Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review

Author(s): Suresh Kumar Sahu, Rakesh Raj*, Pooja Mongia Raj and Ram Alpana

Volume 15, Issue 4, 2020

Page: [283 - 298] Pages: 16

DOI: 10.2174/1574885513666181112153213

Price: $65

Open Access Journals Promotions 2
Abstract

Treatment of skin ailments through systemic administration is limited due to toxicity and patients discomfort. Hence, lower risk of systemic side effects from topical dosage forms like ointments, creams, emulsions and gels is more preferred for the treatment of skin disease. Application of lipid based carriers in drug delivery in topical formulations has recently become one of the major approaches to improve drug permeation, safety, and effectiveness. These delivery systems include liposomes, ethosomes, transfersomes, Nanoemulsions (NEs), Solid Lipid Nanoparticles (SLNs) Nanostructured Lipid Carriers (NLCs) and micelles. Most of the liposomes and SLNs based products are in the market while some are under investigation. Transcutaneous delivery of therapeutics to the skin layer by novel lipid based carriers has enhanced topical therapy for the treatment of skin ailments. This article covers an overview of the lipid-based carriers for topical uses to alleviate skin diseases.

Keywords: lipid based systems, skin disease, topical, liposomes, ethosomes, transfersomes.

Next »
Graphical Abstract
[1]
Sigmundsdottir H. Improving topical treatments for skin diseases. Trends Pharmacol Sci 2010; 31(6): 239-45.
[http://dx.doi.org/10.1016/j.tips.2010.03.004] [PMID: 20413166]
[2]
van de Kerkhof PC. The values of treatments for chronic inflammatory skin diseases; challenges of the market of health. J Dermatolog Treat 2010; 21(1): 1-2.
[http://dx.doi.org/10.3109/09546630903517069] [PMID: 20055693]
[3]
Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 2008; 357(1-2): 295-304.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.045] [PMID: 18343059]
[4]
Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif Cells Nanomed Biotechnol 2015; 43(4): 282-90.
[http://dx.doi.org/10.3109/21691401.2014.883401] [PMID: 24564350]
[5]
Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[6]
Pierre MBR, Dos Santos Miranda Costa I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch Dermatol Res 2011; 303(9): 607-21.
[http://dx.doi.org/10.1007/s00403-011-1166-4] [PMID: 21805180]
[7]
Gabrijelcic V, Sentjurc M, Kristl J. Evaluation of liposomes as drug carriers into the skin by one-dimensional EPR imaging. Int J Pharm 1990; 62: 75-9.
[http://dx.doi.org/10.1016/0378-5173(90)90032-Y]
[8]
Schmid MH, Korting HC. Therapeutic progress with topical liposome drugs for skin disease. Adv Drug Deliv Rev 1996; 18: 335-42.
[http://dx.doi.org/10.1016/0169-409X(95)00019-4]
[9]
Egbaria K, Weiner N. Liposomes as a topical drug delivery system. Adv Drug Deliv Rev 1990; 5: 287-300.
[http://dx.doi.org/10.1016/0169-409X(90)90021-J]
[10]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[11]
Vyas SP, Gupta S. Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomedicine 2006; 1(4): 417-32.
[http://dx.doi.org/10.2147/nano.2006.1.4.417] [PMID: 17722276]
[12]
Godin B, Touitou E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J Control Release 2004; 94(2-3): 365-79.
[http://dx.doi.org/10.1016/j.jconrel.2003.10.014] [PMID: 14744487]
[13]
Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim Biophys Acta 2004; 1663(1-2): 61-73.
[http://dx.doi.org/10.1016/j.bbamem.2004.01.006] [PMID: 15157608]
[14]
Cevc G, Schätzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 2002; 1564(1): 21-30.
[http://dx.doi.org/10.1016/S0005-2736(02)00401-7] [PMID: 12100992]
[15]
Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009; 366(1-2): 170-84.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[16]
Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm 2011; 79(1): 36-42.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.009] [PMID: 21558002]
[17]
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J 2011; 19(3): 129-41.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[18]
Dragicevic-Curic N, Gräfe S, Albrecht V, Fahr A. Topical application of temoporfin-loaded invasomes for photodynamic therapy of subcutaneously implanted tumours in mice: a pilot study. J Photochem Photobiol B 2008; 91(1): 41-50.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.01.009] [PMID: 18316200]
[19]
Pierre MBR, Marchetti JM, Tedesco AC, Bentley MVLB. Potencial incorporation of 5-aminolevulinic acid in micelles and stratum corneum lipids liposomes: Xuorescence quenching studies. Braz J Pharm Sci 2001; 37: 355-61.
[20]
Moore PN, Shiloach A, Puvvada S, Blankschtein D. Penetration of mixed micelles into the epidermis: effect of mixing sodium dodecyl sulfate with dodecyl hexa(ethylene oxide). J Cosmet Sci 2003; 54(2): 143-59.
[PMID: 12715092]
[21]
Mueller-Goymann CC, Hamann HJ. Sustained release from reverse micellar solutions by phase transformation into lamellar liquid crystals. J Control Release 1993; 23: 165-74.
[http://dx.doi.org/10.1016/0168-3659(93)90042-4]
[22]
Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 2005; 6(2): E298-310.
[http://dx.doi.org/10.1208/pt060240] [PMID: 16353989]
[23]
Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2: 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[24]
Esposito E, Ravani L, Mariani P, et al. Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. Eur J Pharm Biopharm 2014; 86(2): 121-32.
[http://dx.doi.org/10.1016/j.ejpb.2013.12.011] [PMID: 24361485]
[25]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2012; 64: 175-93.
[http://dx.doi.org/10.1016/j.addr.2012.09.018] [PMID: 11104900]
[26]
Changez M, Chander J, Dinda AK. Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: in vivo. Colloids Surf B Biointerfaces 2006; 48(1): 58-66.
[http://dx.doi.org/10.1016/j.colsurfb.2006.01.007] [PMID: 16497490]
[27]
Nam YS, Kim JW, Park J, Shim J, Lee JS, Han SH. Tocopheryl acetate nanoemulsions stabilized with lipid-polymer hybrid emulsifiers for effective skin delivery. Colloids Surf B Biointerfaces 2012; 94: 51-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.016] [PMID: 22326341]
[28]
Momoh MA, Esimone CO. Phospholipon 90H (P90H)-based PEGylated microscopic lipospheres delivery system for gentamicin: an antibiotic evaluation. Asian Pac J Trop Biomed 2012; 2(11): 889-94.
[http://dx.doi.org/10.1016/S2221-1691(12)60248-2] [PMID: 23569866]
[29]
Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 1993; 89: R9-R12.
[http://dx.doi.org/10.1016/0378-5173(93)90313-5]
[30]
Benson HA. Elastic liposomes for topical and transdermal drug delivery. Methods Mol Biol 2010; 605: 77-86.
[http://dx.doi.org/10.1007/978-1-60327-360-2_4] [PMID: 20072873]
[31]
Knudsen NO, Jorgensen L, Hansen J, Vermehren C, Frokjaer S, Foged C. Targeting of liposome-associated calcipotriol to the skin: effect of liposomal membrane fluidity and skin barrier integrity. Int J Pharm 2011; 416(2): 478-85.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.014] [PMID: 21419203]
[32]
Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm 2003; 258(1-2): 141-51.
[http://dx.doi.org/10.1016/S0378-5173(03)00183-2] [PMID: 12753761]
[33]
Biruss B, Valenta C. Comparative characterization of the physicochemical behavior and skin permeation of extruded DPPC liposomes modified by selected additives. J Pharm Sci 2007; 96(8): 2171-6.
[http://dx.doi.org/10.1002/jps.20867] [PMID: 17301964]
[34]
Sinico C, Manconi M, Peppi M, Lai F, Valenti D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J Control Release 2005; 103(1): 123-36.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020] [PMID: 15710506]
[35]
Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 1996; 13(3-4): 257-388.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v13.i3-4.30] [PMID: 9016383]
[36]
Bingham KD, Shaw DA. The metabolism of testosterone by human male scalp skin. J Endocrinol 1973; 57(1): 111-21.
[http://dx.doi.org/10.1677/joe.0.0570111] [PMID: 4701164]
[37]
Schweikert HU, Wilson JD. Regulation of human hair growth by steroid hormones. I. Testerone metabolism in isolated hairs. J Clin Endocrinol Metab 1974; 38(5): 811-9.
[http://dx.doi.org/10.1210/jcem-38-5-811] [PMID: 4823922]
[38]
Gormley GJ. Finasteride: a clinical review. Biomed Pharmacother 1995; 49(7-8): 319-24.
[http://dx.doi.org/10.1016/0753-3322(96)82658-8] [PMID: 8562856]
[39]
Irwig MS, Kolukula S. Persistent sexual side effects of finasteride for male pattern hair loss. J Sex Med 2011; 8(6): 1747-53.
[http://dx.doi.org/10.1111/j.1743-6109.2011.02255.x] [PMID: 21418145]
[40]
Chaudhary UB, Turner JS. Finasteride. Expert Opin Drug Metab Toxicol 2010; 6(7): 873-81.
[http://dx.doi.org/10.1517/17425255.2010.495944] [PMID: 20536414]
[41]
Tabbakhian M, Tavakoli N, Jaafari MR, Daneshamouz S. Enhancement of follicular delivery of finasteride by liposomes and niosomes 1. In vitro permeation and in vivo deposition studies using hamster flank and ear models. Int J Pharm 2006; 323(1-2): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.041] [PMID: 16837150]
[42]
Verma DD, Verma S, Blume G, Fahr A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm 2003; 55(3): 271-7.
[http://dx.doi.org/10.1016/S0939-6411(03)00021-3] [PMID: 12754000]
[43]
Dragicevic-Curic N, Winter S, Stupar M, et al. Temoporfin-loaded liposomal gels: viscoelastic properties and in vitro skin penetration. Int J Pharm 2009; 373(1-2): 77-84.
[http://dx.doi.org/10.1016/j.ijpharm.2009.02.010] [PMID: 19429291]
[44]
Knudsen NO, Rønholt S, Salte RD, et al. Calcipotriol delivery into the skin with PEGylated liposomes. Eur J Pharm Biopharm 2012; 81(3): 532-9.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.005] [PMID: 22538098]
[45]
Margalit R, Okon M, Yerushalmi N, Avidor E. Bioadhesive liposomes as topical drug delivery systems: molecular and cellular studies. J Control Release 1992; 19: 275-87.
[http://dx.doi.org/10.1016/0168-3659(92)90083-4]
[46]
Shanmugam S, Song CK, Nagayya-Sriraman S, et al. Physicochemical characterization and skin permeation of liposome formulations containing clindamycin phosphate. Arch Pharm Res 2009; 32(7): 1067-75.
[http://dx.doi.org/10.1007/s12272-009-1713-0] [PMID: 19641889]
[47]
Abdel-Mageed HM, El-Laithy HM, Mahran LG, Fahmy AS, Mader K, Mohamed SA. Development of novel flexible sugar ester vesicles as carrier systems for the antioxidant enzyme catalase for wound healing applications. Process Biochem 2012; 47: 1155-62.
[http://dx.doi.org/10.1016/j.procbio.2012.04.008]
[48]
Tanrıverdi ST, Özer Ö. Novel topical formulations of Terbinafine-HCl for treatment of onychomycosis. Eur J Pharm Sci 2013; 48(4-5): 628-36.
[http://dx.doi.org/10.1016/j.ejps.2012.12.014] [PMID: 23295582]
[49]
Teng IT, Chang YJ, Wang LS, et al. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials 2013; 34(30): 7462-70.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.001] [PMID: 23810081]
[50]
Manconi M, Caddeo C, Sinico C, et al. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction. Eur J Pharm Biopharm 2011; 78(1): 27-35.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.010] [PMID: 21167279]
[51]
Manconi M, Sinico C, Caddeo C, Vila AO, Valenti D, Fadda AM. Penetration enhancer containing vesicles as carriers for dermal delivery of tretinoin. Int J Pharm 2011; 412(1-2): 37-46.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.068] [PMID: 21530626]
[52]
Manconi M, Caddeo C, Sinico C, et al. Penetration enhancer-containing vesicles: composition dependence of structural features and skin penetration ability. Eur J Pharm Biopharm 2012; 82(2): 352-9.
[http://dx.doi.org/10.1016/j.ejpb.2012.06.015] [PMID: 22922162]
[53]
Kristl J, Abramović Z, Sentjurc M. Skin oxygenation after topical application of liposome-entrapped benzyl nicotinate as measured by EPR oximetry in vivo: influence of composition and size. AAPS PharmSci 2003; 5(1)E2
[http://dx.doi.org/10.1208/ps050102] [PMID: 12713274]
[54]
Elmoslemany RM, Abdallah OY, El-Khordagui LK, Khalafallah NM. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: comparison with conventional liposomes. AAPS PharmSciTech 2012; 13(2): 723-31.
[http://dx.doi.org/10.1208/s12249-012-9783-6] [PMID: 22566173]
[55]
Gaur PK, Mishra S, Purohit S, Kumar Y, Bhandari A. Development of a new nanovesicle formulation as transdermal carrier: formulation, physicochemical characterization, permeation studies and anti-inflammatory activity. Artif Cells Nanomed Biotechnol 2014; 42(5): 323-30.
[http://dx.doi.org/10.3109/21691401.2013.827119] [PMID: 23944163]
[56]
Johny J, Vedha HBN, Ramaya DD. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur J Pharm Sci 2018; 112: 38-51.
[http://dx.doi.org/10.1016/j.ejps.2017.10.032] [PMID: 29111151]
[57]
Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes. AAPS PharmSciTech 2018; 19(1): 166-75.
[http://dx.doi.org/10.1208/s12249-017-0833-y] [PMID: 28639178]
[58]
El Maghraby GM, Williams AC. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin Drug Deliv 2009; 6(2): 149-63.
[http://dx.doi.org/10.1517/17425240802691059] [PMID: 19239387]
[59]
El Maghraby GM, Williams AC, Barry BW. Can drug-bearing liposomes penetrate intact skin? J Pharm Pharmacol 2006; 58(4): 415-29.
[http://dx.doi.org/10.1211/jpp.58.4.0001] [PMID: 16597359]
[60]
Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 2000; 65(3): 403-18.
[http://dx.doi.org/10.1016/S0168-3659(99)00222-9] [PMID: 10699298]
[61]
Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials 2001; 22(22): 3053-9.
[http://dx.doi.org/10.1016/S0142-9612(01)00052-7] [PMID: 11575480]
[62]
Dubey V, Mishra D, Jain NK. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm 2007; 67(2): 398-405.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.007] [PMID: 17452098]
[63]
Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release 2007; 123(2): 148-54.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.005] [PMID: 17884226]
[64]
Chen M, Liu X, Fahr A. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application. Int J Pharm 2011; 408(1-2): 223-34.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.006] [PMID: 21316430]
[65]
Maheshwari RG, Tekade RK, Sharma PA, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm J 2012; 20(2): 161-70.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
[66]
Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine (Lond) 2012; 8(4): 489-96.
[http://dx.doi.org/10.1016/j.nano.2011.07.004] [PMID: 21839053]
[67]
Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit 1995; 17(6): 584-91.
[http://dx.doi.org/10.1097/00007691-199512000-00007] [PMID: 8588225]
[68]
Carroll CL, Fleischer AB Jr. Tacrolimus: focusing on atopic dermatitis. Drugs Today (Barc) 2006; 42(7): 431-9.
[http://dx.doi.org/10.1358/dot.2006.42.7.1003316] [PMID: 16894398]
[69]
Fleischer AB Jr, Abramovits W, Breneman D, Jaracz E. US/Canada tacrolimus ointment study group. Tacrolimus ointment is more effective than pimecrolimus cream in adult patients with moderate to very severe atopic dermatitis. J Dermatolog Treat 2007; 18(3): 151-7.
[http://dx.doi.org/10.1080/09546630701287332] [PMID: 17538803]
[70]
Kroft EB, Erceg A, Maimets K, Vissers W, van der Valk PG, van de Kerkhof PC. Tacrolimus ointment for the treatment of severe facial plaque psoriasis. J Eur Acad Dermatol Venereol 2005; 19(2): 249-51.
[http://dx.doi.org/10.1111/j.1468-3083.2005.01122.x] [PMID: 15752305]
[71]
Lebwohl M, Freeman A, Chapman MS, Feldman S, Hartle J, Henning A. Proven efficacy of tacrolimus for facial and intertriginous psoriasis. Arch Dermatol 2005; 141(9): 1154.
[http://dx.doi.org/10.1001/archderm.141.9.1154] [PMID: 16172314]
[72]
Li G, Fan C, Li X, et al. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. ScientificWorldJournal 2012; 2012874053
[http://dx.doi.org/10.1100/2012/874053] [PMID: 22629219]
[73]
Li G, Fan Y, Fan C, et al. Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm 2012; 82(1): 49-57.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.011] [PMID: 22705640]
[74]
Dragicevic-Curic N, Scheglmann D, Albrecht V, Fahr A. Development of liposomes containing ethanol for skin delivery of temoporfin: characterization and in vitro penetration studies. Colloids Surf B Biointerfaces 2009; 74(1): 114-22.
[http://dx.doi.org/10.1016/j.colsurfb.2009.07.005] [PMID: 19651496]
[75]
Fergin P. Photodynamic therapy of dermatoses other than non-melanoma skin cancer. Australas J Dermatol 2005; 46(Suppl. 3): S27.
[http://dx.doi.org/10.1111/j.1440-0960.2004.00115.x-i2 PMID: 15859307]
[76]
Fang YP, Huang YB, Wu PC, Tsai YH. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm 2009; 73(3): 391-8.
[http://dx.doi.org/10.1016/j.ejpb.2009.07.011] [PMID: 19660544]
[77]
Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm 2012; 81(1): 102-12.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.008] [PMID: 22414731]
[78]
Rao Y, Zheng F, Zhang X, Gao J, Liang W. In vitro percutaneous permeation and skin accumulation of finasteride using vesicular ethosomal carriers. AAPS PharmSciTech 2008; 9(3): 860-5.
[http://dx.doi.org/10.1208/s12249-008-9124-y] [PMID: 18649143]
[79]
Celia C, Cilurzo F, Trapasso E, Cosco D, Fresta M, Paolino D. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed Microdevices 2012; 14(1): 119-30.
[http://dx.doi.org/10.1007/s10544-011-9590-y] [PMID: 21960035]
[80]
Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release 2004; 97(1): 55-66.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.028] [PMID: 15147804]
[81]
Dayan N, Touitou E. Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials 2000; 21(18): 1879-85.
[http://dx.doi.org/10.1016/S0142-9612(00)00063-6] [PMID: 10919691]
[82]
Zhang Z, Wo Y, Zhang Y, et al. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue. Nanomedicine (Lond) 2012; 8(6): 1026-33.
[http://dx.doi.org/10.1016/j.nano.2011.10.006] [PMID: 22033085]
[83]
Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: a comparative study. Arch Pharm Res 2012; 35(1): 109-17.
[http://dx.doi.org/10.1007/s12272-012-0112-0] [PMID: 22297749]
[84]
Marto J, Vitor C, Guerreiro A, et al. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf B Biointerfaces 2016; 146: 616-23.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.021] [PMID: 27429295]
[85]
Faisal W, Soliman GM, Hamdan AM. Enhanced skin deposition and delivery of voriconazole using ethosomal preparations. J Liposome Res 2018; 28(1): 14-21.
[http://dx.doi.org/10.1080/08982104.2016.1239636] [PMID: 27667097]
[86]
Cândido TM, De Oliveira CA, Ariede MB, Velasco MVR, Rosado C, Baby AR. Safety and Antioxidant Efficacy Profiles of Rutin-Loaded Ethosomes for Topical Application. AAPS PharmSciTech 2018; 19(4): 1773-80.
[http://dx.doi.org/10.1208/s12249-018-0994-3] [PMID: 29600391]
[87]
Limsuwan T, Boonme P, Khongkow P, Amnuaikit T. Ethosomes of Phenylethyl Resorcinol as Vesicular Delivery System for Skin Lightening Applications. BioMed Res Int 2017; 20178310979
[http://dx.doi.org/10.1155/2017/8310979] [PMID: 28804723]
[88]
Kumar Sarwa K, Rudrapal M, Mazumder B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv 2015; 22(8): 1043-52.
[http://dx.doi.org/10.3109/10717544.2013.861041] [PMID: 24506573]
[89]
Garg BJ, Garg NK, Beg S, Singh B, Katare OP. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: formulation optimization, in vitro evaluation and preclinical assessment. J Drug Target 2016; 24(3): 233-46.
[http://dx.doi.org/10.3109/1061186X.2015.1070855] [PMID: 26267289]
[90]
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1992; 1104(1): 226-32.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[91]
Cevc G. Method for the improvement of transport across adaptable semi-permeable barriers. US Patent 7591949 B2, 2009.
[92]
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm 2006; 322(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.027] [PMID: 16806755]
[93]
Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 2007; 332(1-2): 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[94]
El Maghraby GM, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol 1999; 51(10): 1123-34.
[http://dx.doi.org/10.1211/0022357991776813] [PMID: 10579683]
[95]
El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm 2000; 196(1): 63-74.
[http://dx.doi.org/10.1016/S0378-5173(99)00441-X] [PMID: 10675708]
[96]
Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm 2012; 436(1-2): 291-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.003] [PMID: 22796030]
[97]
Thong HY, Zhai H, Maibach HI. Percutaneous penetration enhancers: an overview. Skin Pharmacol Physiol 2007; 20(6): 272-82.
[http://dx.doi.org/10.1159/000107575] [PMID: 17717423]
[98]
Jain SK, Gupta Y, Jain A, Rai K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Deliv 2008; 15(3): 141-7.
[http://dx.doi.org/10.1080/10717540801952407] [PMID: 18379926]
[99]
Gallarate M, Chirio D, Trotta M, Carlotti ME. Deformable Liposomes as Topical Formulations Containing α-Tocopherol. J Dispers Sci Technol 2006; 27: 703-13.
[http://dx.doi.org/10.1080/01932690600662588]
[100]
Scientific working group report on leishmaniasis 2004.
[101]
Croft SL, Seifert K, Yardley V. Current scenario of drug development for leishmaniasis. Indian J Med Res 2006; 123(3): 399-410.
[PMID: 16778319]
[102]
Bavarsad N, Fazly Bazzaz BS, Khamesipour A, Jaafari MR. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice. Acta Trop 2012; 124(1): 33-41.
[http://dx.doi.org/10.1016/j.actatropica.2012.06.004] [PMID: 22750480]
[103]
Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim Biophys Acta 2001; 1514(2): 191-205.
[http://dx.doi.org/10.1016/S0005-2736(01)00369-8] [PMID: 11557020]
[104]
Ghannoum M, Isham N, Henry W, Kroon HA, Yurdakul S. Evaluation of the morphological effects of TDT 067 (terbinafine in Transfersome) and conventional terbinafine on dermatophyte hyphae in vitro and in vivo. Antimicrob Agents Chemother 2012; 56(5): 2530-4.
[http://dx.doi.org/10.1128/AAC.05998-11] [PMID: 22354309]
[105]
Trotta M, Peira E, Debernardi F, Gallarate M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm 2002; 241(2): 319-27.
[http://dx.doi.org/10.1016/S0378-5173(02)00266-1] [PMID: 12100859]
[106]
Oh EK, Jin SE, Kim JK, Park JS, Park Y, Kim CK. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur J Pharm Sci 2011; 44(1-2): 149-57.
[http://dx.doi.org/10.1016/j.ejps.2011.07.003] [PMID: 21782942]
[107]
Lei W, Yu C, Lin H, Zhou X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci 2013; 8: 336-45.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[108]
Pathak K, Sharma V, Sharma M. Optimization, in vitro cytotoxicity and penetration capability of deformable nanovesicles of paclitaxel for dermal chemotherapy in Kaposi sarcoma. Artif Cells Nanomed Biotechnol 2016; 44(7): 1671-83.
[http://dx.doi.org/10.3109/21691401.2015.1080169] [PMID: 26360303]
[109]
Badr-Eldin SM, Ahmed OA. Optimized nano-transfersomal films for enhanced sildenafil citrate transdermal delivery: ex vivo and in vivo evaluation. Drug Des Devel Ther 2016; 10: 1323-33.
[http://dx.doi.org/10.2147/DDDT.S103122] [PMID: 27103786]
[110]
Zhang Y, Shen L, Zhang K, et al. Enhanced antioxidation via encapsulation of isooctyl p-methoxycinnamate with sodium deoxycholate-mediated liposome endocytosis. Int J Pharm 2015; 496(2): 392-400.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.010] [PMID: 26453790]
[111]
Abdellatif MM, Khalil IA, Khalil MAF. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation. Int J Pharm 2017; 527(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.029] [PMID: 28522423]
[112]
Calienni MN, Temprana CF, Prieto MJ, et al. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation. Drug Deliv Transl Res 2018; 8(3): 496-514.
[http://dx.doi.org/10.1007/s13346-017-0469-1] [PMID: 29288359]
[113]
Khan MA, Pandit J, Sultana Y, et al. Novel carbopol-based transfersomal gel of 5-fluorouracil for skin cancer treatment: in vitro characterization and in vivo study. Drug Deliv 2015; 22(6): 795-802.
[http://dx.doi.org/10.3109/10717544.2014.902146] [PMID: 24735246]
[114]
Lin H, Xie Q, Huang X, et al. Increased skin permeation efficiency of imperatorin via charged ultradeformable lipid vesicles for transdermal delivery. Int J Nanomedicine 2018; 13: 831-42.
[http://dx.doi.org/10.2147/IJN.S150086] [PMID: 29467573]
[115]
Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm 2007; 345(1-2): 163-71.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.061] [PMID: 17644288]
[116]
Gupta M, Tiwari S, Vyas SP. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm Dev Technol 2013; 18(3): 550-9.
[http://dx.doi.org/10.3109/10837450.2011.598161] [PMID: 21810069]
[117]
Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm 2008; 363(1-2): 132-8.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.028] [PMID: 18657601]
[118]
Gupta M, Vyas SP. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Phys Lipids 2012; 165(4): 454-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.01.006] [PMID: 22309657]
[119]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[120]
Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm 2006; 314(1): 83-9.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.040] [PMID: 16563671]
[121]
Xiang QY, Wang MT, Chen F, et al. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch Pharm Res 2007; 30(4): 519-25.
[http://dx.doi.org/10.1007/BF02980228] [PMID: 17489370]
[122]
Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Schäfer-Korting M. Glucocorticoid entrapment into lipid carriers--characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release 2004; 97(3): 493-502.
[http://dx.doi.org/10.1016/S0168-3659(04)00169-5] [PMID: 15212881]
[123]
Pople PV, Singh KK. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm 2010; 398(1-2): 165-78.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.008] [PMID: 20637847]
[124]
Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces 2012; 93: 36-40.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.051] [PMID: 22244299]
[125]
Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008; 70(2): 633-40.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[126]
Carlotti ME, Sapino S, Peira E, Gallarate M, Ugazio E. On the Photodegradation of Dithranol in Different Topical Formulations: Use of SLN to Increase the Stability of the Drug. J Dispers Sci Technol 2009; 30: 1517-24.
[http://dx.doi.org/10.1080/01932690903123726]
[127]
Bose S, Du Y, Takhistov P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm 2013; 441(1-2): 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[128]
Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces 2013; 105: 67-74.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.043] [PMID: 23357735]
[129]
Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007; 328(2): 191-5.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[130]
Chen H, Chang X, Du D, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 2006; 110(2): 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[131]
Lv Q, Yu A, Xi Y, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm 2009; 372(1-2): 191-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.014] [PMID: 19429280]
[132]
Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm 2011; 416(1): 300-4.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.014] [PMID: 21704140]
[133]
Sandri G, Bonferoni MC, D’Autilia F, et al. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. Eur J Pharm Biopharm 2013; 84(1): 84-90.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.022] [PMID: 23207329]
[134]
Wavikar P, Vavia P. Nanolipidgel for enhanced skin deposition and improved antifungal activity. AAPS PharmSciTech 2013; 14(1): 222-33.
[http://dx.doi.org/10.1208/s12249-012-9908-y] [PMID: 23263751]
[135]
Butani D, Yewale C, Misra A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf B Biointerfaces 2016; 139: 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[136]
Guo D, Dou D, Li X, Zhang Q, Bhutto ZA, Wang L. Ivermection-loaded solid lipid nanoparticles: preparation, characterisation, stability and transdermal behaviour. Artif Cells Nanomed Biotechnol 2018; 46(2): 255-62.
[http://dx.doi.org/10.1080/21691401.2017.1307207] [PMID: 28368657]
[137]
Chen J, Wei N, Lopez-Garcia M, et al. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications. Eur J Pharm Biopharm 2017; 117: 286-91.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.008] [PMID: 28411056]
[138]
Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 2008; 346(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.060] [PMID: 17651933]
[139]
Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 2005; 45(3-4): 167-73.
[http://dx.doi.org/10.1016/j.colsurfb.2005.08.005] [PMID: 16198092]
[140]
Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus, Part II--in vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm 2013; 84(1): 72-83.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.026] [PMID: 23246619]
[141]
Shah PP, Desai PR, Channer D, Singh M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J Control Release 2012; 161(3): 735-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.011] [PMID: 22617521]
[142]
Pople PV, Singh KK. Development and evaluation of colloidal modified nanolipid carrier: application to topical delivery of tacrolimus. Eur J Pharm Biopharm 2011; 79(1): 82-94.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.016] [PMID: 21447390]
[143]
Lee SG, Jeong JH, Kim SR, et al. Topical formulation of retinyl retinoate employing nanostructured lipid carriers. J Pharm Investig 2012; 42: 243-50.
[http://dx.doi.org/10.1007/s40005-012-0036-1]
[144]
Junyaprasert VB, Teeranachaideekul V, Souto EB, Boonme P, Müller RH. Q10-loaded NLC versus nanoemulsions: stability, rheology and in vitro skin permeation. Int J Pharm 2009; 377(1-2): 207-14.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.020] [PMID: 19465098]
[145]
Pardeike J, Schwabe K, Müller RH. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect. Int J Pharm 2010; 396(1-2): 166-73.
[http://dx.doi.org/10.1016/j.ijpharm.2010.06.007] [PMID: 20541000]
[146]
Agrawal Y, Petkar KC, Sawant KK. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int J Pharm 2010; 401(1-2): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.007] [PMID: 20858539]
[147]
Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance. Int J Pharm 2011; 414(1-2): 267-75.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.008] [PMID: 21596122]
[148]
Chen-yu G, Chun-fen Y, Qi-lu L, et al. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm 2012; 430(1-2): 292-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[149]
Doktorovová S, Araújo J, Garcia ML, Rakovský E, Souto EB. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B Biointerfaces 2010; 75(2): 538-42.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.033] [PMID: 19879736]
[150]
Bose S, Michniak-Kohn B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur J Pharm Sci 2013; 48(3): 442-52.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[151]
Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in “drug--in cyclodextrin--in nanostructured lipid carriers” for ketoprofen topical delivery. Eur J Pharm Biopharm 2012; 80(1): 46-53.
[http://dx.doi.org/10.1016/j.ejpb.2011.07.015] [PMID: 21839833]
[152]
Uprit S, Kumar Sahu R, Roy A, Pare A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J 2013; 21(4): 379-85.
[http://dx.doi.org/10.1016/j.jsps.2012.11.005] [PMID: 24227958]
[153]
Salunkhe SS, Bhatia NM, Pokharkar VB, Thorat JD, Bhatia MS. Topical delivery of Idebenone using nanostructured lipid carriers: evaluations of sun-protection and anti-oxidant effects. J Pharm Investig 2013; 43: 287-303.
[http://dx.doi.org/10.1007/s40005-013-0079-y]
[154]
Eiras F, Amaral MH, Silva R, Martins E, Lobo JMS, Silva AC. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles. Int J Pharm 2017; 519(1-2): 373-80.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.045] [PMID: 28131849]
[155]
Boonme P, Krauel K, Graf A, Rades T, Junyaprasert VB. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. AAPS PharmSciTech 2006; 7(2)E45
[http://dx.doi.org/10.1208/pt070245]] [PMID: 16796362]
[156]
Xu J, Fan QJ, Yin ZQ, et al. The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 2010; 169(3-4): 399-403.
[http://dx.doi.org/10.1016/j.vetpar.2010.01.016] [PMID: 20304561]
[157]
Comelles F, Pascual A. Microemulsions with butyl lactate as cosurfactant. J Dispers Sci Technol 1997; 18: 161-75.
[http://dx.doi.org/10.1080/01932699708943725]
[158]
Park KM, Kim CK. Preparation and evaluation of flurbiprofen-loaded microemulsion for parenteral delivery. Int J Pharm 1999; 181(2): 173-9.
[http://dx.doi.org/10.1016/S0378-5173(99)00029-0] [PMID: 10370213]
[159]
Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002; 54(Suppl. 1): S77-98.
[http://dx.doi.org/10.1016/S0169-409X(02)00116-3] [PMID: 12460717]
[160]
Osborne DW, Ward AJ, O’Neill KJ. Microemulsions as topical drug delivery vehicles: in-vitro transdermal studies of a model hydrophilic drug. J Pharm Pharmacol 1991; 43(6): 450-4.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03511.x] [PMID: 1717675]
[161]
Baroli B, López-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Méndez J. Microemulsions for topical delivery of 8-methoxsalen. J Control Release 2000; 69(1): 209-18.
[http://dx.doi.org/10.1016/S0168-3659(00)00309-6] [PMID: 11018558]
[162]
Sintov AC, Shapiro L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release 2004; 95(2): 173-83.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.004] [PMID: 14980766]
[163]
Delgado-Charro MB, Iglesias-Vilas G, Blanco-Mendez J, Lopez-Quintela MA, Marty JP, Guy RH. Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur J Pharm Biopharm 1997; 43: 37-42.
[http://dx.doi.org/10.1016/S0939-6411(96)00016-1]
[164]
Dreher F, Walde P, Walther P, Wehrli E. Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Control Release 1997; 45: 131-40.
[http://dx.doi.org/10.1016/S0168-3659(96)01559-3]
[165]
Kemken J, Ziegler A, Müller BW. Influence of supersaturation on the pharmacodynamic effect of bupranolol after dermal administration using microemulsions as vehicle. Pharm Res 1992; 9(4): 554-8.
[http://dx.doi.org/10.1023/A:1015856800653] [PMID: 1495902]
[166]
Kreilgaard M, Kemme MJ, Burggraaf J, Schoemaker RC, Cohen AF. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm Res 2001; 18(5): 593-9.
[http://dx.doi.org/10.1023/A:1011068907416] [PMID: 11465413]
[167]
Teichmann A, Heuschkel S, Jacobi U, et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur J Pharm Biopharm 2007; 67(3): 699-706.
[http://dx.doi.org/10.1016/j.ejpb.2007.04.006] [PMID: 17537622]
[168]
Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 2006; 123-126: 369-85.
[http://dx.doi.org/10.1016/j.cis.2006.05.014] [PMID: 16843424]
[169]
Paolino D, Ventura CA, Nisticò S, Puglisi G, Fresta M. Lecithin microemulsions for the topical administration of ketoprofen: percutaneous adsorption through human skin and in vivo human skin tolerability. Int J Pharm 2002; 244(1-2): 21-31.
[http://dx.doi.org/10.1016/S0378-5173(02)00295-8] [PMID: 12204562]
[170]
Goebel AS, Knie U, Abels C, Wohlrab J, Neubert RH. Dermal targeting using colloidal carrier systems with linoleic acid. Eur J Pharm Biopharm 2010; 75(2): 162-72.
[http://dx.doi.org/10.1016/j.ejpb.2010.02.001] [PMID: 20170728]
[171]
King M, Kumar P, Michel D, Batta R, Foldvari M. In vivo sustained dermal delivery and pharmacokinetics of interferon alpha in biphasic vesicles after topical application. Eur J Pharm Biopharm 2013; 84(3): 532-9.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.014] [PMID: 23500117]
[172]
Sahle FF, Metz H, Wohlrab J, Neubert RH. Lecithin-based microemulsions for targeted delivery of ceramide AP into the stratum corneum: formulation, characterizations, and in vitro release and penetration studies. Pharm Res 2013; 30(2): 538-51.
[http://dx.doi.org/10.1007/s11095-012-0899-x] [PMID: 23135817]
[173]
Tsai YH, Lee KF, Huang YB, Huang CT, Wu PC. In vitro permeation and in vivo whitening effect of topical hesperetin microemulsion delivery system. Int J Pharm 2010; 388(1-2): 257-62.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.051] [PMID: 20060453]
[174]
Yilmaz E, Borchert HH. Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides. Eur J Pharm Biopharm 2005; 60(1): 91-8.
[http://dx.doi.org/10.1016/j.ejpb.2004.11.009] [PMID: 15848061]
[175]
Klang V, Matsko N, Raupach K, El-Hagin N, Valenta C. Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. Eur J Pharm Biopharm 2011; 79(1): 58-67.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.010] [PMID: 21277976]
[176]
Schmidts T, Marquardt K, Schlupp P, et al. Development of drug delivery systems for the dermal application of therapeutic DNAzymes. Int J Pharm 2012; 431(1-2): 61-9.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.034] [PMID: 22531847]
[177]
Wang W, Cai Y, Liu Y, Zhao Y, Feng J, Liu C. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery: formulation development and in vitro evaluation. Artif Cells Nanomed Biotechnol 2017; 45(6): 1-6.
[http://dx.doi.org/10.1080/21691401.2017.1389748] [PMID: 27600884]
[178]
Kaur A, Sharma G, Gupta V, Ratho RK, Katare OP. Enhanced acyclovir delivery using w/o type microemulsion: preclinical assessment of antiviral activity using murine model of zosteriform cutaneous HSV-1 infection. Artif Cells Nanomed Biotechnol 2017; 12: 1-9.
[PMID: 28403666]
[179]
Benigni M, Pescina S, Grimaudo MA, Padula C, Santi P, Nicoli S. Development of microemulsions of suitable viscosity for cyclosporine skin delivery. Int J Pharm 2018; 545(1-2): 197-205.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.049] [PMID: 29698819]
[180]
Hussain A, Samad A, Singh SK, et al. Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv 2016; 23(2): 642-7.
[http://dx.doi.org/10.3109/10717544.2014.933284] [PMID: 25013957]
[181]
Campani V, Biondi M, Mayol L, Cilurzo F, Pitaro M, De Rosa G. Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm 2016; 511(1): 170-7.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.004] [PMID: 27386792]
[182]
Langasco R, Tanrıverdi ST, Özer Ö, et al. Prolonged skin retention of clobetasol propionate by bio-based microemulsions: a potential tool for scalp psoriasis treatment. Drug Dev Ind Pharm 2018; 44(3): 398-406.
[http://dx.doi.org/10.1080/03639045.2017.1395458] [PMID: 29098874]
[183]
Motulsky A, Lafleur M, Couffin-Hoarau AC, et al. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implants. Biomaterials 2005; 26(31): 6242-53.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.004] [PMID: 15916802]
[184]
Capitani D, Segre AL, Dreher F, Walde P, Luisi PL. Multinuclear NMR Investigation of Phosphatidylcholine Organogels. J Phys Chem 1996; 100: 15211-7.
[http://dx.doi.org/10.1021/jp960811i]
[185]
Scartazzini R, Luisi PL. Organogels from lecithins. J Phys Chem 1988; 92: 829-33.
[http://dx.doi.org/10.1021/j100314a047]
[186]
Schurtenberger P, Scartazzini R, Luisi PL. Viscoelastic properties of polymer like reverse micelles. Rheol Acta 1989; 28: 372-81.
[http://dx.doi.org/10.1007/BF01336804]
[187]
Luisi PL, Scartazzini R, Haering G, Schurtenberger P. Organogels from water-in-oil microemulsions. Colloid Polym Sci 1990; 268: 356-74.
[http://dx.doi.org/10.1007/BF01411679]
[188]
Angelico R, Palazzo G, Colafemmina G. Water Diffusion and Head group Mobility in Polymer-like Reverse Micelles: Evidence of a Sphere-to-Rod-to-Sphere Transition. J Phys Chem B 1998; 102: 2883-9.
[http://dx.doi.org/10.1021/jp980194t]
[189]
Angelico R, Ceglie A, Olsson U, Palazzo G. Phase Diagram and Phase Properties of the System Lecithin-Water-Cyclohexane. Langmuir 2000; 16: 2124-32.
[http://dx.doi.org/10.1021/la9909190]
[190]
Aliotta F, Fontanella ME, Pieruccini M, et al. Percolative phenomena in lecithin reverse micelles: the role of water. Colloid Polym Sci 2002; 280: 193-202.
[http://dx.doi.org/10.1007/s00396-001-0612-9]
[191]
Imai M, Hashizaki K, Taguchi H, Saito Y, Motohashi S. A new reverse worm-like micellar system from a lecithin, multivalent carboxylic acid and oil mixture. J Colloid Interface Sci 2013; 403: 77-83.
[http://dx.doi.org/10.1016/j.jcis.2013.04.033] [PMID: 23684226]
[192]
Shchipunov YA. Lecithin organogels: A micellar system with unique properties. Colloids Surf A Physicochem Eng Asp 2001; 183-185: 541-54.
[http://dx.doi.org/10.1016/S0927-7757(01)00511-8]
[193]
Hashizaki K, Chiba T, Taguchi H, Saito Y. Highly viscoelastic reverse worm-like micelles formed in a lecithin/urea/oil system. Colloid Polym Sci 2009; 287: 927-32.
[http://dx.doi.org/10.1007/s00396-009-2048-6]
[194]
Hashizaki K, Taguchi H, Saito Y. A novel reverse worm-like micelle from a lecithin/sucrose fatty acid ester/oil system. Colloid Polym Sci 2009; 287: 1099-105.
[http://dx.doi.org/10.1007/s00396-009-2076-2]
[195]
Pénzes T, Blazsó G, Aigner Z, Falkay G, Eros I. Topical absorption of piroxicam from organogels--in vitro and in vivo correlations. Int J Pharm 2005; 298(1): 47-54.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.013] [PMID: 15893893]
[196]
Esposito E, Menegatti E, Cortesi R. Design and characterization of fenretinide containing organogels. Mater Sci Eng C 2013; 33(1): 383-9.
[http://dx.doi.org/10.1016/j.msec.2012.09.002] [PMID: 25428085]
[197]
Ba W, Li Z, Wang L, et al. Optimization and evaluation of pluronic lecithin organogels as a transdermal delivery vehicle for sinomenine. Pharm Dev Technol 2016; 21(5): 535-45.
[PMID: 25757643]
[198]
Mady FM, Essa H, El-Ammawi T, Abdelkader H, Hussein AK. Formulation and clinical evaluation of silymarin pluronic-lecithin organogels for treatment of atopic dermatitis. Drug Des Devel Ther 2016; 10: 1101-10.
[PMID: 27022248]
[199]
Verma DD. Invasomes-novel topical carriers for enhanced topical delivery: characterization and skin penetration pro-perties 2002.
[200]
Salerno C, Chiappetta DA, Arechavala A, Gorzalczany S, Scioscia SL, Bregni C. Lipid-based microtubes for topical delivery of amphotericin B. Colloids Surf B Biointerfaces 2013; 107: 160-6.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.001] [PMID: 23500726]
[201]
Ourique AF, Melero A, de Bona da Silva C, et al. Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm 2011; 79(1): 95-101.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.008] [PMID: 21402157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy