016/j.vaccine.2013.09.046] [PMID: 24103895]
[124]
Liljeqvist, S.; Ståhl, S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J. Biotechnol., 1999, 73(1), 1-33.
[http://dx.doi.org/10.1016/S0168-1656(99)00107-8] [PMID: 10483112]
[125]
Moisa, A.A.; Kolesanova, E.F. Synthetic Peptide Vaccines: Insight and Control of Infectious Disease in Global Scenario, 2012.Available at:. https://www.intechopen. com/books/insight-and-control-of-infectious-disease-in-global-scenario/synthetic-peptide-vaccines
[http://dx.doi.org/10.5772/33496]
[126]
Wahid, B.; Ali, A.; Rafique, S.; Idrees, M. Current status of therapeutic and vaccine approaches against Zika virus. Eur. J. Intern. Med., 2017, 44, 12-18.
[http://dx.doi.org/10.1016/j.ejim.2017.08.001] [PMID: 28797534]
[127]
Skwarczynski, M.; Toth, I. Peptide-based subunit nanovaccines. Curr. Drug Deliv., 2011, 8(3), 282-289.
[http://dx.doi.org/10.2174/156720111795256192] [PMID: 21291373]
[128]
Poland, G.A.; Ovsyannikova, I.G.; Jacobson, R.M. Application of pharmacogenomics to vaccines. Pharmacogenomics, 2009, 10(5), 837-852.
[http://dx.doi.org/10.2217/pgs.09.25] [PMID: 19450131]
[129]
Rappuoli, R. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 2001, 19(17-19), 2688-2691.
[http://dx.doi.org/10.1016/S0264-410X(00)00554-5] [PMID: 11257410]
[130]
Barocchi, M.A.; Censini, S.; Rappuoli, R. Vaccines in the era of genomics: the pneumococcal challenge. Vaccine, 2007, 25(16), 2963-2973.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.065] [PMID: 17324490]
[131]
Dar, H.; Zaheer, T.; Rehman, M.T.; Ali, A.; Javed, A.; Khan, G.A.; Babar, M.M.; Waheed, Y. Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: An in silico approach. Asian Pac. J. Trop. Med., 2016, 9(9), 844-850.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.004] [PMID: 27633296]
[132]
Dikhit, M.R.; Ansari, M.Y.; Vijaymahantesh, ; Kalyani, ; Mansuri, R.; Sahoo, B.R.; Dehury, B.; Amit, A.; Topno, R.K.; Sahoo, G.C.; Ali, V.; Bimal, S.; Das, P. Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. Infect. Genet. Evol., 2016, 45, 187-197.
[http://dx.doi.org/10.1016/j.meegid.2016.08.037] [PMID: 27590716]
[133]
Weltman, J.K. Computer-assisted vaccine design by analysis of zika virus E proteins obtained either from humans or from Aedes mosquitos. J. Med. Microb. Diagn, 2016, 5, 235.
[http://dx.doi.org/10.4172/2161-0703.1000235]
[134]
Prasasty, V.D.; Grazzolie, K.; Rosmalena, R.; Yazid, F.; Ivan, F.X.; Sinaga, E. Peptide-based subunit vaccine design of T- and B-cells multi-epitopes against zika virus using immunoinformatics approaches. Microorganisms, 2019, 7(8), 226.
[http://dx.doi.org/10.3390/microorganisms7080226] [PMID: 31370224]
[135]
Ashfaq, U.A.; Ahmed, B. De Novo structural modeling and conserved epitopes prediction of zika virus envelop protein for vaccine development. Viral Immunol., 2016, 29(7), 436-443.
[http://dx.doi.org/10.1089/vim.2016.0033] [PMID: 27438351]
[136]
Gupta, P. Computer aided drug design and discovery-an economical approach to drug discovery industry. Austin. J. Biotechnol. Bioeng, 2014, 1(4), 2.
[137]
Badawi, M.M.; Osman, M.M.; Alla, A.A.F.; Ahmedani, A.M.; Abdalla, M.H.; Gasemelseed, M.M.; Elsayed, A.A.; Salih, M.A. Highly conserved epitopes of zika envelope glycoprotein may act as a novel peptide vaccine with high coverage: immunoinformatics approach. Am. J. Biomed. Res., 2016, 4, 46-60.
[138]
Shawan, M.M.A.K.; Mahmud, H.A.; Hasan, M.; Parvin, A.; Rahman, N.; Rahman, S.M.B. In silico modelling and immunoinformatics probing disclose the epitope based peptide vaccine against zika virus envelope glycoprotein. Ind. J. Pharm. Biol. Res, 2014, 2(4), 44-45.
[http://dx.doi.org/10.30750/ijpbr.2.4.10]
[139]
Alam, A.; Ali, S.; Ahamad, S.; Malik, M.Z.; Ishrat, R. From ZikV genome to vaccine: in silico approach for the epitope-based peptide vaccine against Zika virus envelope glycoprotein. Immunology, 2016, 149(4), 386-399.
[http://dx.doi.org/10.1111/imm.12656] [PMID: 27485738]
[140]
Mirza, M.U.; Rafique, S.; Ali, A.; Munir, M.; Ikram, N.; Manan, A.; Salo-Ahen, O.M.; Idrees, M. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci. Rep., 2016, 6, 37313.
[http://dx.doi.org/10.1038/srep37313] [PMID: 27934901]
[141]
De Gregorio, E.; Rappuoli, R. Vaccines for the future: learning from human immunology. Microb. Biotechnol., 2012, 5(2), 149-155.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00276.x] [PMID: 21880117]
[142]
Patronov, A.; Doytchinova, I. T-cell epitope vaccine design by immunoinformatics. Open Biol., 2013, 3(1)120139
[http://dx.doi.org/10.1098/rsob.120139] [PMID: 23303307]
[143]
Yang, X.; Yu, X. An introduction to epitope prediction methods and software. Rev. Med. Virol., 2009, 19(2), 77-96.
[http://dx.doi.org/10.1002/rmv.602] [PMID: 19101924]
[144]
Singh, M.V.; Weber, E.A.; Singh, V.B.; Stirpe, N.E.; Maggirwar, S.B. Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer? J. Neurovirol., 2017, 23(3), 347-357.
[http://dx.doi.org/10.1007/s13365-017-0513-4] [PMID: 28116673]
[145]
Yamaguchi, Y.; Miura, M. Programmed cell death in neurodevelopment. Dev. Cell, 2015, 32(4), 478-490.
[http://dx.doi.org/10.1016/j.devcel.2015.01.019] [PMID: 25710534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy