[1]
Adolph, H.G.; Stern, A.G. Process for synthesizing 1,5-dinosyl-3,3,7,7- tetrakis(difluoramino)octahydro-1,5-diazocine(DNTDFD).U.S. Patent 7,145,003 December 5 2006.
[2]
Fan, X.W.; Ju, X.H.; Xiao, H.M. Density functional theory study of piperidine and diazocine compounds. J. Hazard. Mater., 2008, 156(1-3), 342-347.
[3]
Chapman, R.D.; Groshens, T.J. 3,3,7,7-tetrakis(difluoramino)octahydro-1,5- diazocinium salts and method for making the same. U.S. Patent 7,563,889, July 21 2009.
[4]
Peralta-Inga, Z.; Degirmenbasi, N.; Olgun, U.; Gocmez, H.; Kalyon, D.M. Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: Part I, mathematical modeling using molecular dynamics method. J. Energ. Mater., 2006, 24(2), 69-101.
[5]
Degirmenbasi, N.; Peralta-Inga, Z.; Olgun, U.; Gocmez, H.; Kalyon, D.M. Recrystallization of CL-20 and HNFX from solution for rigorous control of the polymorph type: Part II, experimental studies. J. Energ. Mater., 2006, 24(2), 103-139.
[6]
Weck, P.F.; Gobin, C.; Kim, E.; Pravica, M.G. Organic cyclic difluoramino-nitramines: infrared and Raman spectroscopy of 3,3,7,7-tetrakis(difluoramino)octahydro 1,5-dinitro-1,5-diazocine (HNFX). J. Raman Spectrosc., 2009, 40(8), 964-971.
[7]
Chapman, R.D.; Groshens, T.J. Method for making 3,3,7,7-tetrakis (difluoramino)octahydro-1,5-dinitro-1,5-diazocine(HNFX). U.S. Patent 7,632,943, December 15, 2009.
[8]
Chapman, R.D.; Gilardi, R.D.; Welker, M.F.; Kreutzberger, C.B. Nitrolysis of a highly deactivated amide by protonitronium. synthesis and structure of HNFX1. J. Org. Chem., 1999, 64(3), 960-965.
[9]
Chapman, R.D. Process for employing HNFX as a biocidal explosive. U.S. Patent 8,221,566, July 17, 2012.
[10]
Chapman, R.D.; Welker, M.F.; Kreutzberger, C.B. Difluoramination of heterocyclic ketones: control of microbasicity. J. Org. Chem., 1998, 63(5), 1566-1570.
[11]
Paudler, W.W.; Zeiler, A.G. 3,7-Disubstituted octahydro-1,5-diazocines. their conversion into tetrahydro-1, 5-diazocines and to ring-contracted products. J. Org. Chem., 1967, 32(8), 2425-2430.
[12]
Paudler, W.W.; Gapski, G.R.; Barton, J.M. 1,5-Bis(p-toluenesulfonyl)-3,7-dihydroxyoctahydro-1,5-diazocine. J. Org. Chem., 1966, 31(1), 277-280.
[13]
Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum conditions. In: Breakthroughs in Statistics: Methodology and Distribution; Kotz, S.; Johnson, N.L., Eds.; Springer: New York, 1992; pp. 270-310.
[14]
Yousefzadeh, S.; Matin, A.R.; Ahmadi, E.; Sabeti, Z.; Alimohammadi, M.; Aslani, H.; Nabizadeh, R. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe(0) process for safe water production. Food Chem. Toxicol., 2018, 114, 334-345.
[15]
Souza, L.P.; Faroni, L.R.D.; Heleno, F.F.; Pinto, F.G.; Queiroz, M.; Prates, L.H.F. Ozone treatment for pesticide removal from carrots: Optimization by response surface methodology. Food Chem., 2018, 243, 435-441.
[16]
Yousefi, N.; Zeynali, F.; Alizadeh, M. Optimization of low-fat meat hamburger formulation containing quince seed gum using response surface methodology. J. Food Sci. Technol., 2018, 55(2), 598-604.
[17]
Rana, S.S.; Pradhan, R.C.; Mishra, S. Optimization of chemical treatment on fresh cut tender jackfruit slices for prevention of browning by using response surface methodology. Int. Food Res. J., 2018, 25(1), 196-203.
[18]
Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M.S.; Sandhu, M.A. Optimization of mixed surfactants-based beta-carotene nanoemulsions using response surface methodology: An ultrasonic homogenization approach. Food Chem., 2018, 253, 179-184.
[19]
Talat, D.; Guvenis, A. Design and evaluation of a breast-specific collimator using response surface methodology and monte carlo simulations. IEEE Trans. Nucl. Sci., 2016, 63(1), 98-107.
[20]
Kumar, A.; Singh, H.; Kumar, V. Study the parametric effect of abrasive water jet machining on surface roughness of Inconel 718 using RSM-BBD techniques. Mater. Manuf. Process., 2017, 33(13), 1483-1490.
[21]
Nouioua, M.; Yallese, M.A.; Khettabi, R.; Belhadi, S.; Bouhalais, M.L.; Girardin, F. Investigation of the performance of the MQL, dry, and wet turning by response surface methodology (RSM) and artificial neural network (ANN). Int. J. Adv. Manuf. Technol., 2017, 93, 2485-2504.
[22]
Torabi, A.; Kolahan, F. Optimizing pulsed Nd:YAG laser beam welding process parameters to attain maximum ultimate tensile strength for thin AISI316L sheet using response surface methodology and simulated annealing algorithm. Opt. Laser Technol., 2018, 103, 300-310.
[23]
Vyavahare, G.D.; Gurav, R.G.; Jadhav, P.P.; Patil, R.R.; Aware, C.B.; Jadhav, J.P. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 2018, 194, 306-315.
[24]
Salehi, K.; Bahmani, A.; Shahmoradi, B.; Pordel, M.A.; Kohzadi, S.; Gong, Y.; Guo, H.; Shivaraju, H.P.; Rezaee, R.; Pawar, R.R.; Lee, S.M. Response surface methodology (RSM) optimization approach for degradation of Direct Blue 71 dye using CuO–ZnO nanocomposite. Int. J. Environ. Sci. Technol., 2017, 14(10), 2067-2076.
[25]
Taheri, M.; Bagheri, M.; Moazeni-Pourasil, R.S.; Ghassempour, A. Response surface methodology based on central composite design accompanied by multivariate curve resolution to model gradient hydrophilic interaction liquid chromatography: Prediction of separation for five major opium alkaloids. J. Sep. Sci., 2017, 40(18), 3602-3611.
[26]
Krishnamoorthi, M.; Malayalamurthi, R.; Mohamed Shameer, P. RSM based optimization of performance and emission characteristics of DI compression ignition engine fuelled with diesel/aegle marmelos oil/diethyl ether blends at varying compression ratio, injection pressure and injection timing. Fuel, 2018, 221, 283-297.
[27]
Zhang, Y.; Pan, B. Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem. Eng. J., 2014, 249, 111-120.
[28]
Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol., 2014, 160, 150-160.
[29]
Bosiger, P.; Richard, I.M.T.; Le Gat, L.; Michen, B.; Schubert, M.; Rossi, R.M.; Fortunato, G. Application of response surface methodology to tailor the surface chemistry of electrospun chitosan-poly(ethylene oxide) fibers. Carbohydr. Polym., 2018, 186, 122-131.
[30]
Montgomery, D.C. Design and Analysis of Experiments, 8th ed; John Wiley & Sons: New Jersey, 2013.