[1]
Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 1992; 35(11): 1060-7.
[2]
Kyvik KO, Green A, Beck-Nielsen H. Concordance rates of insulin dependent diabetes mellitus: A population based study of young Danish twins. BMJ 1995; 311(7010): 913-7.
[3]
Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 1987; 30(10): 763-8.
[4]
Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type II diabetes mellitus in monozygotic twins: Actuarial analysis. Diabetologia 1999; 42(2): 146-50.
[5]
Poulsen P, Kyvik KO, Vaag A, Beck-Nielsen H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia 1999; 42(2): 139-45.
[6]
Redondo MJ, Yu L, Hawa M, et al. Heterogeneity of type I diabetes: Analysis of monozygotic twins in Great Britain and the United States. Diabetologia 2001; 44(3): 354-62.
[7]
Hjort R, Alfredsson L, Andersson T, et al. Family history of type 1 and type 2 diabetes and risk of Latent Autoimmune Diabetes in Adults (LADA). Diabetes Metab 2017; 43(6): 536-42.
[8]
Lundgren VM, Isomaa B, Lyssenko V, et al. GAD antibody positivity predicts type 2 diabetes in an adult population. Diabetes 2010; 59(2): 416-22.
[9]
Carlsson S, Midthjell K, Grill V. Influence of family history of diabetes on incidence and prevalence of latent autoimmune diabetes of the adult: Results from the Nord-Trondelag Health Study. Diabetes Care 2007; 30(12): 3040-5.
[10]
Weires MB, Tausch B, Haug PJ, Edwards CQ, Wetter T, Cannon-Albright LA. Familiality of diabetes mellitus. Exp Clin Endocrinol Diabetes 2007; 115(10): 634-40.
[11]
Scott RA, Langenberg C, Sharp SJ, et al. The link between family history and risk of type 2 diabetes is not explained by anthropometric, lifestyle or genetic risk factors: the EPIC-InterAct study. Diabetologia 2013; 56(1): 60-9.
[12]
Lundgren VM, Andersen MK, Isomaa B, Tuomi T. Family history of Type 1 diabetes affects insulin secretion in patients with “Type 2” diabetes. Diabet Med 2013; 30(5): e163-9.
[13]
Cooper JD, Smyth DJ, Smiles AM, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 2008; 40(12): 1399-401.
[14]
Bradfield JP, Qu HQ, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 2011; 7(9): e1002293.
[15]
Evangelou M, Smyth DJ, Fortune MD, et al. A method for gene-based pathway analysis using genomewide association study summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol 2014; 38(8): 661-70.
[16]
Voight BF, Kang HM, Ding J, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012; 8(8): e1002793.
[17]
Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44(9): 981-90.
[18]
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature 2016; 536(7614): 41-7.
[19]
Scott RA, Scott LJ, Mägi R, et al. An expanded genome-wide association study of type 2 diabetes in europeans. Diabetes 2017; 66(11): 2888-902.
[20]
Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014; 46(3): 234-44.
[21]
Dooley J, Tian L, Schonefeldt S, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet 2016; 48(5): 519-27.
[22]
Raj SM, Howson JM, Walker NM, et al. No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia 2009; 52(10): 2109-16.
[23]
Johansen A, Jensen DP, Bergholdt R, et al. IRS1, KCNJ11, PPARgamma2 and HNF-1alpha: Do amino acid polymorphisms in these candidate genes support a shared aetiology between type 1 and type 2 diabetes? Diabetes Obes Metab 2006; 8(1): 75-82.
[24]
Eftychi C, Howson JM, Barratt BJ, et al. Analysis of the type 2 diabetes-associated single nucleotide polymorphisms in the genes IRS1, KCNJ11, and PPARG2 in type 1 diabetes. Diabetes 2004; 53(3): 870-3.
[25]
Andersen MK, Sterner M, Forsén T, et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia 2014; 57(9): 1859-68.
[26]
Qu HQ, Polychronakos C. The TCF7L2 locus and type 1 diabetes. BMC Med Genet 2007; 8: 51.
[27]
Field SF, Howson JM, Smyth DJ, Walker NM, Dunger DB, Todd JA. Analysis of the type 2 diabetes gene, TCF7L2, in 13,795 type 1 diabetes cases and control subjects. Diabetologia 2007; 50(1): 212-3.
[28]
Qu HQ, Grant SF, Bradfield JP, et al. Association analysis of type 2 diabetes Loci in type 1 diabetes. Diabetes 2008; 57(7): 1983-6.
[29]
Field SF, Howson JM, Walker NM, Dunger DB, Todd JA. Analysis of the obesity gene FTO in 14,803 type 1 diabetes cases and controls. Diabetologia 2007; 50(10): 2218-20.
[30]
Winkler C, Raab J, Grallert H, Ziegler AG. Lack of association of type 2 diabetes susceptibility genotypes and body weight on the development of islet autoimmunity and type 1 diabetes. PLoS One 2012; 7(4): e35410.
[31]
Tuomi T, Carlsson A, Li H, et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 1999; 48(1): 150-7.
[32]
Andersen MK, Lundgren V, Turunen JA, et al. Latent autoimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care 2010; 33(9): 2062-4.
[33]
Desai M, Zeggini E, Horton VA, et al. An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 2007; 50(1): 68-73.
[34]
Mishra R, Chesi A, Cousminer DL, et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med 2017; 15(1): 88.
[35]
Cousminer DL, Mishra R, Ahlqvist E, et al. First genome-wide association study of latent autoimmune diabetes in adults provides novel insights [abstract]. In: American Diabetes Association 77th Scientific Sessions; June 9-13, San Diego, California, USA:Abstract 181-OR
[36]
Caillat-Zucman S, Garchon HJ, Timsit J, et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest 1992; 90(6): 2242-50.
[37]
Sabbah E, Savola K, Ebeling T, et al. Genetic, autoimmune, and clinical characteristics of childhood- and adult-onset type 1 diabetes. Diabetes Care 2000; 23(9): 1326-32.
[38]
Graham J, Kockum I, Sanjeevi CB, et al. Negative association between type 1 diabetes and HLA DQB1*0602-DQA1*0102 is attenuated with age at onset. Swedish Childhood Diabetes Study Group. Eur J Immunogenet 1999; 26(2-3): 117-27.
[39]
Pettersen E, Skorpen F, Kvaloy K, Midthjell K, Grill V. Genetic heterogeneity in latent autoimmune diabetes is linked to various degrees of autoimmune activity: Results from the Nord-Trondelag Health Study. Diabetes 2010; 59(1): 302-10.
[40]
Luo S, Lin J, Xie Z, et al. HLA genetic discrepancy between latent autoimmune diabetes in adults and type 1 diabetes: LADA China Study No. 6. J Clin Endocrinol Metab 2016; 101(4): 1693-700.
[41]
Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 2008; 57(5): 1433-7.
[42]
Petrone A, Suraci C, Capizzi M, et al. The protein tyrosine phosphatase nonreceptor 22 (PTPN22) is associated with high GAD antibody titer in latent autoimmune diabetes in adults: Non Insulin Requiring Autoimmune Diabetes (NIRAD) Study 3. Diabetes Care 2008; 31(3): 534-8.
[43]
Hermann R, Lipponen K, Kiviniemi M, et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006; 49(6): 1198-208.
[44]
Chelala C, Duchatelet S, Joffret ML, et al. PTPN22 R620W functional variant in type 1 diabetes and autoimmunity related traits. Diabetes 2007; 56(2): 522-6.
[45]
Hakonarson H, Qu HQ, Bradfield JP, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 2008; 57(4): 1143-6.
[46]
Smyth DJ, Plagnol V, Walker NM, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 2008; 359(26): 2767-77.
[47]
Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 2015; 47(4): 381-6.
[48]
Desai M, Zeggini E, Horton VA, et al. The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes 2006; 55(6): 1890-4.
[49]
Laine AP, Knip M, Ilonen J. Finnish Pediatric Diabetes Register, Transmission disequilibrium analysis of 31 type 1 diabetes susceptibility loci in Finnish families. Tissue Antigens 2013; 82(1): 35-42.
[50]
Laine AP, Holmberg H, Nilsson A, et al. Finnish paediatric diabetes registry, two insulin gene single nucleotide polymorphisms associated with type 1 diabetes risk in the Finnish and Swedish populations. Dis Markers 2007; 23(3): 139-45.
[51]
Graham J, Hagopian WA, Kockum I, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes 2002; 51(5): 1346-55.
[52]
Reddy MPL, Wang H, Liu S, et al. Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun 2011; 12(3): 208-12.
[53]
Klinker MW, Schiller JJ, Magnuson VL, et al. Single-nucleotide polymorphisms in the IL2RA gene are associated with age at diagnosis in late-onset Finnish type 1 diabetes subjects. Immunogenetics 2010; 62(2): 101-7.
[54]
Howson JM, Walker NM, Smyth DJ, Todd JA. Type 1 Diabetes Genetics Consortium. Analysis of 19 genes for association with type I diabetes in the Type I Diabetes Genetics Consortium families. Genes Immun 2009; 10: S74-84.
[55]
Rajasalu T, Haller K, Salur L, et al. Insulin VNTR I/III genotype is associated with autoantibodies against glutamic acid decarboxylase in newly diagnosed type 1 diabetes. Diabetes Metab Res Rev 2007; 23(7): 567-71.
[56]
Howson JM, Rosinger S, Smyth DJ, Boehm BO. ADBW-END Study Group, Todd JA. Genetic analysis of adult-onset autoimmune diabetes. Diabetes 2011; 60(10): 2645-53.
[57]
Dong F, Yang G, Pan HW, et al. The association of PTPN22 rs2476601 polymorphism and CTLA-4 rs231775 polymorphism with LADA risks: A systematic review and meta-analysis. Acta Diabetol 2014; 51(5): 691-703.
[58]
Lukacs K, Hosszufalusi N, Dinya E, Bakacs M, Madacsy L, Panczel P. The type 2 diabetes-associated variant in TCF7L2 is associated with latent autoimmune diabetes in adult Europeans and the gene effect is modified by obesity: a meta-analysis and an individual study. Diabetologia 2012; 55(3): 689-93.
[59]
Zampetti S, Spoletini M, Petrone A, et al. Association of TCF7L2 gene variants with low GAD autoantibody titre in LADA subjects (NIRAD Study 5). Diabet Med 2010; 27(6): 701-4.
[60]
Zheng J, Erzurumluoglu AM, Elsworth BL, et al. LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 2017; 33(2): 272-9.
[61]
Ng MC, Shriner D, Chen BH, et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet 2014; 10(8): e1004517.