Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Astragaloside IV Supplementation Promotes A Neuroprotective Effect in Experimental Models of Neurological Disorders: A Systematic Review

Author(s): Ianara M. Costa, Francisca O.V. Lima, Luciana C.B. Fernandes, Bianca Norrara, Francisca I. Neta, Rodrigo D. Alves, José R.L.P. Cavalcanti, Eudes E.S. Lucena, Jeferson S. Cavalcante, Amalia C.M. Rego, Irami A. Filho, Dinalva B. Queiroz, Marco A.M. Freire and Fausto P. Guzen*

Volume 17, Issue 7, 2019

Page: [648 - 665] Pages: 18

DOI: 10.2174/1570159X16666180911123341

Price: $65

Abstract

Background: Neurological disorders constitute a growing worldwide concern due to the progressive aging of the population and the risky behavior they represent. Herbal medicines have scientific relevance in the treatment of these pathologies. One of these substances, Astragaloside IV (AS-IV), is the main active compound present in the root of Astragalus membranaceus (Fisch.) Bge, a Chinese medicinal herb with neuroprotective properties.

Objective: In the present study we performed a systematic review that sought to comprehend the neuroprotective effect presented by AS-IV in experimental models of neurological disorders.

Methods: This study is a systematic review, where an electronic search in United States National Library of Medicine (PubMed), Science Direct, Cochrane Library, Scientific Electronic Library Online (SciELO), Scopus, Web of Science, Medline via Proquest and Periodicos Capes databases covering the years between 2007 and 2017, using “Astragaloside IV” and “Neurodegenerative diseases”; “Astragaloside IV” and “ Neurological disorders” as reference terms was made.

Results: A total of 16 articles were identified, in which the efficacy of AS-IV was described in experimental models of Parkinson’s disease, Alzheimer’s disease, cerebral ischemia and autoimmune encephalomyelitis, by improving motor deficits and/or neurochemical activity, especially antioxidant systems, reducing inflammation and oxidative stress.

Conclusion: The findings of the present study indicate that the administration of AS-IV can improve behavioral and neurochemical deficits largely due to its antioxidant, antiapoptotic and antiinflammatory properties, emerging as an alternative therapeutic approach for the treatment of neurological disorders.

Keywords: Neurological disorders, Parkinson's disease, Alzheimer's disease, cerebral ischemia, astragaloside IV, brain.

« Previous
Graphical Abstract
[1]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. [http://dx.doi.org/10.2174/157015909787602823]. [PMID: 19721819].
[2]
Freire, M.A.M. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755. [PMID: 23620976].
[3]
Guimarães, J.S.; Freire, M.A.M.; Lima, R.R.; Souza-Rodrigues, R.D.; Costa, A.M.; dos Santos, C.D.; Picanço-Diniz, C.W.; Gomes-Leal, W. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev. Neurol., 2009, 48(6), 304-310. [PMID: 19291655].
[4]
Batista, P.; Pereira, A. Quality of life of patients with neurodegenerative diseases. J. Neurol. Neurosci., 2016, 7, 1-7. [http://dx.doi.org/10.21767/2171-6625.100074].
[5]
Norrara, B.; Doerl, J.G.; Guzen, F.P.; Cavalcanti, J.R.L.P.; Freire, M.A.M. Commentary: Localized vs. systematic neurodegeneration: A paradigm shift in understanding neurodegenerative diseases. Front. Syst. Neurosci., 2017, 11, 91. [http://dx.doi.org/10.3389/fnsys.2017.00091]. [PMID: 29270113].
[6]
Santos, J.R.; Gois, A.M.; Mendonça, D.M.; Freire, M.A.M. Nutritional status, oxidative stress and dementia: the role of selenium in Alzheimer’s disease. Front. Aging Neurosci., 2014, 6, 206. [http://dx.doi.org/10.3389/fnagi.2014.00206]. [PMID: 25221506].
[7]
W.H.O., World Health Statistics , 2016. Monitoring Health for the SDGs Sustainable Development Goals. WHO, Geneva. Available at: http://www.who.int/gho/publications/world_health_statistics/
[8]
WHO World Health Organization. Neurological disorders: public health challenges. WHO, Geneva. Available at:. http://www.who
[9]
Shaw, G. The economic burden of neurologic disease - $800 billion annually in the US. Neurol. Today, 2017, 17, 1-14. [http://dx.doi.org/10.1097/01.NT.0000521169.52982.7f].
[10]
Van Dam, D.; De Deyn, P.P. Drug discovery in dementia: the role of rodent models. Nat. Rev. Drug Discov., 2006, 5(11), 956-970. [http://dx.doi.org/10.1038/nrd2075]. [PMID: 17080031].
[11]
Hellewell, S.C.; Ziebell, J.M.; Lifshitz, J.; Morganti-Kossmann, M.C. Impact acceleration model of diffuse traumatic brain injury. Methods Mol. Biol., 2016, 1462, 253-266. [http://dx.doi.org/10.1007/978-1-4939-3816-2_15]. [PMID: 27604723].
[12]
Levy, H.; Assaf, Y.; Frenkel, D. Characterization of brain lesions in a mouse model of progressive multiple sclerosis. Exp. Neurol., 2010, 226(1), 148-158. [http://dx.doi.org/10.1016/j.expneurol.2010.08.017]. [PMID: 20736006].
[13]
Plantman, S.; Ng, K.C.; Lu, J.; Davidsson, J.; Risling, M. Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotrauma, 2012, 29(6), 1219-1232. [http://dx.doi.org/10.1089/neu.2011.2182]. [PMID: 22181060].
[14]
Santiago, L.F.; Rocha, E.G.; Freire, M.A.M.; Dias, I.A.; Lent, R.; Houzel, J.C.; Picanço-Diniz, C.W.; Pereira, A., Jr; Franca, J.G. The organizational variability of the rodent somatosensory cortex. Rev. Neurosci., 2007, 18(3-4), 283-294. [http://dx.doi.org/10.1515/REVNEURO.2007.18.3-4.283]. [PMID: 18019610].
[15]
Lopes, R.S.; Cardoso, M.M.; Sampaio, A.O.; Barbosa, M.S., Jr; Souza, C.C.; Silva, D.A. M.C.; Ferreira, E.M.; Freire, M.A.M.; Lima, R.R.; Gomes-Leal, W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci., 2016, 41(3), 381-394. [http://dx.doi.org/10.1007/s12038-016-9621-1]. [PMID: 27581930].
[16]
Freire, M.A.M.; Oliveira, R.B.; Picanço-Diniz, C.W.; Pereira, A., Jr Differential effects of methylmercury intoxication in the rat’s barrel field as evidenced by NADPH diaphorase histochemistry. Neurotoxicology, 2007, 28(1), 175-181. [http://dx.doi.org/10.1016/j.neuro.2006.06.007]. [PMID: 16930717].
[17]
Norrara, B.; Fiuza, F.P.; Arrais, A.C.; Costa, I.M.; Santos, J.R.; Engelberth, R.C.G.J.; Cavalcante, J.S.; Guzen, F.P.; Cavalcanti, J.R.L.P.; Freire, M.A.M. Pattern of tyrosine hydroxylase expression during aging of mesolimbic pathway of the rat. J. Chem. Neuroanat., 2018, 92, 83-91. [http://dx.doi.org/10.1016/j.jchemneu.2018.05.004]. [PMID: 29842891].
[18]
Pereira, A., Jr; Freire, M.A.M.; Bahia, C.P.; Franca, J.G.; Picanço-Diniz, C.W. The barrel field of the adult mouse SmI cortex as revealed by NADPH-diaphorase histochemistry. Neuroreport, 2000, 11(9), 1889-1892. [http://dx.doi.org/10.1097/00001756-200006260-00017]. [PMID: 10884038].
[19]
Sachan, A.; Singh, S.; Singh, H.K.; Shankar, P.; Kumar, D.; Sachan, A.K.; Nath, R.; Dixit, R. An experimental study to evaluate the effect of mucuna pruriens on learning and memory in mice. Int. J. Innov. Sci. Res., 2015, 4, 144-148.
[20]
Li, L.; Hou, X.; Xu, R.; Liu, C.; Tu, M. Research review on the pharmacological effects of astragaloside IV. Fundam. Clin. Pharmacol., 2017, 31(1), 17-36. [http://dx.doi.org/10.1111/fcp.12232]. [PMID: 27567103].
[21]
Xu, M.; Yin, J.; Xie, L.; Zhang, J.; Zou, C.; Zou, J.; Liu, F.; Ju, W.; Li, P. Pharmacokinetics and tolerance of toal astragalosides after intravenous infusion of astragalosides injection in healthy Chinese volunteers. Phytomedicine, 2013, 20(12), 1105-1111. [http://dx.doi.org/10.1016/j.phymed.2013.05.004]. [PMID: 23838148].
[22]
Ren, S.; Zhang, H.; Mu, Y.; Sun, M.; Liu, P. Pharmacological effects of Astragaloside IV: a literature review. J. Tradit. Chin. Med., 2013, 33(3), 413-416. [http://dx.doi.org/10.1016/S0254-6272(13)60189-2]. [PMID: 24024343].
[23]
Wagner, H.; Bauer, R.; Xiao, P.G.; Chen, J.M.; Michler, G. Chinese Drug Monographs and Analysis: Radix Astragali; Huangqi, 1997, pp. 1-17.
[24]
Zheng, X.Y. Pharmacopoeia of the Peoples Republic of China, Chinese edn.; , 2005, Vol. 1, .
[25]
Li, Z.P.; Cao, Q. Effects of astragaloside IV on myocardial calcium transport and cardiac function in ischemic rats. Acta Pharmacol. Sin., 2002, 23(10), 898-904. [PMID: 12370095].
[26]
Yang, J.; Wang, H.X.; Zhang, Y.J.; Yang, Y.H.; Lu, M.L.; Zhang, J.; Li, S.T.; Zhang, S.P.; Li, G. Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кB signaling pathway in isoproterenol-induced myocardial hypertrophy. J. Ethnopharmacol., 2013, 150(3), 1062-1070. [http://dx.doi.org/10.1016/j.jep.2013.10.017]. [PMID: 24432369].
[27]
Zhang, W.D.; Zhang, C.; Liu, R.H.; Li, H.L.; Zhang, J.T.; Mao, C.; Moran, S.; Chen, C.L. Preclinical pharmacokinetics and tissue distribution of a natural cardioprotective agent astragaloside IV in rats and dogs. Life Sci., 2006, 79(8), 808-815. [http://dx.doi.org/10.1016/j.lfs.2006.02.032]. [PMID: 16564551].
[28]
Qu, Y.Z.; Li, M.; Zhao, Y.L.; Zhao, Z.W.; Wei, X.Y.; Liu, J.P.; Gao, L.; Gao, G.D. Astragaloside IV attenuates cerebral ischemia-reperfusion-induced increase in permeability of the blood-brain barrier in rats. Eur. J. Pharmacol., 2009, 606(1-3), 137-141. [http://dx.doi.org/10.1016/j.ejphar.2009.01.022]. [PMID: 19374856].
[29]
Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev., 2012, 6(12), 81-90. [http://dx.doi.org/10.4103/0973-7847.99898]. [PMID: 23055633].
[30]
da Costa, I.M.; de Moura Freire, M.A.; de Paiva Cavalcanti, J.R.L.; de Araújo, D.P.; Norrara, B.; Moreira Rosa, I.M.M.; de Azevedo, E.P.; do Rego, A.C.M.; Filho, I.A.; Guzen, F.P. Supplementation with Curcuma longa reverses neurotoxic and behavioral damage in models of Alzheimer’s disease: A systematic review. Curr. Neuropharmacol., 2019, 17(5), 406-421. [http://dx.doi.org/10.2174/0929867325666180117112610]. [PMID: 29338678].
[31]
Chan, W.S.; Durairajan, S.S.; Lu, J.H.; Wang, Y.; Xie, L.X.; Kum, W.F.; Koo, I.; Yung, K.K.; Li, M. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochem. Int., 2009, 55(6), 414-422. [http://dx.doi.org/10.1016/j.neuint.2009.04.012]. [PMID: 19409437].
[32]
Zhang, X.; Chen, J. The mechanism of astragaloside IV promoting sciatic nerve regeneration. Neural Regen. Res., 2013, 8(24), 2256-2265. [PMID: 25206535].
[33]
Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat., 2015, 9, 91. [http://dx.doi.org/10.3389/fnana.2015.00091]. [PMID: 26217195].
[34]
Ding, Y.M.; Jaumotte, J.D.; Signore, A.P.; Zigmond, M.J. Effects of 6-hydroxydopamine on primary cultures of substantia nigra: specific damage to dopamine neurons and the impact of glial cell line-derived neurotrophic factor. J. Neurochem., 2004, 89(3), 776-787. [http://dx.doi.org/10.1111/j.1471-4159.2004.02415.x]. [PMID: 15086533].
[35]
Perese, D.A.; Ulman, J.; Viola, J.; Ewing, S.E.; Bankiewicz, K.S.A.A. 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res., 1989, 494(2), 285-293. [http://dx.doi.org/10.1016/0006-8993(89)90597-0]. [PMID: 2528389].
[36]
Schmidt, N.; Ferger, B. Neurochemical findings in the MPTP model of Parkinson’s disease. J. Neural Transm. (Vienna), 2001, 108(11), 1263-1282. [http://dx.doi.org/10.1007/s007020100004]. [PMID: 11768626].
[37]
Zhang, Z.G.; Wu, L.; Wang, J.L.; Yang, J.D.; Zhang, J.; Zhang, J.; Li, L.H.; Xia, Y.; Yao, L.B.; Qin, H.Z.; Gao, G.D. Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol. Cell. Biochem., 2012, 364(1-2), 209-216. [http://dx.doi.org/10.1007/s11010-011-1219-1]. [PMID: 22278385].
[38]
Kalimuthu, S.; Se-Kwon, K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int. J. Mol. Sci., 2013, 14(2), 2334-2354. [http://dx.doi.org/10.3390/ijms14022334]. [PMID: 23348928].
[39]
Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps. Apoptosis, 2009, 14(4), 478-500. [http://dx.doi.org/10.1007/s10495-008-0309-3]. [PMID: 19165601].
[40]
da Costa, I.M.; Cavalcanti, J.R.L.P.; de Queiroz, D.B.; de Azevedo, E.P.; do Rêgo, A.C.M.; Araújo, F.I.; Parente, P.; Botelho, M.A.; Guzen, F.P. Supplementation with herbal extracts to promote behavioral and neuroprotective effects in experimental models of Parkinson’s disease: A systematic review. Phytother. Res., 2017, 31(7), 959-970. [http://dx.doi.org/10.1002/ptr.5813]. [PMID: 28544038].
[41]
Cole, G.M.; Frautschy, S.A. Docosahexaenoic acid protects from amyloid and dendritic pathology in an Alzheimer’s disease mouse model. Nutr. Health, 2006, 18(3), 249-259. [http://dx.doi.org/10.1177/026010600601800307]. [PMID: 17180870].
[42]
Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.L.; Loscalzo, J. Harrison’s Principles of Internal Medicine, 19th ed; , 2015.
[43]
Machado, A.; Herrera, A.J.; de Pablos, R.M.; Espinosa-Oliva, A.M.; Sarmiento, M.; Ayala, A.; Venero, J.L.; Santiago, M.; Villarán, R.F.; Delgado-Cortés, M.J.; Argüelles, S.; Cano, J. Chronic stress as a risk factor for Alzheimer’s disease. Rev. Neurosci., 2014, 25(6), 785-804. [http://dx.doi.org/10.1515/revneuro-2014-0035]. [PMID: 25178904].
[44]
Dartigues, J.F. Alzheimer’s disease: a global challenge for the 21st century. Lancet Neurol., 2009, 8(12), 1082-1083. [http://dx.doi.org/10.1016/S1474-4422(09)70298-4]. [PMID: 19909903].
[45]
Sun, Q.; Jia, N.; Wang, W.; Jin, H.; Xu, J.; Hu, H. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PLoS One, 2014, 9(6)e98866 [http://dx.doi.org/10.1371/journal.pone.0098866]. [PMID: 24905226].
[46]
Halestrap, A.P. Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem. Soc. Trans., 2006, 34(Pt 2), 232-237. [http://dx.doi.org/10.1042/BST0340232]. [PMID: 16545083].
[47]
Dong, H.; Yuede, C.M.; Yoo, H.S.; Martin, M.V.; Deal, C.; Mace, A.G.; Csernansky, J.G. Corticosterone and related receptor expression are associated with increased beta-amyloid plaques in isolated Tg2576 mice. Neuroscience, 2008, 155(1), 154-163. [http://dx.doi.org/10.1016/j.neuroscience.2008.05.017]. [PMID: 18571864].
[48]
Li, W.Z.; Li, W.P.; Zhang, W.; Yin, Y.Y.; Sun, X.X.; Zhou, S.S.; Xu, X.Q.; Tao, C.R. Protective effect of extract of Astragalus on learning and memory impairments and neurons’ apoptosis induced by glucocorticoids in 12-month-old male mice. Anat. Rec. (Hoboken), 2011, 294(6), 1003-1014. [http://dx.doi.org/10.1002/ar.21386]. [PMID: 21538932].
[49]
Boissonneault, V.; Plante, I.; Rivest, S.; Provost, P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J. Biol. Chem., 2009, 284(4), 1971-1981. [http://dx.doi.org/10.1074/jbc.M807530200]. [PMID: 18986979].
[50]
Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci., 2011, 31(21), 7840-7847. [http://dx.doi.org/10.1523/JNEUROSCI.0730-11.2011]. [PMID: 21613497].
[51]
Morris, R.G.; Garrud, P.; Rawlins, J.N.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature, 1982, 297(5868), 681-683. [http://dx.doi.org/10.1038/297681a0]. [PMID: 7088155].
[52]
Mancini, M.; Nicholson, D.W.; Roy, S.; Thornberry, N.A.; Peterson, E.P.; Casciola-Rosen, L.A.; Rosen, A. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol., 1998, 140(6), 1485-1495. [http://dx.doi.org/10.1083/jcb.140.6.1485]. [PMID: 9508780].
[53]
Mulugeta, S.; Maguire, J.A.; Newitt, J.L.; Russo, S.J.; Kotorashvili, A.; Beers, M.F. Misfolded BRICHOS SP-C mutant proteins induce apoptosis via caspase-4- and cytochrome c-related mechanisms. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 293(3), L720-L729. [http://dx.doi.org/10.1152/ajplung.00025.2007]. [PMID: 17586700].
[54]
Haiyan, H.; Rensong, Y.; Guoqin, J.; Xueli, Z.; Huaying, X.; Yanwu, X. Effect of Astragaloside IV on neural stem cell transplantation in Alzheimer’s disease rat models. Evid. Based Complement. Alternat. Med., 2016, •••20163106980 [http://dx.doi.org/10.1155/2016/3106980]. [PMID: 27034688].
[55]
Hitoshi, S.; Alexson, T.; Tropepe, V.; Donoviel, D.; Elia, A.J.; Nye, J.S.; Conlon, R.A.; Mak, T.W.; Bernstein, A.; van der Kooy, D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev., 2002, 16(7), 846-858. [http://dx.doi.org/10.1101/gad.975202]. [PMID: 11937492].
[56]
Cheng, C.Y.; Yao, C.H.; Liu, B.S.; Liu, C.J.; Chen, G.W.; Chen, Y.S. The role of astragaloside in regeneration of the peripheral nerve system. J. Biomed. Mater. Res. A, 2006, 76(3), 463-469. [http://dx.doi.org/10.1002/jbm.a.30249]. [PMID: 16315188].
[57]
Mittal, K.; Katare, D.P. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: A review. Diabetes Metab. Syndr., 2016, 10(2)(Suppl. 1), S144-S149. [http://dx.doi.org/10.1016/j.dsx.2016.01.021]. [PMID: 26907971].
[58]
Escribano, L.; Simón, A.M.; Gimeno, E.; Cuadrado-Tejedor, M.; López de Maturana, R.; García-Osta, A.; Ricobaraza, A.; Pérez-Mediavilla, A.; Del Río, J.; Frechilla, D. Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology, 2010, 35(7), 1593-1604. [http://dx.doi.org/10.1038/npp.2010.32]. [PMID: 20336061].
[59]
Mandrekar-Colucci, S.; Karlo, J.C.; Landreth, G.E. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J. Neurosci., 2012, 32(30), 10117-10128. [http://dx.doi.org/10.1523/JNEUROSCI.5268-11.2012]. [PMID: 22836247].
[60]
Sastre, M.; Klockgether, T.; Heneka, M.T. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int. J. Dev. Neurosci., 2006, 24(2-3), 167-176. [http://dx.doi.org/10.1016/j.ijdevneu.2005.11.014]. [PMID: 16472958].
[61]
Chan, A.; Tchantchou, F.; Rogers, E.J.; Shea, T.B. Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J. Neurochem., 2009, 110(3), 831-836. [http://dx.doi.org/10.1111/j.1471-4159.2009.06177.x]. [PMID: 19457069].
[62]
Wang, X.; Wang, Y.; Hu, J.P.; Yu, S.; Li, B.K.; Cui, Y.; Ren, L.; Zhang, L.D. Astragaloside IV, a natural PPARgamma agonist, reduces Abeta production in Alzheimer’s disease through inhibition of BACE1. Mol. Neurobiol., 2017, 54(4), 2939-2949. [http://dx.doi.org/10.1007/s12035-016-9874-6]. [PMID: 27023226].
[63]
Chang, C.P.; Liu, Y.F.; Lin, H.J.; Hsu, C.C.; Cheng, B.C.; Liu, W.P.; Lin, M.T.; Hsu, S.F.; Chang, L.S.; Lin, K.C. Beneficial effect of Astragaloside on Alzheimer’s disease condition using cultured primary cortical cells under beta-amyloid exposure. Mol. Neurobiol., 2016, 53(10), 7329-7340. [http://dx.doi.org/10.1007/s12035-015-9623-2]. [PMID: 26696494].
[64]
Yang, W.T.; Zheng, X.W.; Chen, S.; Shan, C.S.; Xu, Q.Q.; Zhu, J.Z.; Bao, X.Y.; Lin, Y.; Zheng, G.Q.; Wang, Y. Chinese herbal medicine for Alzheimer’s disease: Clinical evidence and possible mechanism of neurogenesis. Biochem. Pharmacol., 2017, 141, 143-155. [http://dx.doi.org/10.1016/j.bcp.2017.07.002]. [PMID: 28690138].
[65]
He, Y.; Du, M.; Gao, Y.; Liu, H.; Wang, H.; Wu, X.; Wang, Z. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels. PLoS One, 2013, 8(10)e76495 [http://dx.doi.org/10.1371/journal.pone.0076495]. [PMID: 24124567].
[66]
He, Y.X.; Du, M.; Shi, H.L.; Huang, F.; Liu, H.S.; Wu, H.; Zhang, B.B.; Dou, W.; Wu, X.J.; Wang, Z.T. Astragalosides from Radix Astragali benefits experimental autoimmune encephalomyelitis in C57BL /6 mice at multiple levels. BMC Complement. Altern. Med., 2014, 14, 313. [http://dx.doi.org/10.1186/1472-6882-14-313]. [PMID: 25150364].
[67]
Campanella, M.; Sciorati, C.; Tarozzo, G.; Beltramo, M. Flow cytometric analysis of inflammatory cells in ischemic rat brain. Stroke, 2002, 33(2), 586-592. [http://dx.doi.org/10.1161/hs0202.103399]. [PMID: 11823674].
[68]
Clark, R.K.; Lee, E.V.; Fish, C.J.; White, R.F.; Price, W.J.; Jonak, Z.L.; Feuerstein, G.Z.; Barone, F.C. Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain Res. Bull., 1993, 31(5), 565-572. [http://dx.doi.org/10.1016/0361-9230(93)90124-T]. [PMID: 8495380].
[69]
Kriz, J.; Lalancette-Hébert, M. Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol., 2009, 117(5), 497-509. [http://dx.doi.org/10.1007/s00401-009-0496-1]. [PMID: 19225790].
[70]
Shichita, T.; Hasegawa, E.; Kimura, A.; Morita, R.; Sakaguchi, R.; Takada, I.; Sekiya, T.; Ooboshi, H.; Kitazono, T.; Yanagawa, T.; Ishii, T.; Takahashi, H.; Mori, S.; Nishibori, M.; Kuroda, K.; Akira, S.; Miyake, K.; Yoshimura, A. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat. Med., 2012, 18(6), 911-917. [http://dx.doi.org/10.1038/nm.2749]. [PMID: 22610280].
[71]
Li, M.; Li, H.; Fang, F.; Deng, X.; Ma, S. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms. Neurosci. Lett., 2017, 639, 114-119. [http://dx.doi.org/10.1016/j.neulet.2016.12.046]. [PMID: 28011393].
[72]
Kim, S.; Kang, I.H.; Nam, J.B.; Cho, Y.; Chung, D.Y.; Kim, S.H.; Kim, J.S.; Cho, Y.D.; Hong, E.K.; Sohn, N.W.; Shin, J.W. Ameliorating the effect of astragaloside IV on learning and memory deficit after chronic cerebral hypoperfusion in rats. Molecules, 2015, 20(2), 1904-1921. [http://dx.doi.org/10.3390/molecules20021904]. [PMID: 25625683].
[73]
Wang, H.L.; Zhou, Q.H.; Xu, M.B.; Zhou, X.L.; Zheng, G.Q. Astragaloside IV for experimental focal cerebral ischemia: Preclinical evidence and possible mechanisms. Oxid. Med. Cell. Longev., 2017, •••20178424326 [http://dx.doi.org/10.1155/2017/8424326]. [PMID: 28303172].
[74]
Li, M.; Qu, Y.Z.; Zhao, Z.W.; Wu, S.X.; Liu, Y.Y.; Wei, X.Y.; Gao, L.; Gao, G.D. Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem. Int., 2012, 60(5), 458-465. [http://dx.doi.org/10.1016/j.neuint.2012.01.026]. [PMID: 22342823].
[75]
Yin, Y.Y.; Li, W.P.; Gong, H.L.; Zhu, F.F.; Li, W.Z.; Wu, G.C. Protective effect of astragaloside on focal cerebral ischemia/reperfusion injury in rats. Am. J. Chin. Med., 2010, 38(3), 517-527. [http://dx.doi.org/10.1142/S0192415X10008020]. [PMID: 20503469].
[76]
Rosenberg, G.A. Neurological diseases in relation to the blood-brain barrier. J. Cereb. Blood Flow Metab., 2012, 32(7), 1139-1151. [http://dx.doi.org/10.1038/jcbfm.2011.197]. [PMID: 22252235].
[77]
Date, I.; Takagi, N.; Takagi, K.; Tanonaka, K.; Funakoshi, H.; Matsumoto, K.; Nakamura, T.; Takeo, S. Hepatocyte growth factor attenuates cerebral ischemia-induced increase in permeability of the blood-brain barrier and decreases in expression of tight junctional proteins in cerebral vessels. Neurosci. Lett., 2006, 407(2), 141-145. [http://dx.doi.org/10.1016/j.neulet.2006.08.050]. [PMID: 16973272].
[78]
Li, M.; Ma, R.N.; Li, L.H.; Qu, Y.Z.; Gao, G.D. Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur. J. Pharmacol., 2013, 715(1-3), 189-195. [http://dx.doi.org/10.1016/j.ejphar.2013.05.022]. [PMID: 23747593].
[79]
Shao, A.; Guo, S.; Tu, S.; Ammar, A.B.; Tang, J.; Hong, Y.; Wu, H.; Zhang, J. Astragaloside IV alleviates early brain injury following experimental subarachnoid hemorrhage in rats. Int. J. Med. Sci., 2014, 11(10), 1073-1081. [http://dx.doi.org/10.7150/ijms.9282]. [PMID: 25136262].
[80]
Chen, C.C.; Lee, H.C.; Chang, J.H.; Chen, S.S.; Li, T.C.; Tsai, C.H.; Cho, D.Y.; Hsieh, C.L. Chinese herb Astragalus membranaceus enhances recovery of hemorrhagic stroke: Double-blind, placebo-controlled, randomized study. Evid. Based Complement. Alternat. Med., 2012, 2012708452 [PMID: 22474516].
[81]
Sun, J.; Chen, X.L.; Zheng, J.Y.; Zhou, J.W.; Ma, Z.L. Astragaloside IV protects new born rats from anesthesia-induced apoptosis in the developing brain. Exp. Ther. Med., 2016, 12(3), 1829-1835. [http://dx.doi.org/10.3892/etm.2016.3519]. [PMID: 27588101].
[82]
Yang, J.; Li, J.; Lu, J.; Zhang, Y.; Zhu, Z.; Wan, H. Synergistic protective effect of astragaloside IV-tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia. J. Ethnopharmacol., 2012, 140(1), 64-72. [http://dx.doi.org/10.1016/j.jep.2011.12.023]. [PMID: 22207211].
[83]
Liu, X.; Zhang, J.; Wang, S.; Qiu, J.; Yu, C. Astragaloside IV attenuates the H2O2-induced apoptosis of neuronal cells by inhibiting α-synuclein expression via the p38 MAPK pathway. Int. J. Mol. Med., 2017, 40(6), 1772-1780. [http://dx.doi.org/10.3892/ijmm.2017.3157]. [PMID: 29039448].
[84]
Liu, H.S.; Shi, H.L.; Huang, F.; Peterson, K.E.; Wu, H.; Lan, Y.Y.; Zhang, B.B.; He, Y.X.; Woods, T.; Du, M.; Wu, X.J.; Wang, Z.T. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci. Rep., 2016, 6, 19137. [http://dx.doi.org/10.1038/srep19137]. [PMID: 26750705].
[85]
Cao, J.; Chen, Z.; Zhu, Y.; Li, Y.; Guo, C.; Gao, K.; Chen, L.; Shi, X.; Zhang, X.; Yang, Z.; Wen, A. Huangqi-Honghua combination and its main components ameliorate cerebral infarction with Qi deficiency and blood stasis syndrome by antioxidant action in rats. J. Ethnopharmacol., 2014, 155(2), 1053-1060. [http://dx.doi.org/10.1016/j.jep.2014.05.061]. [PMID: 24960183].
[86]
Cao, Y.L.; Chen, C.F.; Wang, A.W.; Feng, Y.B.; Cheng, H.X.; Zhang, W.W.; Xin, W. Changes of peripheral-type benzodiazepine receptors in the penumbra area after cerebral ischemia-reperfusion injury and effects of astragaloside IV on rats. Genet. Mol. Res., 2015, 14(1), 277-285. [http://dx.doi.org/10.4238/2015.January.23.1]. [PMID: 25729960].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy