[1]
Muller, H.J. The remaking of chromosomes. Collect. Net. (Woods Hole), 1938, 13, 181-198.
[2]
McClintock, B. The stability of broken ends of chromosomes in Zea Mays. Genetics, 1941, 26(2), 234-282.
[3]
Blackburn, E.H.; Gall, J.G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol., 1978, 120(1), 33-53.
[4]
Greider, C.W.; Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 1985, 43(2 Pt 1), 405-413.
[5]
Meyne, J.; Ratliff, R.L.; Moyzis, R.K. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA, 1989, 86(18), 7049-7053.
[6]
Cano, M.I. Telomere biology of trypanosomatids: More questions than answers. Trends Parasitol., 2001, 17(9), 425-429.
[7]
Weinrich, S.L.; Pruzan, R.; Ma, L.; Ouellette, M.; Tesmer, V.M.; Holt, S.E.; Bodnar, A.G.; Lichtsteiner, S.; Kim, N.W.; Trager, J.B.; Taylor, R.D.; Carlos, R.; Andrews, W.H.; Wright, W.E.; Shay, J.W.; Harley, C.B.; Morin, G.B. Reconstitution of human telomerase with the template RNA component HTR and the catalytic protein subunit HTRT. Nat. Genet., 1997, 17(4), 498-502.
[8]
Giardini, M.A.; Segatto, M.; da Silva, M.S.; Nunes, V.S.; Cano, M.I.N. Telomere and telomerase biology. Prog. Mol. Biol. Transl. Sci., 2014, 125, 1-40.
[9]
de Lange, T. Opinion: T-loops and the origin of telomeres. Nat. Rev. Mol. Cell Biol., 2004, 5(4), 323-329.
[10]
Griffith, J.D.; Comeau, L.; Rosenfield, S.; Stansel, R.M.; Bianchi, A.; Moss, H.; de Lange, T. Mammalian telomeres end in a large duplex loop. Cell, 1999, 97(4), 503-514.
[11]
Blackburn, E.H.; Greider, C.W.; Henderson, E.; Lee, M.S.; Shampay, J.; Shippen-Lentz, D. Recognition and elongation of telomeres by telomerase. Genome, 1989, 31(2), 553-560.
[12]
Greider, C.W.; Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature, 1989, 337(6205), 331-337.
[13]
Lingner, J.; Cech, T.R. Purification of telomerase from Euplotes Aediculatus: Requirement of a primer 3′ overhang. Proc. Natl. Acad. Sci. USA, 1996, 93(20), 10712-10717.
[14]
Nakamura, T.M.; Morin, G.B.; Chapman, K.B.; Weinrich, S.L.; Andrews, W.H.; Lingner, J.; Harley, C.B.; Cech, T.R. Telomerase catalytic subunit homologs from fission yeast and human. Science, 1997, 277(5328), 955-959.
[15]
Lundblad, V.; Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues Est1- senescence. Cell, 1993, 73(2), 347-360.
[16]
Chen, Q.; Ijpma, A.; Greider, C.W. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol. Cell. Biol., 2001, 21(5), 1819-1827.
[17]
Laroche, T.; Martin, S.G.; Tsai-Pflugfelder, M.; Gasser, S.M. The dynamics of yeast telomeres and silencing proteins through the cell cycle. J. Struct. Biol., 2000, 129(2-3), 159-174.
[18]
Stewart, S.A.; Weinberg, R.A. Senescence: Does it all happen at the ends? Oncogene, 2002, 21(4), 627-630.
[19]
Smogorzewska, A.; de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem., 2004, 73(1), 177-208.
[20]
Cohen, P.; Blackburn, E.H. Two types of telomeric chromatin in Tetrahymena Thermophila. J. Mol. Biol., 1998, 280(3), 327-344.
[21]
De Lange, T. Telomere-related genome instability in cancer. Cold Spring Harb. Symp. Quant. Biol., 2005, 70, 197-204.
[22]
He, H.; Multani, A.S.; Cosme-Blanco, W.; Tahara, H.; Ma, J.; Pathak, S.; Deng, Y.; Chang, S. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. EMBO J., 2006, 25(21), 5180-5190.
[23]
Hockemeyer, D.; Daniels, J-P.; Takai, H.; de Lange, T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell, 2006, 126(1), 63-77.
[24]
Wu, L.; Multani, A.S.; He, H.; Cosme-Blanco, W.; Deng, Y.; Deng, J.M.; Bachilo, O.; Pathak, S.; Tahara, H.; Bailey, S.M.; Deng, Y.; Behringer, R.R.; Chang, S. Pot1 deficiency initiates dna damage checkpoint activation and aberrant homologous recombination at telomeres. Cell, 2006, 126(1), 49-62.
[25]
Zhong, Z.; Shiue, L.; Kaplan, S.; de Lange, T. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol., 1992, 12(11), 4834-4843.
[26]
Smogorzewska, A. van Steensel, B.; Bianchi, A.; Oelmann, S.; Schaefer, M.R.; Schnapp, G.; de Lange, T. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol., 2000, 20(5), 1659-1668.
[27]
van Steensel, B.; de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature, 1997, 385(6618), 740-743.
[28]
Li, B.; Oestreich, S.; de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell, 2000, 101(5), 471-483.
[29]
Palm, W.; de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet., 2008, 42(1), 301-334.
[30]
Svendsen, J.M.; Smogorzewska, A.; Sowa, M.E.; O’Connell, B.C.; Gygi, S.P.; Elledge, S.J.; Harper, J.W. Mammalian BTBD12/SLX4 assembles a holliday junction resolvase and is required for DNA repair. Cell, 2009, 138(1), 63-77.
[31]
Wang, F.; Podell, E.R.; Zaug, A.J.; Yang, Y.; Baciu, P.; Cech, T.R.; Lei, M. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature, 2007, 445(7127), 506-510.
[32]
Xin, H.; Liu, D.; Songyang, Z. The telosome/shelterin complex and its functions. Genome Biol., 2008, 9(9), 232.
[33]
Takai, K.K.; Kibe, T.; Donigian, J.R.; Frescas, D.; de Lange, T. Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol. Cell, 2011, 44(4), 647-659.
[34]
Martínez, P.; Blasco, M.A. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat. Rev. Cancer, 2011, 11(3), 161-176.
[35]
Schramke, V.; Luciano, P.; Brevet, V.; Guillot, S.; Corda, Y.; Longhese, M.P.; Gilson, E.; Géli, V. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nat. Genet., 2004, 36(1), 46-54.
[36]
Gao, H.; Cervantes, R.B.; Mandell, E.K.; Otero, J.H.; Lundblad, V. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol., 2007, 14(3), 208-214.
[37]
Wellinger, R.J. The CST complex and telomere maintenance: The exception becomes the rule. Mol. Cell, 2009, 36(2), 168-169.
[38]
Longhese, M.P. DNA damage response at functional and dysfunctional telomeres. Genes Dev., 2008, 22(2), 125-140.
[39]
Giraud-Panis, M-J.; Teixeira, M.T.; Géli, V.; Gilson, E. CST meets shelterin to keep telomeres in check. Mol. Cell, 2010, 39(5), 665-676.
[40]
Chen, L-Y.; Redon, S.; Lingner, J. The human CST complex is a terminator of telomerase activity. Nature, 2012, 488(7412), 540-544.
[41]
Miyake, Y.; Nakamura, M.; Nabetani, A.; Shimamura, S.; Tamura, M.; Yonehara, S.; Saito, M.; Ishikawa, F. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell, 2009, 36(2), 193-206.
[42]
Surovtseva, Y.V.; Churikov, D.; Boltz, K.A.; Song, X.; Lamb, J.C.; Warrington, R.; Leehy, K.; Heacock, M.; Price, C.M.; Shippen, D.E. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell, 2009, 36(2), 207-218.
[43]
Gu, P.; Min, J-N.; Wang, Y.; Huang, C.; Peng, T.; Chai, W.; Chang, S. CTC1 deletion results in defective telomere replication, leading to catastrophic telomere loss and stem cell exhaustion. EMBO J., 2012, 31(10), 2309-2321.
[44]
Blackburn, E.H. Telomeres: No end in sight. Cell, 1994, 77(5), 621-623.
[45]
Olovnikov, A.M. Principle of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk SSSR, 1971, 201(6), 1496-1499.
[46]
Watson, J.D. Origin of concatemeric T7 DNA. Nat. New Biol., 1972, 239(94), 197-201.
[47]
de Lange, T. How telomeres solve the end-protection problem. Science, 2009, 326(5955), 948-952.
[48]
Blasco, M.A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet., 2007, 8(4), 299-309.
[49]
Artandi, S.E.; DePinho, R.A. Telomeres and telomerase in cancer. Carcinogenesis, 2010, 31(1), 9-18.
[50]
Martínez, P.; Blasco, M.A. Role of shelterin in cancer and aging. Aging Cell, 2010, 9(5), 653-666.
[51]
Calado, R.T.; Young, N.S. Telomere maintenance and human bone marrow failure. Blood, 2008, 111(9), 4446-4455.
[52]
Calado, R.T.; Young, N.S. Telomere diseases. Natl. Engl. J. Med., 2009, 361(24), 2353-2365.
[53]
Mason, P.J.; Bessler, M. The genetics of dyskeratosis congenita. Cancer Genet., 2011, 204(12), 635-645.
[54]
Blasco, M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet., 2005, 6(8), 611-622.
[55]
Blasco, M.A.; Rizen, M.; Greider, C.W.; Hanahan, D. Differential Regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nat. Genet., 1996, 12(2), 200-204.
[56]
Nishio, N.; Kojima, S. Recent progress in dyskeratosis congenita. Int. J. Hematol., 2010, 92(3), 419-424.
[57]
Islam, A.; Rafiq, S.; Kirwan, M.; Walne, A.; Cavenagh, J.; Vulliamy, T.; Dokal, I. Haematological recovery in dyskeratosis congenita patients treated with danazol. Br. J. Haematol., 2013, 162(6), 854-856.
[58]
Bohn, O.L.; Whitten, J.; Spitzer, B.; Kobos, R.; Prockop, S.; Boulad, F.; Arcila, M.; Wang, L.; Teruya-Feldstein, J. Posttransplant lymphoproliferative disorder complicating hematopoietic stem cell transplantation in a patient with dyskeratosis congenita. Int. J. Surg. Pathol., 2013, 21(5), 520-525.
[59]
Alder, J.K.; Parry, E.M.; Yegnasubramanian, S.; Wagner, C.L.; Lieblich, L.M.; Auerbach, R.; Auerbach, A.D.; Wheelan, S.J.; Armanios, M. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum. Mutat., 2013, 34(11), 1481-1485.
[60]
Sherr, C.J.; McCormick, F. The RB and P53 pathways in cancer. Cancer Cell, 2002, 2(2), 103-112.
[61]
Kurz, D.J.; Decary, S.; Hong, Y.; Trivier, E.; Akhmedov, A.; Erusalimsky, J.D. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J. Cell Sci., 2004, 117(11), 2417-2426.
[62]
Oeseburg, H.; de Boer, R.A.; van Gilst, W.H.; van der Harst, P. Telomere biology in healthy aging and disease. Pflugers Arch. - Eur. J. Physiol., 2010, 459(2), 259-268.
[63]
Shay, J.W.; Wright, W.E. Telomerase: A target for cancer therapeutics. Cancer Cell, 2002, 2(4), 257-265.
[64]
Fagagna, F. d’Adda di; Reaper, P.M.; Clay-Farrace, L.; Fiegler, H.; Carr, P.; von Zglinicki, T.; Saretzki, G.; Carter, N.P.; Jackson, S.P. A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426(6963), 194-198.
[65]
Mondello, C.; Scovassi, A.I. Telomeres, telomerase, and apoptosis. Biochem. Cell Biol., 2004, 82(4), 498-507.
[66]
Saretzki, G.; Ludwig, A.; von Zglinicki, T.; Runnebaum, I.B. Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther., 2001, 8(10), 827-834.
[67]
Cao, Y.; Li, H.; Deb, S.; Liu, J-P. TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene, 2002, 21(20), 3130-3138.
[68]
Jiang, Y-A.; Luo, H-S.; Zhang, Y-Y.; Fan, L-F.; Jiang, C-Q.; Chen, W-J. Telomerase activity and cell apoptosis in colon cancer cell by human telomerase reverse transcriptase gene antisense oligodeoxynucleotide. World J. Gastroenterol., 2003, 9(9), 1981-1984.
[69]
Smith, L.L.; Coller, H.A.; Roberts, J.M. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol., 2003, 5(5), 474-479.
[70]
Hackett, J.A.; Greider, C.W. Balancing instability: Dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene, 2002, 21(4), 619-626.
[71]
Wu, X.; Amos, C.I.; Zhu, Y.; Zhao, H.; Grossman, B.H.; Shay, J.W.; Luo, S.; Hong, W.K.; Spitz, M.R. Telomere dysfunction: A potential cancer predisposition factor. J. Natl. Cancer Inst., 2003, 95(16), 1211-1218.
[72]
Deng, Y.; Chan, S.S.; Chang, S. Telomere dysfunction and tumour suppression: The senescence connection. Nat. Rev. Cancer, 2008, 8(6), 450-458.
[73]
Shay, J.W.; Wright, W.E. Telomeres and telomerase in normal and cancer stem cells. FEBS Lett., 2010, 584(17), 3819-3825.
[74]
Gonzalez-Suarez, E.; Samper, E.; Ramírez, A.; Flores, J.M.; Martín-Caballero, J.; Jorcano, J.L.; Blasco, M.A. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, MTERT, in basal keratinocytes. EMBO J., 2001, 20(11), 2619-2630.
[75]
Artandi, S.E.; Alson, S.; Tietze, M.K.; Sharpless, N.E.; Ye, S.; Greenberg, R.A.; Castrillon, D.H.; Horner, J.W.; Weiler, S.R.; Carrasco, R.D.; DePinho, R.A. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl. Acad. Sci., 2002, 99(12), 8191-8196.
[76]
Shammas, M.A.; Simmons, C.G.; Corey, D.R.; Shmookler Reis, R.J. Telomerase inhibition by peptide nucleic acids reverses ‘immortality’ of transformed human cells. Oncogene, 1999, 18(46), 6191-6200.
[77]
Forsyth, N.R.; Wright, W.E.; Shay, J.W. Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation, 2002, 69(4-5), 188-197.
[78]
Holt, S.E.; Aisner, D.L.; Baur, J.; Tesmer, V.M.; Dy, M.; Ouellette, M.; Trager, J.B.; Morin, G.B.; Toft, D.O.; Shay, J.W.; Wright, W.E.; White, M.A. Functional requirement of P23 and Hsp90 in telomerase complexes. Genes Dev., 1999, 13(7), 817-826.
[79]
Collins, K. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol., 2006, 7(7), 484-494.
[80]
Wojtyla, A.; Gladych, M.; Rubis, B. Human telomerase activity regulation. Mol. Biol. Rep., 2011, 38(5), 3339-3349.
[81]
Wright, W.E.; Piatyszek, M.A.; Rainey, W.E.; Byrd, W.; Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet., 1996, 18(2), 173-179.
[82]
Cong, Y-S.; Wright, W.E.; Shay, J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev., 2002, 66(3), 407-425.
[83]
Grandori, C.; Cowley, S.M.; James, L.P.; Eisenman, R.N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol., 2000, 16(1), 653-699.
[84]
Wang, J.; Xie, L.Y.; Allan, S.; Beach, D.; Hannon, G.J. Myc activates telomerase. Genes Dev., 1998, 12(12), 1769-1774.
[85]
Greenberg, R.; O’Hagan, R.C.; Deng, H.; Xiao, Q.; Hann, S.R.; Adams, R.R.; Lichtsteiner, S.; Chin, L.; Morin, G.B.; DePinho, R. Telomerase reverse transcriptase gene is a direct target of c-myc but is not functionally equivalent in cellular transformation. Oncogene, 1999, 18(5), 1219-1226.
[86]
Ulaner, G.A.; Hu, J.; Vu, T.H.; Giudice, L.C.; Hoffman, A.R. Telomerase activity in human development is regulated by Human Telomerase Reverse Transcriptase (HTERT) transcription and by alternate splicing of HTERT transcripts. Cancer Res., 1998, 58(31), 4168-4172.
[87]
Yi, X.; Tesmer, V.M.; Savre-Train, I.; Shay, J.W.; Wright, W.E. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol. Cell. Biol., 1999, 19(6), 3989-3997.
[88]
Feng, J.; Funk, W.D.; Wang, S.S.; Weinrich, S.L.; Avilion, A.A.; Chiu, C.P.; Adams, R.R.; Chang, E.; Allsopp, R.C.; Yu, J. The RNA component of human telomerase. Science, 1995, 269(5228), 1236-1241.
[89]
Aigner, S.; Postberg, J.; Lipps, H.J.; Cech, T.R. The Euplotes La motif protein P43 has properties of a telomerase-specific subunit. Biochemistry, 2003, 42(19), 5736-5747.
[90]
O’Connor, C.M.; Collins, K.L. A novel RNA binding domain in tetrahymena telomerase P65 initiates hierarchical assembly of telomerase holoenzyme. Mol. Cell. Biol., 2006, 26(6), 2029-2036.
[91]
Collins, K.; Witkin, K.L.; Prathapam, R. Positive and negative regulation of tetrahymena telomerase holoenzyme. Mol. Cell. Biol., 2007, 27(6), 2074-2083.
[92]
Rubtsova, M.P.; Vasilkova, D.P.; Naraykina, Y.V.; Dontsova, O.A. Peculiarities of yeasts and human telomerase RNAs processing. Acta Naturae, 2016, 8(4), 14-22.
[93]
Cech, T.R.; Seto, A.G.; Zaug, A.J.; Sobel, S.G.; Wolin, S.L. Saccharomyces Cerevisiae telomerase is an sm small nuclear ribonucleoprotein particle. Nature, 1999, 401(6749), 177-180.
[94]
Mitchell, J.R.; Cheng, J.; Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol., 1999, 19(1), 567-576.
[95]
Mitchell, J.R.; Collins, K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol. Cell, 2000, 6(2), 361-371.
[96]
Pogacić, V.; Dragon, F.; Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol., 2000, 20(23), 9028-9040.
[97]
Darzacq, X.; Kittur, N.; Roy, S.; Shav-Tal, Y.; Singer, R.H.; Meier, U.T. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol., 2006, 173(2), 207-218.
[98]
Seimiya, H.; Sawada, H.; Muramatsu, Y.; Shimizu, M.; Ohko, K.; Yamane, K.; Tsuruo, T. Involvement of 14-3-3 proteins in nuclear localization of telomerase. EMBO J., 2000, 19(11), 2652-2661.
[99]
Akiyama, M.; Hideshima, T.; Hayashi, T.; Tai, Y-T.; Mitsiades, C.S.; Mitsiades, N.; Chauhan, D.; Richardson, P.; Munshi, N.C.; Anderson, K.C. Nuclear factor-kappaB P65 mediates tumor necrosis factor alpha-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res., 2003, 63(1), 18-21.
[100]
Jakob, S.; Schroeder, P.; Lukosz, M.; Büchner, N.; Spyridopoulos, I.; Altschmied, J.; Haendeler, J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J. Biol. Chem., 2008, 283(48), 33155-33161.
[101]
Khurts, S.; Masutomi, K.; Delgermaa, L.; Arai, K.; Oishi, N.; Mizuno, H.; Hayashi, N.; Hahn, W.C.; Murakami, S. Nucleolin interacts with telomerase. J. Biol. Chem., 2004, 279(49), 51508-51515.
[102]
Wong, J.M.Y.; Kusdra, L.; Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat. Cell Biol., 2002, 4(9), 731-736.
[103]
Lee, J.H.; Lee, Y.S.; Jeong, S.A.; Khadka, P.; Roth, J.; Chung, I.K. Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochem. Cell Biol., 2014, 141(2), 137-152.
[104]
Tomlinson, R.L.; Ziegler, T.D.; Supakorndej, T.; Terns, R.M.; Terns, M.P. Cell cycle-regulated trafficking of human telomerase to telomeres. Mol. Biol. Cell, 2006, 17(2), 955-965.
[105]
Fiset, S.; Chabot, B. HnRNP A1 may interact simultaneously with telomeric dna and the human telomerase RNA in vitro. Nucleic Acids Res., 2001, 29(11), 2268-2275.
[106]
Alves, D.; Li, H.; Codrington, R.; Orte, A.; Ren, X.; Klenerman, D.; Balasubramanian, S. Single-molecule analysis of human telomerase monomer. Nat. Chem. Biol., 2008, 4(5), 287-289.
[107]
Jiang, J.; Chan, H.; Cash, D.D.; Miracco, E.J.; Ogorzalek Loo, R.R.; Upton, H.E.; Cascio, D.; O’Brien Johnson, R.; Collins, K.; Loo, J.A.; Zhou, Z.H.; Feigon, J. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science, 2015, 350(6260), aab4070-aab4070.
[108]
Malyavko, A.N.; Parfenova, Y.Y.; Zvereva, M.I.; Dontsova, O.A. Telomere length regulation in budding yeasts. FEBS Lett., 2014, 588(15), 2530-2536.
[109]
Taggart, A.K.P.; Teng, S-C.; Zakian, V.A. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science, 2002, 297(5583), 1023-1026.
[110]
Gallardo, F.; Olivier, C.; Dandjinou, A.T.; Wellinger, R.J.; Chartrand, P. TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J., 2008, 2721, 748-757.
[111]
Fisher, T.S.; Taggart, A.K.P.; Zakian, V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol., 2004, 11(12), 1198-1205.
[112]
Chan, A.; Boulé, J-B.; Zakian, V.A.; McElver, J.; Weber, S. Two pathways recruit telomerase to Saccharomyces Cerevisiae telomeres. PLoS Genet., 2008, 4(10), e1000236.
[113]
Jády, B.E.; Richard, P.; Bertrand, E.; Kiss, T. Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol. Biol. Cell, 2006, 17(2), 944-954.
[114]
Stern, J.L.; Zyner, K.G.; Pickett, H.A.; Cohen, S.B.; Bryan, T.M. Telomerase recruitment requires both TCAB1 and Cajal bodies independently. Mol. Cell. Biol., 2012, 32(13), 2384-2395.
[115]
Sexton, A.N.; Regalado, S.G.; Lai, C.S.; Cost, G.J.; O’Neil, C.M.; Urnov, F.D.; Gregory, P.D.; Jaenisch, R.; Collins, K.; Hockemeyer, D. Genetic and molecular identification of three human TPP1 functions in telomerase action: Recruitment, activation, and homeostasis set point regulation. Genes Dev., 2014, 28(17), 1885-1899.
[116]
Vogan, J.M.; Collins, K. Dynamics of human telomerase holoenzyme assembly and subunit exchange across the cell cycle. J. Biol. Chem., 2015, 290(35), 21320-21335.
[117]
Schmidt, J.C.; Cech, T.R. Human telomerase: Biogenesis, trafficking, recruitment, and activation. Genes Dev., 2015, 29(11), 1095-1105.
[118]
Zhou, X.Z.; Lu, K.P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell, 2001, 107(3), 347-359.
[119]
Lin, J.; Blackburn, E.H. Nucleolar protein PinX1p regulates telomerase by sequestering its protein catalytic subunit in an inactive complex lacking telomerase RNA. Genes Dev., 2004, 18(4), 387-396.
[120]
Banik, S.S.R.; Counter, C.M. Characterization of interactions between PinX1 and human telomerase subunits HTERT and HTR. J. Biol. Chem., 2004, 279(50), 51745-51748.
[121]
Soohoo, C.Y.; Shi, R.; Lee, T.H.; Huang, P.; Lu, K.P.; Zhou, X.Z. Telomerase inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere elongation. J. Biol. Chem., 2011, 286(5), 3894-3906.
[122]
Yonekawa, T.; Yang, S.; Counter, C.M. PinX1 localizes to telomeres and stabilizes TRF1 at mitosis. Mol. Cell. Biol., 2012, 32(8), 1387-1395.
[123]
Yoo, J.E.; Park, Y.N.; Oh, B-K. PinX1, a Telomere Repeat-Binding Factor 1 (TRF1)-interacting protein, maintains telomere integrity by modulating TRF1 homeostasis, the process in which Human Telomerase Reverse Transcriptase (HTERT) plays dual roles. J. Biol. Chem., 2014, 289(10), 6886-6898.
[124]
Redon, S.; Reichenbach, P.; Lingner, J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res., 2010, 38(17), 948-952.
[125]
Zappulla, D.C.; Cech, T.R. RNA as a flexible scaffold for proteins: Yeast telomerase and beyond. Cold Spring Harb. Symp. Quant. Biol., 2006, 71, 217-224.
[126]
MacNeil, D.; Bensoussan, H.; Autexier, C. telomerase regulation from beginning to the end. Genes., 2016, 7(9), 64.
[127]
Grozdanov, P.N.; Roy, S.; Kittur, N.; Meier, U.T. SHQ1 Is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA, 2009, 15(6), 1188-1197.
[128]
Nano, N.; Houry, W.A. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Philos. Trans. R. Soc. B. Biol. Sci., 2013, 368(1617), 20110399-20110399.
[129]
Forsythe, H.L.; Jarvis, J.L.; Turner, J.W.; Elmore, L.W.; Holt, S.E. Stable association of Hsp90 and P23, but Not Hsp70, with active human telomerase. J. Biol. Chem., 2001, 276(19), 15571-15574.
[130]
Keppler, B.R.; Grady, A.T.; Jarstfer, M.B. The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem., 2006, 281(29), 19840-19848.
[131]
Toogun, O.A.; DeZwaan, D.C.; Freeman, B.C. The Hsp90 molecular chaperone modulates multiple telomerase activities. Mol. Cell. Biol., 2008, 28(1), 457-467.
[132]
Lee, H.; Sengupta, N.; Villagra, A.; Rezai-Zadeh, N.; Seto, E. Histone deacetylase 8 safeguards the Human Ever-Shorter Telomeres 1B (HEST1B) protein from ubiquitin-mediated degradation. Mol. Cell. Biol., 2006, 26(14), 5259-5269.
[133]
Richter, K.; Buchner, J. Hsp90: Chaperoning signal transduction. J. Cell. Physiol., 2001, 188(3), 281-290.
[134]
Hutchinson, D.; Ho, V.; Dodd, M.; Dawson, H.N.; Zumwalt, A.C.; Colton, C.A. NIH public access., 2008, 148(4), 825-832.
[135]
Pratt, W.B.; Toft, D.O. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Exp. Biol. Med., 2003, 228(2), 111-133.
[136]
Prodromou, C.; Roe, S.M.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90(1), 65-75.
[137]
Grenert, J.P.; Sullivan, W.P.; Fadden, P.; Haystead, T.A.J.; Clark, J.; Mimnaugh, E.; Krutzsch, H.; Ochel, H-J.; Schulte, T.W.; Sausville, E.; Neckers, L.M.; Toft, D.O. The amino-terminal domain of heat shock protein 90 (Hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates Hsp90 conformation. J. Biol. Chem., 1997, 272(38), 23843-23850.
[138]
Marcu, M.G.; Schulte, T.W.; Neckers, L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J. Natl. Cancer Inst., 2000, 92(3), 242-248.
[139]
Marcu, M.G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L.M. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J. Biol. Chem., 2000, 275(47), 37181-37186.
[140]
Johnson, J.L.; Toft, D.O. A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and P23. J. Biol. Chem., 1994, 269(40), 24989-24993.
[141]
Fang, Y.; Fliss, A.E.; Rao, J.; Caplan, A.J. SBA1 encodes a yeast Hsp90 cochaperone that is homologous to vertebrate P23 proteins. Mol. Cell. Biol., 1998, 18(7), 3727-3734.
[142]
Bohen, S.P. Genetic and biochemical analysis of P23 and ansamycin antibiotics in the function of Hsp90-dependent signaling proteins. Mol. Cell. Biol., 1998, 18(6), 3330-3339.
[143]
Sullivan, W.; Stensgard, B.; Caucutt, G.; Bartha, B.; McMahon, N.; Alnemri, E.S.; Litwack, G.; Toft, D. Nucleotides and two functional states of Hsp90. J. Biol. Chem., 1997, 272(12), 8007-8012.
[144]
Akalin, A.; Elmore, L.W.; Forsythe, H.L.; Amaker, B.A.; Mccollum, E.D.; Nelson, P.S.; Ware, J.L.; Holt, S.E. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res., 2001, 61(12), 4791-4796.
[145]
Haendeler, J.; Hoffmann, J.; Rahman, S.; Zeiher, A.M.; Dimmeler, S. Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett., 2003, 536(1-3), 180-186.
[146]
Dezwaan, D.C.; Toogun, O.A.; Echtenkamp, F.J.; Freeman, B.C. The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states. Nat. Publ. Gr., 2009, 16(7), 711-716.
[147]
Lee, J.H.; Chung, I.K. Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone P23 from HTERT. Cancer Lett., 2010, 290(1), 76-86.
[148]
Venteicher, A.S.; Meng, Z.; Mason, P.J.; Veenstra, T.D.; Artandi, S.E. Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell, 2008, 132(6), 945-957.
[149]
Gorynia, S.; Bandeiras, T.M.; Pinho, F.G.; McVey, C.E.; Vonrhein, C.; Round, A.; Svergun, D.I.; Donner, P.; Matias, P.M.; Carrondo, M.A. Structural and functional insights into a dodecameric molecular machine - the RuvBL1/RuvBL2 complex. J. Struct. Biol., 2011, 176(3), 279-291.
[150]
Torreira, E.; Jha, S.; López-Blanco, J.R.; Arias-Palomo, E.; Chacón, P.; Cañas, C.; Ayora, S.; Dutta, A.; Llorca, O. Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure, 2008, 16(10), 1511-1520.
[153]
Darzacq, X.; Kittur, N.; Roy, S.; Shav-Tal, Y.; Singer, R.H.; Meier, U.T. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol., 2006, 173(2), 207-218.
[154]
Walbott, H.; Machado-Pinilla, R.; Liger, D.; Blaud, M.; Réty, S.; Grozdanov, P.N.; Godin, K.; van Tilbeurgh, H.; Varani, G.; Meier, U.T.; Leulliot, N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev., 2011, 25(22), 2398-2408.
[155]
Dez, C.; Noaillac-Depeyre, J.; Caizergues-Ferrer, M.; Henry, Y. Naf1p, an essential nucleoplasmic factor specifically required for accumulation of box H/ACA small nucleolar RNPs. Mol. Cell. Biol., 2002, 22(20), 7053-7065.
[156]
Hoareau-Aveilla, C.; Bonoli, M.; Caizergues-Ferrer, M.; Henry, Y. HNaf1 is required for accumulation of human box H/ACA SnoRNPs, ScaRNPs, and telomerase. RNA, 2006, 12(5), 832-840.
[157]
Li, S.; Duan, J.; Li, D.; Ma, S.; Ye, K. Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J., 2011, 30, 5010-5020.
[158]
Machado-Pinilla, R.; Liger, D.; Leulliot, N.; Meier, U.T. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA, 2012, 18(10), 1833-1845.
[159]
Ballarino, M.; Morlando, M.; Pagano, F.; Fatica, A.; Bozzoni, I. The cotranscriptional assembly of SnoRNPs controls the biosynthesis of H/ACA SnoRNAs in Saccharomyces Cerevisiae. Mol. Cell. Biol., 2005, 25(13), 5396-5403.
[160]
Stanley, S.E.; Gable, D.L.; Wagner, C.L.; Carlile, T.M.; Hanumanthu, V.S.; Podlevsky, J.D.; Khalil, S.E.; DeZern, A.E.; Rojas-Duran, M.F.; Applegate, C.D.; Alder, J.K.; Parry, E.M.; Gilbert, W.V.; Armanios, M. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci. Transl. Med., 2016, 8(351), 351ra107.
[161]
Tajrishi, M.M.; Tuteja, R.; Tuteja, N. Nucleolin: The most abundant multifunctional phosphoprotein of nucleolus. Commun. Integr. Biol., 2011, 4(3), 267-275.
[162]
Raimer, A.C.; Gray, K.M.; Matera, A.G. SMN - a chaperone for nuclear RNP social occasions? RNA Biol., 2016, 14(6), 701-711.
[163]
Bachand, F.; Boisvert, F-M.; Côté, J.; Richard, S.; Autexier, C. The product of the survival of motor neuron (SMN) gene is a human telomerase-associated protein. Mol. Biol. Cell, 2002, 13(9), 3192-3202.
[164]
Pellizzoni, L.; Baccon, J.; Charroux, B.; Dreyfuss, G. The Survival Of Motor Neurons (SMN) protein interacts with the SnoRNP proteins fibrillarin and GAR1. Curr. Biol., 2001, 11(14), 1079-1088.
[165]
Poole, A.R.; Hebert, M.D. SMN and coilin negatively regulate dyskerin association with telomerase RNA. Biol. Open, 2016, 5(6), 726-735.
[166]
Cheung, D.H-C.; Ho, S-T.; Lau, K-F.; Jin, R.; Wang, Y-N.; Kung, H-F.; Huang, J-J.; Shaw, P-C. Nucleophosmin interacts with PIN2/TERF1-interacting telomerase inhibitor 1 (PinX1) and attenuates the PinX1 inhibition on telomerase activity. Sci. Rep., 2017, 7, 43650.
[167]
Fu, D.; Collins, K.; Hall, B. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol. Cell, 2003, 11(2003), 1361-1372.