[2]
Wang, Q.; Chen, J.; Li, Q.S.; Liu, J.C. PID parameter optimization based on improved biogeography-based optimization algorithm. J. Nanjing Univ. Sci. Tech., 2017, 41(4), 519-525.
[7]
Xu, Z.D.; Mo, H.W. Improvement for migration operator in biogeography-based optimization algorithm. Int. J. Pattern Recognit.
Artif. Intell., 2012, 25(3), 544-549.
[8]
Chen, D.; Gong, Q.; Hui, Q.; Zhao, J. Multi-objective generation dispatching for wind power integrated system adopting improved biogeography-based optimization algorithm. Proc. CSEE, 2012, 32(31), 150-158.
[9]
Lu, Y.M.; Wang, Y.; Liu, J.; Wu, L. Improved biogeography-based optimization algorithm. CPEN, 2016, 52(17), 146-151.
[11]
Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for
Machine Intelligence, International conference on computational
intelligence for modelling, control and automation and international
conference on intelligent agents, web technologies and internet
commerce. Vienna, Austria. 2005, pp. 695-701.
[13]
Ergezer, M.; Simon, D.; Du, D. Oppositional biogeography-based optimization. Evolutionary Computation IEEE Transactions, 2014, 47(10), 1009-1014.
[14]
Ergezer, M.; Dan, S. Oppositional biogeography-based optimization
for com-binatorial problems, 2011 IEEE Congress of evolutionary
computation. New Orleans, USA. 2011, pp. 1496-1503.
[15]
Ergezer, M.; Sikder, I. Survey of oppositional algorithms., 14th
international conference on computer and information technology Dhaka, Bangladesh. 2012, pp. 623-628.
[16]
Goudos, S.K.; Deruyck, M.; Plets, D.; Martens, L.; Joseph, W. Application of opposition-based learning concepts in reducing the
power consumption in wireless access networks., 23rd international
conference on telecommunications. Thessaloniki, Greece.. 2016, pp. 1-5.
[17]
Xue, H.; Han, P. Improved BBO algorithm and its application in PID optimization of thermal system. J. North China Electric Power Univ., 2016, 43(1), 81-85.
[18]
Chen, J.L. Biogeography-Based optimization model based on gaussian mutation. Math. Comput. Simul., 2013, 30(7), 292-279.
[19]
Han, J.; Liu, C. Adaptive fruit fly optimization algorithm based on bacterial migration. Comput. Eng. Sci., 2014, 36(4), 690-696.
[20]
Liu, C.Z.; Han, J.Y. Adaptive fruit fly optimization algorithm based on bacterial migration. Comput. Eng. Sci., 2014, 36(4), 690-696.
[21]
Wang, S.; Ding, L.; Xie, C.; Guo, Z.; Hu, Y.R. A hybrid differential evolution with elite opposition-based learning. J. Wuhan Univ., 2013, 59(2), 111-116.
[22]
Han, S.J.; Ju, Z.; Mao, J.G.; Zhang, W.Y. Fault diagnosis of transformer based on particle swarm optimization-based support vector machine. High Voltage Eng., 2014, 35(3), 509-513.