[1]
Francis, M.S. In: Handbook of molecular chaperones: Roles, structures and mechanisms; Durante, P.; Colucci, L., Eds.; Nova Biomedical Books: New York, 2010, pp. 79-147.
[2]
Wattiau, P.; Woestyn, S.; Cornelis, G.R. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol., 1996, 20, 255-262.
[3]
Fattori, J.; Prando, A.; Martini, A.M.; Rodrigues, F.H.S.; Tasic, L. Bacterial secretion chaperones. Protein Pept. Lett., 2011, 18, 158-166.
[5]
Schneewin, O.; Missiakas, D.M. Protein secretion and surface display in Gram-positive bacteria. Phil. Trans. R. Soc., 2012, 367, 1123-1139.
[6]
Papanikou, E.; Karamanou, S.; Economou, A. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol., 2007, 5, 839-851.
[7]
Yuan, J.; Zweers, J.C.; van Dijl, J.M.; Dalbey, R.E. Protein transport across and into cell membranes in bacteria and archaea. Cell. Mol. Life Sci., 2010, 67, 179-199.
[8]
Natale, P.; Brüser, T.; Driessen, A.J.M. Sec- and Tat- mediated protein secretion across the bacterial cytoplasmic membrane distinct translocases and mechanisms. Biochim. Biophys. Acta, 2008, 1778, 1735-1756.
[9]
Beckwith, J. The sec-dependent pathway. Res. Microbiol., 2013, 164, 497-504.
[10]
Tsirigotaki, A.; De Geyter, J.; Šoštaric, N.; Economou, A.; Karamanou, S. Protein export through the bacterial Sec pathway. Nat. Rev. Microbiol., 2017, 15, 21-36.
[11]
Lee, P.A.; Tullman-Ercek, D.; Georgiou, G. The bacterial twin-arginine translocation pathway. Annu. Rev. Microbiol., 2006, 60, 373-395.
[12]
Sargent, F.; Berks, B.C.; Palmer, T. Pathfinders and trailblazers: A prokaryotic targeting system for transport of folded proteins. FEMS Microbiol. Lett., 2006, 254, 198-207.
[13]
Palmer, T.; Berks, B.C. The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol., 2012, 10, 483-496.
[14]
Costa, T.R.D.; Felisberto-Rodrigues, C.; Meir, A.; Prevost, M.S.; Redzej, A.; Trokter, M.; Waksman, G. Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol., 2015, 13, 343-359.
[15]
Holland, I.B.; Schmitt, L.; Young, J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol. Membr. Biol., 2005, 22, 29-39.
[16]
Herr, D.; Finley, K.D. In: Autophagy in health and disease; Gottlieb, R.A., Ed.; Elsevier: London, 2013, pp. 11-28.
[17]
Thomas, S.; Holland, I.B.; Schmitt, L. The type 1 secretion pathway - the hemolysin system and beyond. Biochim. Biophys. Acta, 2014, 1843, 1629-1641.
[18]
Chang, J.H.; Desveaux, D.; Creason, A.L. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu. Rev. Phytopathol., 2014, 52, 317-345.
[19]
Xu, L.; Liu, Y. Protein secretion systems in bacterial pathogens. Front. Biol., 2014, 9, 437-447.
[20]
Schwarz, C.K.W.; Landsberg, C.D.; Lenders, M.H.H.; Smits, S.H.J.; Schmit, L. Using an E. coli type 1 secretion system to secrete the mammalian, intracellular protein IFABP in its active form. J. Biotechnol., 2012, 159, 155-161.
[21]
Dalbey, R.E.; Kuhn, A. Protein traffic in gram-negative bacteria – How exported and secreted proteins find their way. FEMS Microbiol. Rev., 2012, 36, 1023-1045.
[22]
Kanonenberg, K.; Schwarz, C.K.W.; Schmitt, L. Type I secretion systems - a story of appendices. Res. Microbiol., 2013, 164, 596-604.
[23]
Masi, M.; Wandersman, C. Multiple signals direct the assembly and function of a type 1 secretion system. J. Bacteriol., 2010, 192, 3861-3869.
[24]
Satchell, K.J.F. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infect. Immun., 2007, 75, 5079-5084.
[25]
Johnson, T.L.; Abendroth, J.; Hol, W.G.J.; Sandkvist, M. Type II secretion: From structure to function. FEMS Microbiol. Lett., 2006, 255, 175-186.
[26]
Korotkov, K.V.; Sandkvist, M.; Hol, W.G.J. The type II secretion system: Biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol., 2012, 10, 336-351.
[27]
Weber, B.S.; Kinsella, R.L.; Harding, C.M.; Feldman, M.F. The secrets of Acinetobacter secretion. Trends Microbiol., 2017, 25, 532-545.
[28]
Galán, E.J.; Lara-Tejero, M.; Marlovits, T.C.; Wagner, S. Bacterial type III secretion systems: Specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol., 2014, 68, 348-415.
[29]
Büttner, D. Protein export according to schedule: Architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. R., 2012, 76, 262-310.
[30]
Singer, A.U.; Rohde, J.R.; Lam, R.; Skarina, T.; Kagan, O.; Di Leo, R.; Chirgadze, N.Y.; Cuff, M.E.; Joachimiak, A.; Tyers, M.; Sansonetti, P.J.; Parsot, C.; Savchenko, A. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol., 2008, 15, 1293-1301.
[31]
Job, V.; Matteï, P.J.; Lemaire, D.; Attree, I.; Dessen, A. Structural basis of chaperone recognition of type III secretion system minor translocator proteins. J. Biol. Chem., 2010, 285, 23224-23232.
[32]
Radics, J.; Königsmaier, L.; Marlovits, T.C. Structure of a pathogenic type III secretion system in action. Nat. Struct. Mol. Biol., 2014, 21, 82-87.
[33]
Martinez-Argudo, I.; Blocker, A.J. The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors. Mol. Microbiol., 2010, 78, 1365-1378.
[34]
Fronzes, R.; Christie, P.J.; Waksman, G. The structural biology of type IV secretion systems. Nat. Rev. Microbiol., 2009, 7, 703-714.
[35]
Goessweiner-Mohr, N.; Arends, K.; Keller, W.; Grohmann, E. Conjugative Type 4 secretion system in gram-positive bacteria. Plasmid, 2013, 70, 289-302.
[36]
Segura, R.L.; Águila-Arcos, S.; Ugarte-Uribe, B.; Vecino, A.J.; de la Cruz, F.; Goñi, F.M.; Alkort, I. The transmembrane domain of the T4SS coupling protein TrwB and its role in protein-protein interactions. Biochim. Biophys. Acta, 2013, 1828, 2015-2025.
[37]
Bhatty, M.; Gomez, J.A.L.; Christie, P.J. The expanding bacterial type IV secretion lexicon. Res. Microbiol., 2013, 164, 620-639.
[38]
Delpino, M.V.; Comerci, D.J.; Wagner, M.A.; Eschenbrenner, M.; Mujer, C.V.; Ugalde, R.A.; Fossati, C.A.; Baldi, P.C.; Del Vecchio, V.G. Differential composition of culture supernatants from wild-type Brucella abortus and its isogenic virB mutants. Arch. Microbiol., 2009, 191, 571-581.
[39]
Zechner, E.L.; Lang, S.; Schildbach, J.F. Assembly and mechanisms of bacterial type IV secretion machines. Phil. Trans. R. Soc.B., 2012, 367, 1073-1087.
[40]
Cascales, E.; Chistie, P.J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol., 2003, 1, 137-149.
[41]
Paredes-Cervantes, V.; Flores-Mejía, R.; Moreno-Lafont, M.C.; Lanz-Mendoza, H.; Tello-López, A.T.; Castillo-Vera, J.; Pando-Robles, V.; Hurtado-Sil, G.; González-González, E.; Rodríguez-Cortés, O.; Gutiérrez-Hoya, A.; Vega-Ramírez, M.T.; López-Santiago, R. Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J. Proteomics, 2011, 74, 2959-2971.
[42]
Trokter, M.; Felisberto-Rodrigues, C.; Christie, P.J.; Waksman, G. Recent advances in the structural and molecular biology of type IV secretion system. Curr. Opin. Struct. Biol., 2014, 27, 16-23.
[43]
Tsai, Y-L.; Chiang, Y.R.; Narberhaus, F.; Baron, C.; Lai, E.M. The small heat-shock protein HspL is a VirB8 chaperone promoting type IV secretion-mediated DNA transfer. J. Biol. Chem., 2010, 285, 19757-19766.
[44]
Alvarez-Martinez, C.E.; Christie, P.J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. R., 2009, 73, 775-808.
[45]
Guglielmini, J.; Néron, B.; Abby, S.S.; Garcillán-Barcia, M.P.; de la Cruz, F.; Rocha, E.P.C. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acid Res., 2014, 42, 5715-5727.
[46]
Waksman, G.; Orlova, E.V. Structural organization of the type IV secretion systems. Curr. Opin. Microbiol., 2014, 17, 24-31.
[47]
Johnson, C.M.; Grossman, A.D. Integrative and conjugative elements (ICEs): What they do and how they work. Annu. Rev. Genet., 2015, 49, 577-601.
[48]
Li, M.; Shen, X.; Yan, J.; Han, H.; Zheng, B.; Liu, D.; Cheng, H.; Zhao, Y.; Rao, X.; Wang, C.; Tang, J.; Hu, F.; Gao, G.F. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2mmi_7553. Mol. Microbiol., 2011, 79, 1670-1683.
[49]
Monzingo, A.F.; Ozburn, A.; Xia, S.; Meyer, R.J.; Robertus, J.D. The structure of the minimal relaxase domain of MobA at 2.1 Å resolution. J. Mol. Biol., 2007, 366, 165-178.
[50]
Chandran, V.; Fronzes, R.; Duquerroy, S.; Cronin, N.; Navaza, J.; Waksman, G. Structure of the outer membrane complex of a type IV secretion system. Nature, 2009, 462, 1011-1016.
[51]
Christie, P.J.; Atamakuri, K.; Kushmamoorthy, V.; Jakubowski, S.; Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion system. Annu. Rev. Microbiol., 2005, 59, 451-485.
[52]
Locht, C.; Coutte, L.; Mielcarek, N. The ins and outs of pertussis toxin. FEBS J., 2011, 278, 4668-4682.
[53]
Stingl, K.; Müller, S.; Scheidgen-Kleyboldt, G.; Clausen, M.; Maier, B. Composite system mediates two-step DNA uptake into Helicobacter pylori. PNAS, 2010, 107, 1184-1189.
[54]
Karnholz, A.; Hoefler, C.; Odenbreit, S.; Fischer, W.; Hofreuter, D.; Haas, R. Functional and topological characterization of novel components of the ComB DNA transformation competence system in Helicobacter pylori. J. Bacteriol., 2006, 188, 882-893.
[55]
Pattis, I.; Weiss, E.; Laugks, R.; Haas, R.; Fischer, W. The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology, 2007, 153, 2896-2909.
[56]
Juhas, M.; Crook, D.W.; Hood, D.W. Type IV secretion systems: Tools of bacterial horizontal gene transfer and virulence. Cell. Microbiol., 2008, 12, 2377-2386.
[57]
Bandyopadhyay, P.; Liu, S.; Gabbai, C.B.; Venitelli, Z.; Steinman, H.M. Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect. Immun., 2007, 75, 723-735.
[58]
Raychaudhury, S.; Farelli, J.D.; Montminy, T.P.; Matthews, M.; Ménétret, J-F.; Duménil, G.; Roy, C.R.; Head, J.F.; Isberg, R.R.; Akey, C.W. Structure and function of interacting IcmR-IcmQ domains from a type IVB secretion system in Legionella pneumophila. Structure, 2009, 17, 590-601.
[59]
Leo, J.C.; Grin, I.; Linke, D. Type V secretion: Mechanism(s) of autotransport through the bacterial outer membrane. Phil. Trans. R. Soc.B, 2012, 367, 1088-1101.
[60]
Dautin, N.; Bernstein, H.D. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol., 2007, 61, 89-112.
[61]
Leyton, D.L.; Rossiter, A.E.; Henderson, I.R. From self-sufficiency to dependence: Mechanisms and factors important for autotransporter biogenesis. Nat. Rev. Microbiol., 2012, 10, 213-225.
[62]
Cianfanelli, F.R.; Monlezun, L.; Coulthurst, S.J. Aim, load, fire: The type VI secretion system, a bacterial nanoweapon. Trends Microbiol., 2016, 24, 51-62.
[63]
Pukatzki, S.; Ma, A.T.; Revel, A.T.; Sturtevant, D.; Mekalanos, J.J. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. PNAS, 2007, 104, 15508-15513.
[64]
Jani, A.J.; Cotte, P.A. Type VI secretion: Not just for pathogenesis anymore. Cell Host Microbe, 2010, 8, 2-6.
[65]
Hood, R.D. Singh, P.; Hsu, F.; Güvener, T.; Carl, M.A.; Trinidad, R.R.S.; Silverman, J.M.; Ohlson, B.B.; Hicks, K.G.; Plemel, R.L.; Li, M.; Schwarz, S.; Wang, W.Y.; Merz, A.J.; Goodlett, D.R.; Mougous, J.D. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010, 7, 25-37.
[66]
MacIntyre, D.L.; Miyata, S.T.; Kitaoka, M.; Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. PNAS, 2010, 107, 19520-19524.
[67]
Silverman, J.M.; Agnello, D.M.; Zheng, H.; Andrews, B.T.; Li, M.; Catalano, C.E.; Gonen, T.; Mougous, J.D. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates. Mol. Cell, 2013, 51, 584-593.
[68]
Unterweger, D.; Kostiuk, B.; Pukatzki, S. Adaptor proteins of type VI secretion system effectors. Trends Microbiol., 2017, 25, 8-10.
[69]
Ma, J.; Sum, M.; Dong, W.; Pan, Z.; Lu, C.; Yao, H. PAAR-Rhs proteins harbor various C-terminal toxins to diversify the antibacterial pathways of type VI secretion systems. Environ. Microbiol., 2017, 19, 345-360.
[70]
Abdallah, A.M.; van Pittius, N.C.G.; Champion, P.A.D.; Cox, J.; Luirink, J.; Vandenbroucke-Grauls, C.M.J.E.; Appelmelk, B.J.; Bitter, W. Type VII secretion - Mycobacteria show the way. Nat. Rev. Microbiol., 2007, 5, 883-891.
[71]
Bottai, D.; Serafini, A.; Cascioferro, A.; Brosch, R.; Manganelli, R. Targeting type VII/ESX secretion systems for development of novel antimycobacterial drugs. Curr. Pharm. Des., 2014, 20, 4346-4356.
[72]
Daleke, M.H.; van der Woude, A.D.; Parret, A.H.A.; Ummels, R.; de Groot, A.M.; Watson, D.; Piersma, S.R.; Jiménez, C.R.; Luirink, J.; Bitter, W.; Houben, E.N.G. Specific chaperones for the type VII protein secretion pathway. J. Biol. Chem., 2012, 287, 31939-31947.
[73]
Schmid, A.; Dittmann, S.; Grimminger, V.; Walter, S.; Heesemann, J.; Wilharm, G. Yersinia enterocolitica type III secretion chaperone SycD: Recombinant expression, purifcation and characterization of a homodimer. Protein Expres. Purif., 2006, 49, 176-182.
[74]
Lohou, D.; Lonjon, F.; Genin, S.; Vailleau, F. Type III chaperones and co in bacterial plant pathogens: A set of specialized bodyguards mediating effector delivery. Front. Plant Sci., 2013, 4, 1-8.
[75]
Triplett, L.R.; Wedemeyer, W.J.; Sundin, G.W. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE. Res. Microbiol., 2010, 161, 613-618.
[76]
Brinkworth, A.J.; Malcolm, D.S.; Pedrosa, A.T.; Roguska, K.; Shahbazian, S.; Graham, J.E.; Hayward, R.D.; Carabeo, R.A. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARPm. Mol. Microbiol., 2011, 82, 131-144.
[77]
Parsot, C.; Hamiaux, C.; Page, A.L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol., 2003, 6, 7-14.
[78]
Zheng, Z.; Chen, G.; Joshi, S.; Brutinel, E.D.; Yahr, T.L.; Chen, L. Biochemical characterization of a regulatory cascade controlling transcription of the Pseudomonas aeruginosa type III secretion system. J. Biol. Chem., 2007, 282, 6136-6142.
[79]
Miki, T.; Shibagaki, Y.; Danbara, H.; Okada, N. Functional characterization of SsaE, a novel chaperone protein of the type III secretion system encoded by Salmonella pathogenicity island 2. J. Bacteriol., 2009, 191, 6843-6854.
[80]
Roblin, P.; Lebrun, P.; Rucktooa, P.; Dewitte, F.; Lens, Z.; Receveur-Brechot, V.; Bompard, C. The structural organization of the N-terminus domain of SopB, a virulence factor of Salmonella, depends on the nature of its protein partners. Biochim. Biophys. Acta, 2013, 1834, 2564-2572.
[81]
Tsai, C-L.; Burkinshaw, B.J.; Strynadka, N.C.J.; Tainer, J.A. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes. J. Bacteriol., 2015, 197, 672-675.
[82]
Bröms, J.E.; Edqvist, P.J.; Forsberg, A.; Francis, M.S. Tetratricopeptide repeats are essential for PcrH chaperone function in Pseudomonas aeruginosa type III secretion. FEMS Microbiol. Lett., 2006, 256, 57-66.
[83]
Büttner, C.; Sorg, I.; Cornelis, G.; Heinz, D.; Niemann, H. Structure of the Yersinia enterocolitica type III secretion translocator chaperone SycD. J. Mol. Biol., 2008, 375, 997-1012.
[84]
Lunelli, M.; Lokareddy, R.; Zychlinsky, A.; Kolbe, M. IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc. Natl. Acad. Sci. USA, 2009, 106, 9661-9666.
[85]
Auvray, F.; Thomas, J.; Fraser, G.M.; Hughes, C. Flagellin polymerization control by a cytosolic export chaperone. J. Mol. Biol., 2001, 308, 221-229.
[86]
Lam, W.W.L.; Woo, E.J.; Kotaka, M.; Tam, W.K.; Leung, Y.C.; Ling, T.K.W.; Au, S.W.N. Molecular interaction of flagellar export chaperone FliS and co-chaperone HP1076 in Helicobacter pylori. FASEB J., 2010, 24, 4020-4032.
[87]
Evdokimov, A.G.; Phan, J.; Tropea, J.E.; Routzahn, K.M.; Peters, H.K.; Pokross, M.; Waugh, D.S. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nat. Struct. Biol., 2003, 10, 789-793.
[88]
Bennett, J.C.Q.; Thomas, J.; Fraser, G.M.; Hughes, C. Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol. Microbiol., 2001, 39, 781-791.
[89]
Fattori, J.; Prando, A.; Assis, L.H.P.; Aparicio, R.; Tasic, L. Structural insights on two hypothetical secretion chaperones from Xanthomonas axonopodis pv. citri. Protein J., 2011, 30, 324-333.
[90]
Lynne, S. Cairns, L.S.; Marlow, V.L.; Kiley, T.B.; Birchall, C.; Ostrowski, A.; Aldridge, P.D.; Stanley-Wall, N.R. FlgN is required for flagellum-based motility by Bacillus subtilis. J. Bacteriol., 2014, 196, 2216-2226.
[91]
Remaut, H.; Waksman, G. Structural biology of bacterial pathogenesis. Curr. Opin. Struct. Biol., 2004, 14, 161-170.
[92]
Karuppiah, V.; Berry, J-L.; Derrick, J.P. Outer membrane translocons: Structural insights into channel formation. Trends Microbiol., 2011, 19, 40-48.
[93]
Whitfield, C.; Naismith, J.H. Periplasmic export machines for outer membrane assembly. Curr. Opin. Struct. Biol., 2008, 18, 466-474.
[94]
Cambronne, E.D.; Roy, C.R. Recognition and delivery of effector into eukaryotic cells by bacterial secretion systems. Traffic, 2006, 7, 929-939.
[95]
Filloux, A. Secretion signal and protein targeting in bacteria: A biological puzzle. J. Bacteriol., 2010, 192, 3847-3849.
[96]
Bardill, J.P.; Miller, J.L.; Vogel, J.P. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol., 2005, 56, 90-103.
[97]
Geibel, S.; Waksman, G. The molecular dissection of the chaperone-usher pathway. Biochim. Biophys. Acta, 2014, 1843, 1559-1567.
[98]
Alperi, A.; Larrea, D.; Fernández-González, E.; Dehio, C.; Zechner, E.L.; Llosa, M. A translocation motif in relaxase TrwC specifically affects recruitment by its conjugative type IV secretion system. J. Bacteriol., 2013, 195, 4999-5006.
[99]
van Kregten, M.; Lindhout, B.I.; Hooykaas, P.J.J. van der Zaal. B.J. Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol. Plant Microbe In., 2009, 22, 1356-1365.
[100]
Fattori, J. Structural insights on hypothetical proteins, secretion
chaperones from Xanthomonas axonopodis pv. citri. University of
Campinas: Campinas, September, 2011.
[101]
Prando, A. Biophysical studies on secretion chaperones and protein- ligand interaction. University of Campinas: Campinas, April. 2012.
[102]
Peterson, J.W. In: Medical microbiology;, Baron, S. Ed.; University
of Texas medical branch at Galveston: Galveston, 1996; pp. 1-32.
[103]
Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev., 2013, 26, 185-230.
[104]
Casadevall, A.; Pirofski, L. Host-pathogen interactions: The attributes of virulence. J. Infect. Dis., 2001, 184, 337-344.
[105]
Carroll, K.C. In: Jawetz, Melnick, & Adelberg's Medical Microbiology;, Brooks, G.F.; Carroll, K.C.; Butel, J.S.; Morse, S.A.; Mietzner,
T.A. Eds.; The McGraw-Hill companies: New York, 2013
,
pp. 149-161.
[106]
Sharma, A.K.; Dhasmana, N.; Dubey, N.; Kumar, N.; Gangwal, A.; Gupta, M.; Singh, Y. Bacterial virulence factors: Secreted for survival. Indian J. Microbiol., 2016, 57, 1-10.
[107]
Kovarik, P.; Castiglia, V.; Ivin, M.; Ebner, F. Type I interferons in bacterial infections: A balancing act. Front. Immunol., 2016, 7, 1-8.
[108]
Aiello, D.; Williams, J.D.; Majgier-Baranowska, H.; Patel, I.; Peet, N.P.; Huang, J.; Lory, S.; Bowlin, T.L.; Moir, D.T. Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III secretion. Antimicrob. Agents Ch., 2010, 54, 1988-1999.