Generic placeholder image

Current Proteomics


ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Proteomic Analysis of a Bioactive Aloe vera Extract

Author(s): Ethel Daniela Cabello-Ruiz, Víctor Manuel Torres-de la Cruz*, Catalina Rivas-Morales, Gloria María Molina-Salinas, María Adriana Núñez-González, María Julia Verde-Star and Catalina Leos-Rivas

Volume 16, Issue 3, 2019

Page: [181 - 187] Pages: 7

DOI: 10.2174/1570164615666180925150839

Price: $65


Background: Aloe vera, a plant belonging to the family Xanthorrhoeaceae, has received special interest in recent years, not only for the commercial importance of its derivatives, but also because of the identification of new molecules from this plant. The latter may provide a scientific support for ethnobotany, which has been beneficial to mankind for centuries.

Objective: Recently, the pharmacological activity of proteins derived from natural sources, including plants, is being explored. We report on the extraction and identification of proteins from A. vera with antimicrobial activity.

Results: The protein extract (yield, 0.15%) contained 15 peptides or proteins, whose sequences were associated with membrane proteins, enzymes, and proteins involved in stress tolerance and defense against pathogens. The latter is consistent with the previously reported antimicrobial activity of an A. vera protein extract.

Keywords: Aloe vera, extraction, protein, antimicrobial, stress, pathogens.

Graphical Abstract
Andrade, A. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, Mexico. J. Ethnopharmacol., 2009, 122(1), 163-171.
Rahmani, A.H.; Aldebasi, H.; Srikar, S.; Khan, A.A.; Salah, M.A. Aloe vera: Potential candidate in health management via modulation of biological activities. Pharmacogn. Rev., 2015, 9(18), 120-126.
Klein, A.; Penneys, N. Aloe vera. J. Am. Acad. Dermatol., 1988, 18(4), 714-720.
Garodia, P.; Ichikawa, H.; Malani, N.; Sethi, G.; Aggarwal, B.B. From ancient medicine to modern medicine: Ayurvedic concepts of health and their role in inflammation and cancer. J. Soc. Integr. Oncol., 2007, 5(1), 25-37.
Willow, J.H.L. Traditional herbal medicine research methods: Identification, analysis bioassay, and pharmaceutical and clinical studies, 1st ed; Wiley Sons: New Jersey, 2011, pp. 1-488.
Joseph, B.; Raj, S.J. Pharmacognostic and phytochemical properties of Aloe vera Linn - an overview. Int. J. Pharm. Sci. Rev. Res., 2010, 4(2), 106-110.
Koike, T.T.; Beppu, H.; Kuzuya, H.; Maruta, K.; Shimpo, K.; Suzuki, M.; Titani, K.; Fujita, K.A. 35 kDa manossa-binding lectin with hemagglutinating and mitogenic activities from Kidachi Aloe (Aloe arborescens Miller var. natalensis Beger). J. Biochem., 1995, 118(6), 1205-1210.
Im, S.A.; Lee, Y.R.; Lee, Y.H.; Lee, M.K.; Park, Y.I.; Lee, S.; Kim, K.; Lee, C.K. In vivo evidence of immunomodulatory activity of orally administered Aloe vera gel. Arch. Pharm. Res., 2010, 33(3), 451-456.
Yagi, A.; Egusa, T.; Arase, M.; Tanabe, M.; Tsuji, H. Isolation and characterization of the glycoprotein fraction with a proliferation-promoting activity on human and hamster cells in vitro from Aloe vera gel. J. Planta. Med, 1997, 63, 18.
Choi, S.; Son, V.; Son, Y.; Park, Y.; Lee, S.; Chung, M. The wound healing effect of a glycoprotein fraction isolated from Aloe vera. J. Dermatol., 2001, 145(4), 535-545.
El, H.; Aboul, M.; Nassr, A.; Aboul, K.; Kabash, A.; Yagi, A. Antitumor properties and modulation of antioxidant enzymes activity by Aloe vera leaf active principles isolated via supercritical carbon dioxide extraction. Curr. Med. Chem., 2010, 17, 129-138.
Das, S.; Mishra, B.; Gill, K.; Ashraf, M.S.; Singh, A.K.; Sinha, M.; Sharma, S.; Xess, I.; Dalal, K.; Sing, T.P.; Dey, S. Isolation and characterization of novel protein with antifungal and antiiflamatory properties from Aloe vera leaf gel. Int. J. Biol. Macromol., 2010, 48, 38-43.
Cabello, E.D.; Molina, G.M.; Torres, V.M.; Nuñez, M.A.; Oranday, A.; Verde, M.J.; Martínez, L.E.; Rivas, C. Antimicrobial activity of protein extract of Aloe vera leaves. Rev. Mex. Cienc. Farm., 2015, 46(1), 41-46.
STRING Consortium. Versión 10.0. Available at: (Accessed on May 20, 2016).
KEGG Databases. Available at ath: ArthCp016 (Accessed on May 14, 2016).
Järvi, S.; Isojärvi, J.; Kangasjärvi, S.; Salojärvi, J.; Mamedov, F.; Suorsa, M.; Aro, E.M. Photosystem II repair and plant immunity: Lessons learned from arabidopsis mutant lacking the thylakoid lumen protein. Front. Plant Sci., 2016, 31(7), 405.
Balsera, M.; Menéndez, M.; Sáiz, J.L.; de Las Rivas, J.; Andreu, J.M.; Arellano, J.B. Structural stability of the PsbQ protein of higher plant photosystem II. Biochemistry, 2004, 43(44), 14171-14179.
Jimenez, M.; Berney, X.; Thorens, B. Plac8 is required for white adipocyte differentiation in vitro and cell number control in vivo. 2012, 7(11), e48767
Osugi, K.; Suzuki, H.; Nomura, T.; Ariumi, Y.; Shibata, H.; Maki, M. Identification of the P-body component PATL1 as a novel ALG-2-interacting protein by in silico and far-Western screening of proline-rich proteins. J. Biochem., 2012, 151(6), 657-666.
Peterman, T.K.; Ohol, Y.M.; McReynolds, L.J.; Luna, E.J. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol., 2004, 136(2), 3080-3094.
Reinhold, T.; Alawady, A.; Grimm, B.; Beran, K.C.; Jahns, P. Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J., 2007, 50, 293-304.
Okrent, R.A.; Brooks, M.D.; Wildermuth, M.C. Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. J. Biol. Chem., 2009, 284(15), 9742-9754.
Srivastava, S.; Gupta, S.M.; Sane, A.P.; Nath, P. Isolation and characterization of ripening related pectin methylesterase inhibitor gene from banana fruit. Physiol. Mol. Biol. Plants, 2012, 18(2), 191-195.
Chen, M.H.; Citovsky, V. Systemic movement of a to- bamovirus requires host cell pectin methylesterase. Plant J., 2003, 35, 386-392.
Woolhead, C.A.; Thompson, S.J.; Moore, M.; Tissier, C.; Mant, A.; Rodger, A.; Henry, R.; Robinson, C. Distinct albino3-dependent and - independent pathways for thylakoid membrane protein insertion. J. Biol. Chem., 2001, 276, 40841-40846.
Trösch, R.; Töpel, M.; Flores, Ú.; Jarvis, P. Genetic and physical interaction studies reveal functional similarities between ALBINO3 and ALBINO4 in Arabidopsis. Plant Physiol., 2015, 169(2), 1292-1306.
Hoekenga, O.A.; Maron, L.G.; Pineros, M.A.; Cançado, G.; Shaff, J.; Kobayashi, Y.; Ryan, P.; Dong, B.; Delhaize, E.; Sasaki, T.; Matsumoto, H.; Yamamoto, Y.; Koyama, H.; Kochian, L. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc. Natl. Acad. Sci. , 2006, 103, 9738-9743.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy