Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Electroanalysis of Catecholamine Drugs using Graphene Modified Electrodes

Author(s): Mahya Karami Mosammam, Mohammad Reza Ganjali*, Mona Habibi-Kool-Gheshlaghi and Farnoush Faridbod

Volume 15, Issue 4, 2019

Page: [443 - 466] Pages: 24

DOI: 10.2174/1573411014666180917113206

Price: $65

conference banner
Abstract

Background: Catecholamine drugs are a family of electroactive pharmaceutics, which are widely analyzed through electrochemical methods. However, for low level online determination and monitoring of these compounds, which is very important for clinical and biological studies, modified electrodes having high signal to noise ratios are needed. Numerous materials including nanomaterials have been widely used as electrode modifies for these families during the years. Among them, graphene and its family, due to their remarkable properties in electrochemistry, were extensively used in modification of electrochemical sensors.

Objective: In this review, working electrodes which have been modified with graphene and its derivatives and applied for electroanalyses of some important catecholamine drugs are considered.

Keywords: Catecholamine drugs, electroanalytical methods, graphene, sensor, modified electrodes, electroactive pharmaceutics.

Graphical Abstract
[1]
Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.S.; McNamara, J.O.; White, L.E. Neuroscience, 4th ed; Sinauer Associates: Massachusetts, 2008, pp. 137-138. ISBN 978-0-87893- 697-7.
[2]
Yang, D.P.; Ji, H.F.; Tang, G.Y.; Ren, W.; Zhang, H.Y. How many drugs are catecholics. Molecules, 2007, 12, 878-884.
[3]
Jemelková, Z.; Zima, J.; Barek, J. Electroanalysis of some catecholamines at a single-wall nanotubes modified carbon paste electrode. Collect. Czech. Chem. Commun., 2010, 75(12), 1217-1228.
[4]
De Nardi, F.; Lefort, C.; Bréard, D.; Richomme, P.; Legros, C.; Guérineau, N.C. Monitoring the secretory behavior of the rat adrenal medulla by high-performance liquid chromatography-based catecholamine assay from slice supernatants. Front. Endocrinol., 2017, 8, 248.
[5]
Sima, I.A.; Casoni, D.; Sârbu, C. High sensitive and selective HPTLC method assisted by digital image processing for simultaneous determination of catecholamines and related drugs. Talanta, 2013, 114, 117-123.
[6]
Kumar, A.; Hart, J.P.; McCalley, D.V. Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection. J. Chromatogr. A, 2011, 1218(25), 3854-3861.
[7]
Wu, H.W.; Chen, M.L.; Shou, D.; Zhu, Y. Determination of catecholamines by ion chromatography coupled to acidic potassium permanganate chemiluminescence detection. Chin. Chem. Lett., 2012, 23(7), 839-842.
[8]
Bergmann, M.L.; Sadjadi, S.; Schmedes, A. Analysis of catecholamines in urine by unique LC/MS suitable ion-pairing chromatography. J. Chromatogr. B, 2017, 1057, 118-123.
[9]
Ma, Y.; Yang, C.; Li, N.; Yang, X. A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals. Talanta, 2005, 67(5), 979-983.
[10]
Fonseca, B.M.; Rodrigues, M.; Cristóvão, A.C.; Gonçalves, D.; Fortuna, A.; Bernardino, L.; Falcao, A.; Alves, G. Determination of catecholamines and endogenous related compounds in rat brain tissue exploring their native fluorescence and liquid chromatography. J. Chromatogr. B, 2017, 1049-1050, 51-59.
[11]
Imperiale, A.; Battini, S.; Averous, G.; Mutter, D.; Goichot, B.; Bachellier, P.; Pacak, K.; Taieb, D.; Namer, I.J. In vivo detection of catecholamines by magnetic resonance spectroscopy: A potential specific biomarker for the diagnosis of pheochromocytoma. Surgery, 2016, 159(4), 1231-1233.
[12]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P. Electrochemical nanostructure platform for the analysis of glutathione in the presence of uric acid and tryptophan. Anal. Methods, 2017, 9(44), 6228-6234.
[13]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. Simultaneous Determination of Amaranth and Nitrite in Foodstuffs via Electrochemical Sensor Based on Carbon Paste Electrode Modified with CuO/SWCNTs and Room Temperature Ionic Liquid. Food Anal. Methods, 2017, 10(11), 3773-3780.
[14]
Karimi-Maleh, H.; Salehi, M.; Faghani, F. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples. J. Food Drug Anal., 2017, 25(4), 1000-1007.
[15]
Bananezhad, A.; Ganjali, M.R.; Karimi-Maleh, H.; Norouzi, P. Fabrication of amplified nanostructure based sensor for analysis of N-Acetylcysteine in presence of high concentration folic acid. Int. J. Electrochem. Sci., 2017, 12, 8045-8058.
[16]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylben-zene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[17]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[18]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6(6), 1639-1647.
[19]
Jahani, S.; Beitollahi, H. Carbon paste electrode modified with TiO2/Fe3O4 /MWCNT nanocomposite and ionic liquids as a voltammetric sensor for sensitive ascorbic acid and tryptophan detection. Anal. Bioanal. Electrochem., 2016, 8, 158-168.
[20]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[21]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[22]
Arabali, V.; Ebrahimi, M.; Abbasghorbani, M.; Gupta, V.K.; Farsi, M.; Ganjali, M.R.; Karimi, F. Electrochemical determination of vitamin C in the presence of NADH using a CdO nanoparticle/ionic liquid modified carbon paste electrode as a sensor. J. Mol. Liq., 2016, 213, 312-316.
[23]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor. Biosens. Bioelectron., 2016, 86, 879-884.
[24]
Jahani, S.; Beitollahi, H. Carbon paste electrode modified with TiO2/Fe3O4 /MWCNT nanocomposite and ionic liquids as a voltammetric sensor for sensitive ascorbic acid and tryptophan detection. Anal. Bioanal. Electrochem, 2016, 8, 158-168.
[25]
Lamani, S.D.; Teradale, A.B.; Unki, S.N.; Nandibewoor, S.T. Electrochemical oxidation and determination of methocarbamol at multi-walled carbon nanotubes-modified glassy carbon electrode. Anal. Bioanal. Electrochem, 2016, 8, 304-317.
[26]
Ertan, B.; Eren, T.; Ermiş, I.; Saral, H.; Atar, N.; Yola, M.L. Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci., 2016, 470, 14-21.
[27]
Maulidiyah, M.; Tribawono, D.S.; Wibowo, D.; Nurdin, M. Electrochemical profile degradation of amino acid by flow system using TiO2/Ti nanotubes electrode. Anal. Bioanal. Electrochem, 2016, 8, 761-776.
[28]
Balooei, M.; Raoof, J.B.; Chekin, F.; Ojani, R. Novel sensor based on 3-Mercaptopropyltrimethoxysilane functionalized carbon nanotubes modified glassy carbon electrode for electrochemical determination of cefixime. Anal. Bioanal. Electrochem, 2017, 9, 266-276.
[29]
Kotan, G.; Kardaş, F.; Yokuş, O.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods, 2016, 8, 401-440.
[30]
Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators B Chem., 2015, 210, 149-157.
[31]
Karimi Pur, M.R.; Hosseini, M.; Faridbod, F.; Ganjali, M.R.; Hosseinkhani, S. Early detection of cell apoptosis by a cytochrome C label-Free electrochemiluminescence aptasensor. Sens. Actuators B Chem., 2018, 257, 87-95.
[32]
Babaei, A. Nanomolar simultaneous determination of amlodipine and uric acid at the novel carbon paste electrode modified with magnetic carbon nanotubes/diatomite earth composite. Anal. Bioanal. Electrochem., 2016, 8, 489-504.
[33]
Venkataprasad, G.; Reddy, T.M.; Shaikshavali, P.; Gopal, P.; Narayana, P.V. Electrochemical determination of 3,5-dinitrobenzoic acid in the presence and absence of CTAB at multi-walled carbon nanotubes modified glassy carbon electrode: A voltammetric study. Anal. Bioanal. Electrochem., 2017, 9, 400-411.
[34]
Moghaddam, M.R.; Ganjali, M.R.; Hosseini, M.; Faridbod, F.; Karimipur, M.R. A novel electrochemiluminescnece sensor based on an Ru(bpy)3 2+ - Eu2O3 - Nafion nanocomposite and its application in the detection of diphenhydramine. Int. J. Electrochem. Sci., 2017, 12(6), 5220-5232.
[35]
Yola, M.L.; Atar, N.; Eren, T.; Karimi-Maleh, H.; Wang, S. Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Advances, 2015, 5, 65953-65962.
[36]
Dezfuli, A.S.; Ganjali, M.R.; Jafari, H.; Faridbod, F. Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J. Mater. Sci. Mater. Electron., 2017, 28(8), 6176-6185.
[37]
Ganjali, M.R.; Faridbod, F.; Davarkhah, N.; Shahtaheri, S.J.; Norouzi, P. All solid state graphene based potentiometric sensors for monitoring of mercury ions in waste water samples. Int. J. Environ. Res., 2015, 9(1), 333-340.
[38]
Dezfuli, A.S.; Ganjali, M.R.; Naderi, H.R. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor. Appl. Surf. Sci., 2017, 402, 245-253.
[39]
Ganjali, M.R.; Ranaei-Siadat, S.O.; Rashedi, H.; Rezapour, M.; Norouzi, P. Thulium Selective Sensor based on Nanographene/RTIL/Ionophore/Graphite. Int. J. Electrochem. Sci., 2011, 6(8), 3684-3693.
[40]
Gholipour-Ranjbar, H.; Ganjali, M.R.; Norouzi, P.; Naderi, H.R. Functionalized graphene aerogel with p-phenylenediamine and its composite with porous MnO2: investigating the effect of functionalizing agent on supercapacitive performance. J. Mater. Sci. Mater. Electron., 2016, 27(10), 10163-10172.
[41]
Pur, M.R.K.; Hosseini, M.; Faridbod, F.; Dezfuli, A.S.; Ganjali, M.R. A novel solid-state electrochemiluminescence sensor for detection of cytochrome c based on ceria nanoparticles decorated with reduced graphene oxide nanocomposite. Anal. Bioanal. Chem., 2016, 408(25), 7193-7202.
[42]
Norouzi, P.; Larijani, B.; Ganjali, M.R. Ochratoxin A sensor based on nanocomposite hybrid film of ionic liquid-graphene nano-sheets using coulometric FFT cyclic voltammetry. Int. J. Electrochem. Sci., 2012, 7(8), 7313-7324.
[43]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. J. Mater. Sci. Mater. Electron., 2017, 28(19), 14504-14514.
[44]
Naderi, H.R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M.R. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci., 2017, 423, 1025-1034.
[45]
Jafari, S.; Faridbod, F.; Norouzi, P.; Dezfuli, A.S.; Ajloo, D.; Mohammadipanah, F.; Ganjali, M.R. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry. Anal. Chim. Acta, 2015, 895, 80-88.
[46]
Rashedi, H.; Norouzi, P.; Ganjali, M.R. Determination of alfuzosin by hybrid of ionic liquid-graphene nano-composite film using coulometric FFT linear sweep voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2479-2490.
[47]
Norouzi, P.; Pirali-Hamedan, M.; Ganjali, R. Candesartan cilexetil determination by electrode modified with hybrid film of ionic liquid- graphene nanosheets-silicon carbide nanoparticle using continuous coulometric fft cyclic voltammetry. Int. J. Electrochem. Sci., 2013, 8(2), 2023-2033.
[48]
Norouzi, P.; Ganjali, H.; Larijani, B.; Ganjali, M.R.; Faridbod, F.; Zamani, H.A. A glucose biosensor based on nanographene and ZnO nanoparticles using FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci., 2011, 6(11), 5189-5199.
[49]
Ebrahimi, M.; Nikoofard, H.; Faridbod, F.; Dezfuli, A.S.; Beigizadeh, H.; Norouzi, P. A ceria NPs decorated graphene nano-composite sensor for sulfadiazine determination in pharmaceutical formulation. J. Mater. Sci. Mater. Electron., 2017, 1, 1-9.
[50]
Hosseini, M.; Mirzanasiri, N.; Rezapour, M.; Sheikhha, M.H.; Faridbod, F.; Norouzi, P.; Ganjali, M.R. Sensitive determination of carbidopa through the electrochemiluminescence of luminol at graphene-modified electrodes. Luminescence, 2015, 30(4), 376-381.
[51]
Eftekhari, A.; Garcia, H. The necessity of structural irregularities for the chemical applications of grapheme. Mat. Today Chem, 2017, 4, 1-16.
[52]
Dezfuli, A.S.; Ganjali, M.R.; Norouzi, P.; Faridbod, F. Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. J. Mater. Chem. B, 2015, 3(11), 2362-2370.
[53]
Norouzi, P.; Haji-Hashemi, H.; Larijani, B.; Aghazadeh, M.; Pourbasheer, E.; Ganjali, M.R. Application of new advanced electrochemical methods combine with nano-based materials sensor in drugs analysis. Curr. Anal. Chem., 2017, 13(1), 70-80.
[54]
Alizadeh, T.; Hamidi, N.; Ganjali, M.R.; Rafiei, F. Determination of subnanomolar levels of mercury (II) by using a graphite paste electrode modified with MWCNTs and Hg(II)-imprinted polymer nanoparticles. Mikrochim. Acta, 2018, 185(1), 1.
[55]
Khadem, M.; Faridbod, F.; Norouzi, P.; Rahimi Foroushani, A.; Ganjali, M.R.; Shahtaheri, S.J.; Yarahmadi, R. Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples. Electroanalysis, 2017, 29(3), 708-715.
[56]
Ratinac, K.R.; Yang, W.; Gooding, J.J.; Thordarson, P.; Braet, F. Graphene and related materials in electrochemical sensing. Electroanalysis, 2011, 23, 803-826.
[57]
Naderi, H.R.; Ganjali, M.R.; Dezfuli, A.S. High-performance supercapacitor based on reduced graphene oxide decorated with europium oxide nanoparticles. J. Mater. Sci. Mater. Electron., 2017, 1, 1-10.
[58]
Naderi, H.R.; Norouzi, P.; Ganjali, M.R.; Gholipour-Ranjbar, H. Sonochemical synthesis of porous nanowall Co3O4/nitrogen-doped reduced graphene oxide as an efficient electrode material for supercapacitors. J. Mater. Sci. Mater. Electron., 2017, 28(19), 14504-14514.
[59]
Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical Sensors/Biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123.
[60]
Volkow, N.D.; Wang, G.J.; Kollins, S.H.; Wigal, T.L.; Newcorn, J.H.; Telang, F.; Fowler, J.S.; Zhu, W.; Logan, J.; Ma, Y.; Pradhan, K.; Wong, C.; Swanson, J.M. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA, 2009, 302(10), 1084-1091.
[61]
Stoytcheva, M.; Zlatev, R.; Velkova, Z.; Gochev, V.; Montero, G.; Toscano, L.; Olivas, A. Advances in the electrochemical analysis of dopamine. Curr. Anal. Chem., 2017, 13(2), 89-103.
[62]
Stefan-Van Staden, R.I.; Balahura, L.R.; Oprisanu-Vulpe, A.; Gugoasa, L.A.; Van Staden, J.F.; Ungureanu, E.M.; Socasi, C.; Porav, A.S. Nanostructured materials detect dopamine in biological fluids. J. Electrochem. Soc., 2017, 164(12), B561-B6.
[63]
Pandikumar, A. Soon, How, G.T.; See, T.P.; Omar, F.S.; Jayabal, S.; Kamali, K.Z.; Yusoff, N.; Jamil, A.; Ramaraj, A.; John, S.A.; Lim, H.A.; Huang, M.N. Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Advances, 2014, 4(108), 63296-63323.
[64]
Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun., 2009, 11, 889-892.
[65]
Li, F.; Chai, J.; Yang, H.; Han, D.; Niu, L. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. Talanta, 2010, 81(3), 1063-1068.
[66]
Han, D.; Han, T.; Shan, C.; Ivaska, A.; Niu, L. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode. Electroanalysis, 2010, 22, 2001-2008.
[67]
Fan, Y.; Lu, H.T.; Liu, J.H.; Yang, C.P.; Jing, Q.S.; Zhang, Y.X.; Yang, X.K.; Huang, K.J. Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite. Colloids Surf. B Biointerfaces, 2011, 83(1), 78-82.
[68]
Wang, Z.; Xia, J.; Zhu, L.; Chen, X.; Zhang, F.; Yao, S.; Li, Y.; Xia, Y. A selective voltammetric method for detecting dopamine at quercetin modified electrode incorporating graphene. Electroanalysis, 2011, 23(10), 2463-2471.
[69]
Zhang, F.; Li, Y.; Gu, Ye.; Wang, Z.; Wang, C. One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Mikrochim. Acta, 2011, 173(1-2), 103-109.
[70]
Zhuang, Z.; Li, J.; Xu, R.; Xiao, D. Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int. J. Electrochem. Sci., 2011, 6(6), 2149-2161.
[71]
Mao, Y.; Bao, Y.; Gan, S.; Li, F.; Niu, L. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens. Bioelectron., 2011, 28(1), 291-297.
[72]
Li, J.; Yang, J.; Yang, Z.; Li, Y.; Yu, S.; Xu, Q.; Xiaoya, H. Graphene-Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal. Methods, 2012, 4(6), 1725-1728.
[73]
Li, S.J.; Deng, D.H.; Shi, Q.; Liu, S.R. Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Mikrochim. Acta, 2012, 177(3-4), 325-331.
[74]
Liu, S.; Yan, J.; He, G.; Zhong, D.; Chen, J.; Shi, L.; Zhou, X.; Jiang, H. Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J. Electroanal. Chem., 2012, 672, 40-44.
[75]
Liu, S.; Xing, X.; Yu, J.; Lian, W.; Li, J.; Cui, M.; Huang, J. A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. Biosens. Bioelectron., 2012, 36(1), 186-191.
[76]
Sun, W.; Wang, Y.; Zhang, Y.; Ju, X.; Li, G.; Sun, Z. Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. Anal. Chim. Acta, 2012, 751, 59-65.
[77]
Liu, B.; Lian, H.T.; Yin, J.F.; Sun, X.Y. Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite. Electrochim. Acta, 2012, 75, 108-114.
[78]
Liu, S.Q.; Sun, W.H.; Hu, F.T. Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent. Sens. Actuators B Chem., 2012, 173, 497-504.
[79]
He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta, 2012, 739, 25-30.
[80]
Sheng, Z.H.; Zheng, X.Q.; Xu, J.Y.; Bao, W.J.; Wang, F.B.; Xia, X.H. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron., 2012, 34(1), 125-131.
[81]
Tian, X.; Cheng, C.; Yuan, H.; Du, J.; Xiao, D.; Xie, S.; Martin, M.F. Choi. Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. Talanta, 2012, 93, 79-85.
[82]
Deng, J.; Liu, M.; Lin, F.; Zhang, Y.; Liu, Y.; Yao, S. Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination. Anal. Chim. Acta, 2013, 767(1), 59-65.
[83]
Jiao, L.; Lu, G.; Zhang, C.; Yuan, Y.; Wang, J.; Zhang, Q.; Pingfa, L. Aptamer and graphene-based electrochemical biosensor for dopamine determination with high sensitivity and selectivity. Micro & Nano Lett., 2013, 8(12), 903-905.
[84]
Liu, W.; Xiao, J.; Wang, C.; Yin, H.; Xie, H.; Cheng, R. Synthesis of polystyrene-grafted-graphene hybrid and its application in electrochemical sensor of dopamine. Mater. Lett., 2013, 100, 70-73.
[85]
Bagherzadeh, M.; Heydari, M. Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets. Analyst, 2013, 138(20), 6044-6051.
[86]
Cheemalapati, S.; Palanisamy, S.; Mani, V.; Chen, S.M. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. Talanta, 2013, 117, 297-304.
[87]
Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens. Actuators B Chem., 2013, 186, 380-387.
[88]
Li, S.J.; He, J.Z.; Zhang, M.J.; Zhang, R.X.; Lv, X.L.; Li, S.H.; Pang, H. Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim. Acta, 2013, 102, 58-65.
[89]
Ling, Y.Y.; Huang, Q.A.; Zhu, M.S.; Feng, D.X.; Li, X.Z.; Wei, Y. A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing. J. Electroanal. Chem., 2013, 693, 9-15.
[90]
Sun, W.; Wang, X.; Wang, Y.; Ju, X.; Xu, L.; Li, G.; Sun, Zh. Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim. Acta, 2013, 87, 317-322.
[91]
Yang, A.; Xue, Y.; Zhang, Y.; Zhang, X.; Zhao, H.; Li, X.; He, Y.; Yuan, Zh. A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J. Mater. Chem. B, 2013, 1(13), 1804-1811.
[92]
Li, S.M.; Yang, S.Y.; Wang, Y.S.; Lien, C.H.; Tien, H.W.; Hsiao, S.T.; Liao, W.H.; Tsai, H.P.; Chang, C.L.; Ma, C.C.; Hu, C.C. Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Carbon, 2013, 59, 418-429.
[93]
Manivel, P.; Dhakshnamoorthy, M.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C. Conducting polyaniline-graphene oxide fibrous nanocomposites: Preparation, characterization and simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2013, 3(34), 14428-14437.
[94]
Wang, X.; Wu, M.; Tang, W.; Zhu, Y.; Wang, L.; Wang, Q.; He, P.; Fang, Y. Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode. J. Electroanal. Chem., 2013, 695, 10-16.
[95]
Zhang, H.; Gai, P.; Cheng, R.; Wu, L.; Zhang, X.; Chen, J. Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Anal. Methods, 2013, 5(14), 3591-3600.
[96]
Zeng, Y.; Zhou, Y.; Kong, L.; Zhou, T.; Shi, G. A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosens. Bioelectron., 2013, 45(1), 25-33.
[97]
Do, P.T.; Do, P.Q.; Nguyen, H.B.; Nguyen, V.C.; Tran, D.L.; Le, T.H.; Le, H.N.; Pham, H.V.; Nguyen, T.L.; Tran, Q. H. A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J. Mol. Liq., 2014, 198, 307-312.
[98]
Hu, S.; Huang, Q.; Lin, Y.; Wei, C.; Zhang, H.; Zhang, W.; Guo, Zh.; Bao, X.; Shi, J.; Hao, A. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim. Acta, 2014, 130, 805-809.
[99]
Lv, M.; Mei, T.; Zhang, C.; Wang, X. Selective and sensitive electrochemical detection of dopamine based on water-soluble porphyrin functionalized graphene nanocomposites. RSC Advances, 2014, 4(18), 9261-9270.
[100]
Liu, C.Y.; Liu, Z.Y.; Peng, R.; Zhong, Z.C. Quasireversible process of dopamine on copper-nickel hydroxide composite/nitrogen doped graphene/nafion modified GCE and its electrochemical application. J. Anal. Methods Chem., 2014, 2014724538
[101]
Ponnusamy, V.K.; Mani, V.; Chen, S.M.; Huang, W.T.; Jen, J.F. Rapid microwave assisted synthesis of graphene nanosheets/ polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta, 2014, 120, 148-157.
[102]
Salamon, J.; Sathishkumar, Y.; Ramachandran, K.; Lee, Y.S.; Yoo, D.J.; Kim, A.R.; Kumar, G. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens. Bioelectron., 2014, 64, 269-276.
[103]
Wang, H.; Ren, F.; Yue, R.; Wang, C.; Zhai, C.; Du, Y. Macroporous flower-like graphene-nanosheet clusters used for electrochemical determination of dopamine. Colloids Surf. A Physicochem. Eng. Asp., 2014, 448(1), 181-185.
[104]
Wang, X.; You, Z.; Sha, H.; Cheng, Y.; Zhu, H.; Sun, W. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. Talanta, 2014, 128, 373-378.
[105]
Yang, H.; Li, Y.; Liu, Y.; Zhang, Y.; Zhao, Y.; Zhao, M. One-pot chemical blasting synthesis of the bamboo-like multiwalled carbon nanotubes/graphene oxide nanocomposite and its application in electrochemical detection of dopamine. J. Solid State Electrochem., 2014, 19(1), 145-152.
[106]
Han, H.S.; Lee, H.K.; You, J.M.; Jeong, H.; Jeon, S. Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sens. Actuators B Chem., 2014, 190, 886-895.
[107]
Han, H.S.; Seol, H.; Kang, D.H.; Ahmed, M.S.; You, J.M.; Jeon, S. Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene. Sens. Actuators B Chem., 2014, 204, 289-296.
[108]
Weaver, C.L.; Li, H.; Luo, X.; Cui, X.T. A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: Origin of improved sensitivity and specificity. J. Mater. Chem. B, 2014, 2(32), 5209-5219.
[109]
Zhou, Z.; Wang, Q. An efficient optical-electrochemical dual probe for highly sensitive recognition of dopamine based on terbium complex functionalized reduced graphene oxide. Nanoscale, 2014, 6(9), 4583-4587.
[110]
Ezhil, V. A. T.; Rajkumar, M.; Chen, S. M. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf. B Biointerfaces, 2014, 115, 295-301.
[111]
Jiang, J.; Du, X. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites. Nanoscale, 2014, 6(19), 11303-11309.
[112]
Li, H.; Wang, Y.; Ye, D.; Luo, J.; Su, B.; Zhang, S.; Kong, J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta, 2014, 127, 255-261.
[113]
Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors, 2014, 14(8), 15227-15243.
[114]
Zhang, H.; Huang, Q.; Huang, Y.; Li, F.; Zhang, W.; Wei, C.; Chen, J.; Dai, P.; Huang, L.; Huang, Z.; Kang, L.; Hu, Sh.; Hao, A. Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta, 2014, 142, 125-131.
[115]
Zou, H. L.; Li, B. L.; Luo, H. Q.; Li, N. B. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuat. B. Chem., 2014PartA. , 535-541.
[116]
Chen, R.; Wang, Y.; Liu, Y.; Li, J. Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Advances, 2015, 5(103), 85065-85072.
[117]
Feng, X.; Zhang, Y.; Zhou, J.; Li, Y.; Chen, S.; Zhang, L.; Ma, Y.; Wang, L.; Yan, X. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 2015, 7(6), 2427-2432.
[118]
Guo, Z.; Huang, G.Q.; Li, J.; Wang, Z.Y.; Xu, X.F. Graphene oxide-Ag/poly-l-lysine modified glassy carbon electrode as an electrochemical sensor for the determination of dopamine in the presence of ascorbic acid. J. Electroanal. Chem., 2015, 759, 113-121.
[119]
Ma, H.F.; Chen, T.T.; Luo, Y.; Kong, F.Y.; Fan, D.H.; Fang, H.L.; Wang, W. Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Mikrochim. Acta, 2015, 182(11-12), 2001-2007.
[120]
Narayana, P.S.; Teradal, N.L.; Seetharamappa, J.; Satpati, A.K. A novel electrochemical sensor for non-ergoline dopamine agonist pramipexole based on electrochemically reduced graphene oxide nanoribbons. Anal. Methods, 2015, 7(9), 3912-3919.
[121]
Wang, W.; Wang, W.; Davis, J.J.; Luo, X. Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Mikrochim. Acta, 2015, 182(5-6), 1123-1129.
[122]
He, G.; Wu, D.; Xiao, G. Electrochemical detection of dpamine in the presence of ascorbic acid using GS@Mn3O4/nafion film modified electrode at a low working potential. Int. J. Electrochem. Sci., 2015, 10(12), 10093-100103.
[123]
Bagherzadeh, M.; Mozaffari, S.A.; Momeni, M. Fabrication and electrochemical characterization of dopamine-sensing electrode based on modified graphene nanosheets. Anal. Methods, 2015, 7(21), 9317-9323.
[124]
Nurzulaikha, R.; Lim, H.N.; Harrison, I.; Lim, S.S.; Pandikumar, A.; Huang, N.M.; Lim, S.P.; Thien, G.S.H.; Yusoff, N.; Ibrahim, I. Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens. Biosensing Res., 2015, 5, 42-49.
[125]
Tadayon, F.; Sepehri, Z. A new electrochemical sensor based on a nitrogen-doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Advances, 2015, 5(80), 65560-65568.
[126]
Biswas, S.; Das, R.; Chakraborty, D.; Bandhyopadhyay, R.; Pramanik, P. Synthesis of nitrogen doped multilayered graphene flakes: Selective non-enzymatic electrochemical determination of dopamine and uric acid in presence of ascorbic acid. Electroanalysis, 2015, 27(5), 1253-1261.
[127]
Rajamani, A.R.; Kannan, R.; Krishnan, S.; Ramakrishnan, S.; Raj, S.M.; Kumaresan, D.; Kothurkar, N.; Rangarajan, M. Electrochemical sensing of dopamine, uric acid and ascorbic acid using tRGO-TiO2 nanocomposites. J. Nanosci. Nanotechnol., 2015, 15(7), 5042-5047.
[128]
Li, S.M.; Wang, Y.S.; Hsiao, S.T.; Liao, W.H.; Lin, C.W.; Yang, S.Y.; Tien, H.W.; Ma, C.C.; Hu, C.C. Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J. Mater. Chem. C, 2015, 3(36), 9444-9453.
[129]
Zhang, W.; Liu, Y. DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine. Chem. Res. Chin. Univ., 2015, 31(3), 406-411.
[130]
Wang, W.; Cheng, Y.; Yan, L.; Zhu, H.; Li, G.; Li, J.; Sun, W. Highly sensitive electrochemical sensor for dopamine with a double-stranded deoxyribonucleic acid/gold nanoparticle/graphene modified electrode. Anal. Methods, 2015, 7(5), 1878-1883.
[131]
Bahrami, S.; Abbasi, A.R.; Roushani, M.; Derikvand, Z.; Azadbakht, A. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification. Talanta, 2016, 159, 307-316.
[132]
Chen, T.; Tang, L.; Yang, F.; Zhao, Q.; Jin, X.; Ning, Y. Electrochemical determination of dopamine by a reduced graphene oxide-gold nanoparticle-modified glassy carbon electrode. Anal. Lett., 2016, 49(14), 2223-2233.
[133]
Jarczewska, M.; Sheelam, S.R.; Ziółkowski, R.; Górski, L. A label-free electrochemical DNA aptasensor for the detection of dopamine. J. Electrochem. Soc., 2016, 163(3), B26-B31.
[134]
Kannan, P.K.; Moshkalev, S.A.; Rout, C.S. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobelts. Nanotechnology, 2016, 27(7)075504
[135]
Li, Y.; Liu, J.; Liu, M.; Yu, F.; Zhang, L.; Tang, H. Fabrication of ultra-sensitive and selective dopamine electrochemical sensor based on molecularly imprinted polymer modified graphene@carbon nanotube foam. Electrochem. Commun., 2016, 64, 42-45.
[136]
Liu, X.P.; Tong, J.; Yuan, Z.; Yang, Y.; Mao, C.J.; Niu, H.L. Highly sensitive electrochemical dopamine sensor from poly(diallyldimethylammonium chloride)-functionalized graphene nanoribbon/gold nanoparticle nanocomposite. J. Nanosci. Nanotechnol., 2016, 16(2), 1645-1649.
[137]
Muguruma, H.; Inoue, Y.; Inoue, H.; Ohsawa, T. Electrochemical study of dopamine at electrode fabricated by cellulose-assisted aqueous dispersion of long-length carbon nanotube. J. Phys. Chem. C, 2016, 120(22), 12284-12292.
[138]
Pang, P.; Yan, F.; Li, H.; Li, H.; Zhang, Y.; Wang, H. Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal. Methods, 2016, 8(24), 4912-4918.
[139]
Rani, G.J.; Babu, K.J.; Kumar, G.G.; Rajan, M.A.J. Watsonia meriana flower like Fe3O4/reduced graphene oxide nanocomposite for the highly sensitive and selective electrochemical sensing of dopamine. J. Alloys Compd., 2016, 688, 500-512.
[140]
Sakthinathan, S.; Kubendhiran, S.; Chen, S.M.; Manibalan, K.; Govindasamy, M.; Tamizhdurai, P. Reduced graphene oxide non-covalent functionalized with zinc tetra phenyl porphyrin nanocomposite for electrochemical detection of dopamine in human serum and rat brain samples. Electroanalysis, 2016, 28(9), 2126-2135.
[141]
Szőke, Á.F.; Turdean, G.L.; Katona, G.; Muresan, L.M. Electrochemical determination of dopamine with graphene-modified glassy carbon electrodes. Stud. Univ. Babes-Bolyai. Chem. , 2016, 61(3TOM1), 135-144.
[142]
Thirumalraj, B.; Palanisamy, S.; Chen, S.M.; Lou, B.S. Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples. J. Colloid Interface Sci., 2016, 462, 375-381.
[143]
Wang, W.; Gong, S.; Sun, W.; Li, G.; Lu, Y.; Yu, J. Sensitive electrochemical detection of dopamine with a nitrogen-doped graphene modified glassy carbon electrode. Croat. Chem. Acta, 2016, 89(3), 323-330.
[144]
Wang, Y.; Zhang, Y.; Hou, C.; Liu, M. Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Mikrochim. Acta, 2016, 183(3), 1145-1152.
[145]
Wu, F.; Huang, T.; Hu, Y.; Yang, X.; Ouyang, Y.; Xie, Q. Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Mikrochim. Acta, 2016, 183(9), 2539-2546.
[146]
Yan, X.; Gu, Y.; Li, C.; Tang, L.; Zheng, B.; Li, Y. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosens. Bioelectron., 2016, 77, 1032-1038.
[147]
Zan, X.; Bai, H.; Wang, C.; Zhao, F.; Duan, H. Graphene paper decorated with a 2D array of dendritic platinum nanoparticles for ultrasensitive electrochemical detection of dopamine secreted by live cells. Chem. Eur. J., 2016, 22(15), 5204-5210.
[148]
Zhuang, X.; Wang, H.; He, T.; Chen, L. Enhanced voltammetric determination of dopamine using a glassy carbon electrode modified with ionic liquid-functionalized graphene and carbon dots. Mikrochim. Acta, 2016, 183(12), 3177-3182.
[149]
Babaei, A.; Sohrabi, M. An electrospun alumina-borate oxide nanofiber and reduced graphene oxide composite modified carbon paste electrode as the electrochemical sensor for simultaneous determination of dopamine and noscapine. Anal. Methods, 2016, 8(38), 6949-6958.
[150]
Cuadrado, C.; Ibarra, L.; Hurtado, J.; García-Beltrán, O.; Nagles, E. Electrochemical sensors for dopamine using graphene-cobalt(II) complex modified glassy carbon electrode by adsorptive voltammetry. Anal. Bioanal. Electrochem., 2016, 8(7), 910-921.
[151]
Liu, B.; Ouyang, X.; Ding, Y.; Luo, L.; Xu, D.; Ning, Y. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta, 2016, 146, 114-121.
[152]
Sivasubramanian, R.; Biji, P. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine. Mater. Sci. Eng. B. Solid State Adv. Technol., 2016, 210, 10-18.
[153]
Xu, H.; Xiao, J.; Yan, L.; Zhu, L.; Liu, B. An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. J. Electroanal. Chem., 2016, 779, 92-98.
[154]
Yang, L.; Huang, N.; Lu, Q.; Liu, M.; Li, H.; Zhang, Y. A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional Au NPs/carbon dots nanocomposite and graphene. Anal. Chim. Acta, 2016, 903, 69-80.
[155]
Zhang, X.; Zhang, Y.C.; Ma, L.X. One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem., 2016, 227, 488-496.
[156]
Xing, L.; Ma, Z. A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Mikrochim. Acta, 2016, 183(1), 257-263.
[157]
Cheng, M.; Zhang, X.; Wang, M.; Huang, H.; Ma, J. A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J. Electroanal. Chem., 2017, 786, 1-7.
[158]
Chu, K.; Wang, F.; Zhao, X.L.; Wang, X.W.; Tian, Y. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support. Mater. Sci. Eng. C, 2017, 81, 452-458.
[159]
Haldorai, Y.; Vilian, A.T.E.; Rethinasabapathy, M.; Huh, Y.S.; Han, Y.K. Electrochemical determination of dopamine using a glassy carbon electrode modified with TiN-reduced graphene oxide nanocomposite. Sens. Actuators B Chem., 2017, 247, 61-69.
[160]
Jiang, C.; Zeng, X.; Wu, B.; Zeng, Q.; Pang, W.; Tang, J. Electrochemical co-deposition of reduced graphene oxide-gold nanocomposite on an ITO substrate and its application in the detection of dopamine. Sci. China Chem., 2017, 60(1), 151-156.
[161]
Karthik, R.; Saravanakumar, K.; Chen, S.M.; Vinoth Kumar, J.; Lee, C.M.; Lou, B.S. Eco-friendly Synthesis of gold nanoparticles by using B. javanica blume leaves extract encapsulated with graphene oxide for selective electrochemical detection of dopamine. Int. J. Electrochem. Sci., 2017, 12(2), 1474-1491.
[162]
Li, J.; Wang, Y.; Sun, Y.; Ding, C.; Lin, Y.; Sun, W. A novel ionic liquid functionalized graphene oxide supported gold nanoparticle composite film for sensitive electrochemical detection of dopamine. RSC Advances, 2017, 7(4), 2315-2322.
[163]
Li, R.; Yang, T.; Li, Z.; Gu, Z.; Wang, G.; Liu, J. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine. Anal. Chim. Acta, 2017, 954, 43-51.
[164]
Li, Y.; Gu, Y.; Zheng, B.; Luo, L.; Li, C.; Yan, X. A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine. Talanta, 2017, 162, 80-89.
[165]
Lu, L.; Guo, L.; Kang, T.; Cheng, S. A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Mikrochim. Acta, 2017, 184(8), 2949-2957.
[166]
Renjini, S.; Jyothish Kumar, T.; Sreevalsan, K.; Kumary, A.V. Electrochemical behaviour of dopamine on a glassy carbon electrode modified by graphene chitosan copper composite. Orient. J. Chem., 2017, 33(3), 1259-1264.
[167]
Ruiyi, L.; Sili, Q.; Zhangyi, L.; Ling, L.; Zaijun, L. Histidine-functionalized graphene quantum dot-graphene micro-aerogel based voltammetric sensing of dopamine. Sens. Actuators B Chem., 2017, 250, 372-382.
[168]
Sharma, V.V.; Gualandi, I.; Vlamidis, Y.; Tonelli, D. Electrochemical behavior of reduced graphene oxide and multi-walled carbon nanotubes composites for catechol and dopamine oxidation. Electrochim. Acta, 2017, 246, 415-423.
[169]
Shen, Y.; Sheng, Q.; Zheng, J. A high-performance electrochemical dopamine sensor based on a platinum-nickel bimetallic decorated poly(dopamine)-functionalized reduced graphene oxide nanocomposite. Anal. Methods, 2017, 9(31), 4566-4573.
[170]
Yang, Z.; Zheng, X.; Zheng, J. A facile one-step synthesis of Fe2O3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine. J. Alloys Compd., 2017, 709, 581-587.
[171]
Yao, Z.; Yang, X.; Niu, Y.; Wu, F.; Hu, Y.; Yang, Y. Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Mikrochim. Acta, 2017, 184(7), 2081-2088.
[172]
Zhang, W.; Jia, G.; Li, Z.; Yuan, C.; Bai, Y.; Fu, D. Selective electrochemical detection of dopamine on polyoxometalate-based metal-organic framework and its composite with reduced graphene oxide. Adv. Mater. Interfaces, 2017, 4(10)1601241
[173]
Zheng, G.; Shen, C.; Huan, L.; Zhao, R.; Chen, M.; Diao, G. Electrochemical detection dopamine by Ester-calix[n]arenes/graphene nanosheets modified electrodes. J. Electroanal. Chem., 2017, 804, 16-22.
[174]
Baccarin, M.; Santos, F.A.; Vicentini, F.C.; Zucolotto, V.; Janegitz, B.C.; Fatibello-Filho, O. Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples. J. Electroanal. Chem., 2017, 799, 436-443.
[175]
Ben, A.S. Nanostructured carbon electrode modified with N-doped graphene quantum dots-chitosan nanocomposite: A sensitive electrochemical dopamine sensor. R. Soc. Open Sci., 2017, 4(11)171199
[176]
Choo, S.S.; Kang, E.S.; Song, I.; Lee, D.; Choi, J.W.; Kim, T.H. Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors, 2017, 17(4)pii:E861
[177]
Cui, X.; Fang, X.; Zhao, H.; Li, Z.; Ren, H. An electrochemical sensor for dopamine based on polydopamine modified reduced graphene oxide anchored with tin dioxide and gold nanoparticles. Anal. Methods, 2017, 9(36), 5322-5332.
[178]
Josephine, D.S.R.; Babu, K.J. Gnana kumar, G.; Sethuraman, K. Titanium dioxide anchored graphene oxide nanosheets for highly selective voltammetric sensing of dopamine. Mikrochim. Acta, 2017, 184(3), 781-790.
[179]
Wang, D.; Xu, F.; Hu, J.; Lin, M. Phytic acid/graphene oxide nanocomposites modified electrode for electrochemical sensing of dopamine. Mater. Sci. Eng. C, 2017, 71, 1086-1089.
[180]
Yu, G.; Xia, J.; Zhang, F.; Wang, Z. Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine. J. Electroanal. Chem., 2017, 801, 496-502.
[181]
Huang, B.; Liu, J.; Lai, L.; Yu, F.; Ying, X.; Ye, B.C. A free-standing electrochemical sensor based on graphene foam-carbon nanotube composite coupled with gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. J. Electroanal. Chem., 2017, 801, 129-134.
[182]
Zhang, D.; Li, L.; Ma, W.; Chen, X.; Zhang, Y. Electrodeposited reduced graphene oxide incorporating polymerization of L-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mater. Sci. Eng. C, 2017, 70, 241-249.
[183]
Kahlouche, K.; Jijie, R.; Hosu, I.; Barras, A.; Gharbi, T.; Yahiaoui, R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta, 2018, 178, 432-440.
[184]
Yan, X.; Gu, Y.; Li, C.; Zheng, B.; Li, Y.; Zhang, T. Morphology-controlled synthesis of Bi2S3 nanorods-reduced graphene oxide composites with high-performance for electrochemical detection of dopamine. Sens. Actuators B Chem., 2018, 257, 936-943.
[185]
Jafari, H.; Ganjali, M.R.; Dezfuli, A.S.; Faridbod, F. Long term determination of dopamine and uric acid in the presence of ascorbic acid using ytterbia/reduced graphene oxide nanocomposite prepared through a sonochemical route. Appl. Surf. Sci., 2018, 427, 496-506.
[186]
Wiench, P.; González, Z.; Menéndez, R.; Grzyb, B.; Gryglewicz, G. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sens. Actuators B Chem., 2018, 257, 143-153.
[187]
[Online]available: "Epinephrine". The American Society of Health-System Pharmacists. Retrieved Feb 4, 2018.
[188]
Cui, F.; Zhang, X. Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J. Electroanal. Chem., 2012, 669, 35-41.
[189]
Li, X.; Chen, M.; Ma, X. Selective determination of epinephrine in the presence of ascorbic acid using a glassy carbon electrode modified with graphene. Anal. Sci., 2012, 28(2), 147-152.
[190]
Cincotto, F.H.; Canevari, T.C.; Campos, A.M.; Landers, R.; Machado, S.A.S. Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles. Analyst, 2014, 139(18), 4634-4640.
[191]
Kang, H.; Jin, Y.; Han, Q. Electrochemical detection of epinephrine using an L-Glutamic acid functionalized graphene modified electrode. Anal. Lett., 2014, 47(9), 1552-1563.
[192]
Xu, H.; Wang, X.; Chen, R.; Yu, Z. Voltammetric determination of epinephrine in the presence of uric acid based on aminated graphene and Ag NPs hybrid membrane modified electrode. Chem. Res. Chin. Univ., 2014, 30(2), 205-210.
[193]
Lavanya, N.; Fazio, E.; Neri, F.; Bonavita, A.; Leonardi, S.G.; Neri, G. Simultaneous electrochemical determination of epinephrine and uric acid in the presence of ascorbic acid using SnO2/graphene nanocomposite modified glassy carbon electrode. Sens. Actuators B Chem., 2015, 221, 1412-1422.
[194]
Yang, Q.; Zhao, Y.; Bai, J.; Wu, L.; Zhang, H.M.; Qu, L. Detection of epinephrine and metanephrine at a nitrogen doped three-dimensional porous graphene modified electrode. Anal. Methods, 2015, 7(24), 10394-10402.
[195]
Canevari, T.C.; Nakamura, M.; Cincotto, F.H.; De Melo, F.M.; Toma, H.E. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim. Acta, 2016, 209, 464-470.
[196]
Devnani, H.; Satsangee, S.P.; Jain, R. A novel graphene-chitosan-Bi2O3 nanocomposite modified sensor for sensitive and selective electrochemical determination of a monoamine neurotransmitter epinephrine. Ionics, 2016, 22(6), 943-956.
[197]
Ding, M.; Zhou, Y.; Liang, X.; Zou, H.; Wang, Z.; Wang, M. An electrochemical sensor based on graphene/poly(brilliant cresyl blue) nanocomposite for determination of epinephrine. J. Electroanal. Chem., 2016, 763, 25-31.
[198]
Li, J.; Wang, X.; Duan, H.; Wang, Y.; Luo, C. Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. Mater. Sci. Eng. C, 2016, 64, 391-398.
[199]
Baniasadi, M.; Jahani, S.; Maaref, H.; Alizadeh, R. Voltammetric determination of epinephrine based on ZnO nanoparticles assisted graphene oxide nanosheets. Anal. Bioanal. Electrochem., 2017, 9(6), 718-728.
[200]
Matos, C.R.S.; Souza, H.O. Jr., Santana, T.B.S.; Candido, L.P.M.; Cunha, F.G.C.; Sussuchi, E.M. Cd1-xMgxTe semiconductor nanocrystal alloys: Synthesis, preparation of nanocomposites with graphene-based materials, and electrochemical detection of lidocaine and epinephrine. Mikrochim. Acta, 2017, 184(6), 1755-1764.
[201]
Mazloum-Ardakani, M.; Brazesh, B.; Hosseinzadeh, L.; Khoshroo, A. Graphene sheet for improving the electrocatalytic activity of a benzofuran derivative modified electrode for determination of epinephrine in the presence of serotonin. J. Anal. Chem., 2017, 72(6), 689-698.
[202]
Mekassa, B.; Tessema, M.; Chandravanshi, B.S.; Baker, P.G.L.; Muya, F.N. Sensitive electrochemical determination of epinephrine at poly(L-aspartic acid)/electro-chemically reduced graphene oxide modified electrode by square wave voltammetry in pharmaceutics. J. Electroanal. Chem., 2017, 807, 145-153.
[203]
Tezerjani, M.D.; Benvidi, A.; Dehghani, F.A.; Mazloum-Ardakani, M.; Akbari, A. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine. Meas. J. Int. Meas. Confed., 2017, 101, 183-189.
[204]
Thanh, T.D.; Balamurugan, J.; Tuan, N.T.; Jeong, H.; Lee, S.H.; Kim, N.H. Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosens. Bioelectron., 2017, 89, 750-757.
[205]
Dong, W.; Ren, Y.; Bai, Z.; Jiao, J.; Chen, Y.; Han, B. Synthesis of tetrahexahedral Au-Pd core-shell nanocrystals and reduction of graphene oxide for the electrochemical detection of epinephrine. J. Colloid Interface Sci., 2018, 512, 812-818.
[206]
Ma, X.; Chen, M.; Li, X.; Purushothaman, A.; Li, F. Electrochemical detection of norepinephrine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Int. J. Electrochem. Sci., 2012, 7(2), 991-1000.
[207]
Ma, X.; Chao, M.; Chen, M. Simultaneous electrochemical determination of norepinephrine, ascorbic acid and uric acid using a graphene modified glassy carbon electrode. Russ. J. Electrochem., 2014, 50(2), 154-161.
[208]
Yadav, S.K.R.; Agrawal, B.; Oyama, M.; Goyal, R.N. Graphene modified Palladium sensor for electrochemical analysis of norepinephrine in pharmaceuticals and biological fluids. Electrochim. Acta, 2014, 125, 622-629.
[209]
Vilian, A.T.E.; Chen, S.M.; Hung, Y.T.; Ali, M.A.; Al-Hemaid, F.M.A. Electrochemical oxidation and determination of norepinephrine in the presence of acetaminophen using MnO2 nanoparticle decorated reduced graphene oxide sheets. Anal. Methods, 2014, 6(16), 6504-6513.
[210]
Rosy, S.F.; Goyal, R.N. Structural and electrochemical characterization of carbon ion beam irradiated reduced graphene oxide and its application in voltammetric determination of norepinephrine. RSC Advances, 2015, 5(106), 87504-87511.
[211]
Lee, E.J.; Choi, J.H.; Um, S.H.; Oh, B.K. Electrochemical sensor for selective detection of norepinephrine using graphene sheets-gold nanoparticle complex modified electrode. Korean J. Chem. Eng., 2017, 34(4), 1129-1132.
[212]
Arvand, M.; Ghodsi, N. A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem., 2013, 17(3), 775-784.
[213]
Wang, Q.; Das, M.R.; Li, M.; Boukherroub, R.; Szunerits, S. Voltammetric detection of l-dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry, 2013, 93, 15-22.
[214]
Mazloum-Ardakani, M.; Khoshroo, A.; Hosseinzadeh, L. Application of graphene to modified ionic liquid graphite composite and its enhanced electrochemical catalysis properties for levodopa oxidation. Sens. Actuators B Chem., 2014, 204, 282-288.
[215]
Tajik, S.; Taher, M.A.; Beitollahi, H. First report for electrochemical determination of levodopa and cabergoline: Application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations. Electroanalysis, 2014, 26(4), 796-806.
[216]
Yi, S.Y.; Lee, J.H.; Hong, H.G. A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide. J. Appl. Electrochem., 2014, 44(5), 589-597.
[217]
Benvidi, A.; Dehghani-Firouzabadi, A.; Mazloum-Ardakani, M.; Mirjalili, B.B.F.; Zare, R. Electrochemical deposition of gold nanoparticles on reduced graphene oxide modified glassy carbon electrode for simultaneous determination of levodopa, uric acid and folic acid. J. Electroanal. Chem., 2015, 736, 22-29.
[218]
Li, J.; Feng, H.; Jiang, J.; Feng, Y.; Xu, Z.; Qian, D. One-pot in situ synthesis of a CoFe2O4 nanoparticle-reduced graphene oxide nanocomposite with high performance for levodopa sensing. RSC Advances, 2015, 5(121), 99669-99677.
[219]
Martín, A.; Hernández-Ferrer, J.; Martínez, M.T.; Escarpa, A. Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochim. Acta, 2015, 172, 2-6.
[220]
Beitollahi, H.; Garkani Nejad, F. Graphene Oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis, 2016, 28(9), 2237-2244.
[221]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184(9), 3281-3289.
[222]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[223]
Shabani-Nooshabadi, M.; Roostaee, M.; Karimi-Maleh, H. Incorporation of graphene oxide-NiO nanocomposite and n-hexyl-3-methylimidazolium hexafluoro phosphate into carbon paste electrode: Application as an electrochemical sensor for simultaneous determination of benserazide, levodopa and tryptophan. J. Iran Chem. Soc., 2017, 14(5), 955-961.
[224]
Wu, Y.; Song, H.; Lu, K.; Ye, Y.; Lv, M.; Zhao, Y. Direct electrodeposition to fabricate vertically-oriented graphene nanosheets modified electrode and its application for determination of levodopa in the presence of uric acid and ascorbic acid. Nano, 2017, 12(7)1750087
[225]
Yue, H.Y.; Song, S.S.; Huang, S.; Zhang, H.; Gao, X.P.A.; Gao, X. Preparation of MoS2-graphene hybrid nanosheets and simultaneously electrochemical determination of levodopa and uric acid. Electroanalysis, 2017, 29(11), 2565-25671.
[226]
Yue, H.Y.; Zhang, H.; Huang, S.; Lin, X.Y.; Gao, X.; Chang, J. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron., 2017, 89, 592-597.
[227]
Wang, Q.; Das, M.R.; Li, M.; Boukherroub, R.; Szunerits, S. Voltammetric detection of l-dopa and carbidopa on graphene modified glassy carbon interfaces. Bioelectrochemistry, 2013, 93, 15-22.
[228]
Salama, N.N.; Azab, S.M.; Mohamed, M.A.; Fekry, A.M. A novel methionine/palladium nanoparticle modified carbon paste electrode for simultaneous determination of three antiparkinson drugs. RSC Advances, 2015, 5, 14187-14195.
[229]
Shoghi-Kalkhoran, M.; Faridbod, F.; Norouzi, P.; Ganjali, M.R. Praseodymium molybdate nanoplates/reduced graphene oxide nanocomposite based electrode for simultaneous electrochemical determination of entacapone, levodopa and carbidopa. J. Mater. Sci. Mater. Electron., 2018, 29(1), 20-31.
[230]
Mohammadi, S.Z.; Beitollahi, H.; Jasemi, M.; Akbari, A. Nanomolar determination of methyldopa in the presence of large amounts of hydrochlorothiazide using a carbon paste electrode modified with graphene oxide nanosheets and 3-(4′-Amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid. Electroanalysis, 2015, 27(10), 2421-2430.
[231]
Teradal, N.L.; Narayan, P.S.; Seetharamappa, J.; Satpati, A.K. Electrosensing of an alpha-adrenergic agonist psychoactive methyldopa using a sodium bentonite-graphene oxide nanocomposite. Anal. Methods, 2015, 7(13), 5611-5618.
[232]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12(9), 7997-8005.
[233]
Beitollahi, H.; Salimi, H. A triple electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene. J. Electrochem. Soc., 2016, 163(14), H1157-H64.
[234]
Asadian, E.; Shahrokhian, S.; Zad, A.I.; Jokar, E. In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens. Actuators B Chem., 2014, 196, 582-588.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy