[2]
B. Chaudhry, J. Wang, S. Wu, M. Maglione, W. Mojica, E. Roth, S.C. Morton, and P.G. Shekelle, "Systematic review: impact of health information technology on quality, efficiency, and costs of medical care", Ann. Intern. Med., vol. 144, no. 10, pp. 742-752, 2006. [http://dx.doi.org/10.7326/0003-4819-144-10-200605160-00125]. [PMID: 16702590].
[3]
F. Chabat, D.M. Hansell, and G-Z. Yang, "Computerized decision support in medical imaging", IEEE Eng. Med. Biol. Mag., vol. 19, no. 5, pp. 89-96, 2000. [http://dx.doi.org/10.1109/51.870235]. [PMID: 11016034].
[4]
J. Bernatavičienė, G. Dzemyda, O. Kurasova, V. Marcinkevičius, and V. Medvedev, The problem of visual analysis of multidimensional medical data, in models and algorithms for global optimization.Models and Algorithms for Global Optimization.Springer: Boston, MA, USA Vol. 4 2007, . [https://doi.org/10.1007/978-0-387-36721-7_17]
[5]
P. Meesad, and G.G. Yen, "Combined numerical and linguistic knowledge representation and its application to medical diagnosis", IEEE Trans. Syst. Man Cybern. A Syst. Hum., vol. 3, no. 2, pp. 206-222, 2003. [http://dx.doi.org/10.1109/TSMCA.2003.811290].
[6]
I. Kononenko, "Machine learning for medical diagnosis: history, state of the art and perspective", Artif. Intell. Med., vol. 23, no. 1, pp. 89-109, 2001. [http://dx.doi.org/10.1016/S0933-3657(01)00077-X]. [PMID: 11470218].
[7]
P. Luukka, "Feature selection using fuzzy entropy measures with similarity classifier", Expert Syst. Appl., vol. 38, no. 4, pp. 4600-4607, 2011. [http://dx.doi.org/10.1016/j.eswa.2010.09.133].
[8]
H. Kahramanli, and N. Allahverd, "Extracting rules for classification problems: AIS based approach", In: Expert Systems with Applications., vol. 36. 2009, no. 7, pp. 10494-10502. [https://doi.org/10.1016/j.eswa.2009.01.029].
[9]
B.D. Sekar, C.D. Ming, J. Shi, and Y.H. Xiang, "Fused hierarchical neural networks for cardiovascular disease diagnosis", IEEE Sens. J., vol. 12, no. 3, pp. 644-650, 2012. [http://dx.doi.org/10.1109/JSEN.2011.2129506].
[10]
M. Seera, and C.P. Lim, "A hybrid intelligent system for medical data classification", Expert Syst. Appl., vol. 41, no. 5, pp. 2239-2249, 2014. [http://dx.doi.org/10.1016/j.eswa.2013.09.022].
[11]
J.P. Garcia-Laencina, J. Luis, S. Gómeza, A.R. Figueiras-Vidal, and M. Verleysen, "K nearest neighbors with mutual information for simultaneous classification and missing data imputation", Neurocomputing, vol. 72, no. 7-9, pp. 1483-1493, 2009. [https://doi.org/10.1016/j.neucom.2008.11.026].
[12]
F. Amato, A. López, E.M. Peña-Méndez, P. Vaňhara, A. Hamp, and J. Havel, "Artificial neural networks in medical diagnosis", J. Appl. Biomed., vol. 11, no. 2, pp. 47-58, 2013. [http://dx.doi.org/10.2478/v10136-012-0031-x].
[13]
M. Brameier, and W. Banzhaf, "A comparison of linear genetic programming and neural networks in medical data mining", IEEE Trans. Evol. Comput., vol. 5, no. 1, pp. 17-26, 2001. [http://dx.doi.org/10.1109/4235.910462].
[14]
J.S. Sartakhti, M.H. Zangooei, and K. Mozafari, "Hepatitis disease diagnosis using a novel hybrid method based on support vector machine and simulated annealing (SVM-SA)", Comput. Methods Prog Biomed., vol. 108, no. 2, pp. 570-579, 2012. [http://dx.doi.org/10.1016/j.cmpb.2011.08.003]. [PMID: 21968203].
[15]
C.Y. Fan, P.C. Chang, J.J. Lin, and J.C. Hsieh, "A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification", Appl. Soft Comput., vol. 11, no. 1, pp. 632-644, 2011. [http://dx.doi.org/10.1016/j.asoc.2009.12.023].
[16]
K.V.S.R.P. Varma, A.A. Rao, T.S.M. Lakshmi, and P.V.N. Rao, "A computational intelligence approach for a better diagnosis of diabetic patients", Comput. Electr. Eng., vol. 40, no. 5, pp. 1758-1765, 2014. [http://dx.doi.org/10.1016/j.compeleceng.2013.07.003].
[17]
R. Cheruku, D.R. Edla, and V. Kuppili, "SM-RuleMiner: spider monkey based rule miner using novel fitness function for diabetes classification", Comput. Biol. Med., vol. 81, pp. 79-92, 2017. [http://dx.doi.org/10.1016/j.compbiomed.2016.12.009]. [PMID: 28027460].
[18]
A.S. Anuradha, and G. Gupta, "ANT_FDCSM: Aanovel fuzzy rule miner derived from ant colony meta-heuristic for diagnosis of diabetic patients", J. Intelligent. Fuzzy Syst., vol. 36, no. 1, pp. 747-760, 2019. [http://dx.doi.org/10.3233/JIFS-172240].
[19]
A.S. Anuradha, and G. Gupta, "An intelligent two phase fuzzy decision tree based clustering model for design of computer aided detection/diagnosis (CADe/CADx) system", MAPAN (Springer), vol. 33, no. 1, pp. 63-75, 2017. [https://doi.org/10.1007/s12647-017-0230-8].
[20]
A.S. Anuradha, and G. Gupta, "Fuzzy decision tree construction in crisp scenario through fuzzified trapezoidal membership function", Internetw. Indonesia, vol. 7, no. 2, pp. 21-28, 2015.
[21]
B.Z. Dadaneh, H.Y. Markid, and A. Zakerolhosseini, "Unsupervised probabilistic feature selection using ant colony optimization", Expert Syst. Appl., vol. 53, pp. 27-42, 2016. [http://dx.doi.org/10.1016/j.eswa.2016.01.021].
[22]
H.H. Örkcü, and H. Bal, "Comparing performances of backpropagation and genetic algorithms in the data classification", Expert Syst. Appl., vol. 38, no. 4, pp. 3703-3709, 2011. [http://dx.doi.org/10.1016/j.eswa.2010.09.028].
[23]
K. Polat, S. Şahan, H. Kodaz, and S. Güneş, "Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism", Expert Syst. Appl., vol. 32, no. 1, pp. 172-183, 2007. [http://dx.doi.org/10.1016/j.eswa.2005.11.024].
[24]
R. Stoean, and C. Stoean, "Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection", Expert Syst. Appl., vol. 40, no. 7, pp. 2677-2686, 2013. [http://dx.doi.org/10.1016/j.eswa.2012.11.007].
[25]
E. Çomak, K. Polat, S. Güneş, and A. Arslan, "A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing", Expert Syst. Appl., vol. 32, no. 2, pp. 409-414, 2007. [http://dx.doi.org/10.1016/j.eswa.2005.12.001].
[26]
J-Z. Guo, and J-W. Jin, "An improved Id3 algorithm for medical data classification", Comput. Electr. Eng., vol. 65, pp. 474-487, 2018. [https://doi.org/10.1016/j.compeleceng.2017.08.005].
[27]
M.B. Gorzałczany, and F. Rudziński, "Interpretable and accurate medical data classification -a multi-objective genetic-fuzzy optimization approach", Expert Syst. Appl., vol. 71, no. 1, pp. 26-39, 2017. [http://dx.doi.org/10.1016/j.eswa.2016.11.017].
[28]
A. Kalantari, A. Kamsin, S. Shamshirband, A. Gani, H. Alinejad-Rokny, and T.C. Anthony, "Computational intelligence approaches for classification of medical data: state-of-the-art, future challenges and research directions", Neurocomputing, vol. 276, no. 7, pp. 2-22, 2018. [http://dx.doi.org/10.1016/j.neucom.2017.01.126].
[29]
S. Al-Muhaideb, and E.B.M. Mohamed, "An individualized preprocessing for medical data classification", Procedia Comput. Sci., vol. 82, pp. 35-42, 2016. [http://dx.doi.org/10.1016/j.procs.2016.04.006].