[1]
Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. Isolation, biological activities and synthesis of indoloquinoline alkaloids: Cryptolepine, isocryptolepine and neocryptolepine. Curr. Org. Chem., 2011, 15, 1036-1057.
[2]
Parvatkar, P.T.; Tilve, S.G. Bioactivities and synthesis of indoloquinoline alkaloids: Cryptolepine, isocryptolepine and neocryptolepine. Bioactive Heterocycles; Nova Science Publishers: New York, 2012, p. 217.
[3]
Bracca, A.B.; Heredia, D.A.; Larghi, E.L.; Kaufman, T.S. Neocryptolepine (cryprotackieine), a unique bioactive natural product: Isolation, synthesis, and profile of its biological activity. Eur. J. Org. Chem., 2014, 7979-8003.
[4]
Subbaraju, G.V.; Kavitha, J.; Rajasekhar, D.; Jimenez, J.I. Jusbetonin, the first Indolo[3,2-b]quinoline alkaloid glycoside, from Justicia betonica. J. Nat. Prod., 2004, 67, 461-462.
[5]
Alajarin, M.; Molina, P.; Vidal, A. Formal total synthesis of the alkaloid cryptotackieine (neocryptolepine). J. Nat. Prod., 1997, 60, 747-748.
[6]
Sundaram, G.S.M.; Venkatesh, C.; Syam Kumar, U.K.; Ila, H.; Junjappa, H. A concise formal synthesis of alkaloid cryptotackiene and substituted 6H-Indolo[2,3-b]quinolines. J. Org. Chem., 2004, 69, 5760-5762.
[7]
Shi, C.; Zhang, Q.; Wang, K.K. Biradicals from thermolysis of N-[2-(1-Alkynyl)phenyl]-N-phenylcarbodiimides and their subsequent transformations to 6H-Indolo[2,3-b]quinolines. J. Org. Chem., 1999, 64, 925-932.
[8]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. New alkaloids from Cryptolepis sanguinolenta. Tetrahedron Lett., 1996, 37, 1703-1706.
[9]
Pousset, J.L.; Martin, M.T.; Jossang, A.; Bodo, B. Isocryptolepine from Cryptolepis sanguinolenta. Phytochemistry, 1995, 39, 735-736.
[10]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Vlietinck, A.J.; Turger, C.A. In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J. Nat. Prod., 1997, 60, 688-691.
[11]
Cimanga, K.; De Bruyne, T.; Pieters, L.; Totte, J.; Tona, L.; Kambu, K.; Berghe, D.V.; Vlietinck, A.J. Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomedicine, 1998, 5, 209-214.
[12]
Miert, S.V.; Jonckers, T.; Maes, L.; Vlietinck, A.; Dommisse, R.; Lemiere, G.; Pteters, L. Synthesis, cytotoxicity and antiplasmodial activity of neocryptolepine derivatives. Acta Hortic., 2005, (677), 91-97.
[13]
Guittat, L.; Alberti, P.; Rosu, F.; Miert, S.V.; Thetiot, E.; Pieters, L.; Gabelica, V.; Pauw, E.D.; Ottaviani, A.; Riou, J.F.; Mergny, J.L. Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie, 2003, 85, 535-547.
[14]
Peczynska-Czoch, W.; Pognan, F.; Kaczmarek, L.; Boratynski, J. Synthesis and structure -activity relationship of methyl-substituted indolo[2,3-b]quinolines: Novel cytotoxic, DNA topoisomerase-II inhibitors. J. Med. Chem., 1994, 37, 3503-3510.
[15]
Jaromin, A.; Korycinska, M.; Pietka-Ottlik, M.; Musial, W.; Peczynska-Czoch, W.; Kaczmarek, L.; Kozubek, A. Membrane perturbations induced by new analogs of neocryptolepine. Biol. Pharm. Bull., 2012, 35, 1432-1439.
[16]
Miert, S.V.; Jonckers, T.; Cimanga, K.; Maes, L.; Maes, B.; Lemiere, G.; Dommisse, R.; Vlietinck, A.; Pieters, L. In vitro inhibition of b-haematin formation, DNA interactions, antiplasmodial activity, and cytotoxicity of synthetic neocryptolepine derivatives. Exp. Parasitol., 2004, 108, 163-168.
[17]
Dejaegher, B.; Dhooghe, L.; Goodarzi, M.; Apers, S.; Pieters, L.; Heyden, Y.V. Classification models for neocryptolepine derivatives as inhibitors of the b-haematin formation. Anal. Chim. Acta, 2011, 705, 98-110.
[18]
Jonckers, T.H.M.; Miert, S.V.; Cimanga, K.; Bailly, C.; Colson, P. De PauwGillet, M.C.; Heuvel, H.V.; Claeys, M.; Dommisse, R.; Lemiere, G.L.F.; Vlietinck, A.; Pieters, L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J. Med. Chem., 2002, 45, 3497-3508.
[19]
Wang, L.; Switalska, M.; Mei, Z.W.; Lu, W.J.; Takahara, Y.; Feng, X.W.; Sayed, I.E.T.E.; Wietrzyk, J.; Inokuchi, T. Synthesis and in vitro antiproliferative activity of new 11-aminoalkylamino-substituted 5H- and 6H-indolo[2,3-b]quinolines; structure–activity relationships of neocryptolepines and 6-methyl congeners. Bioorg. Med. Chem., 2012, 20, 4820-4829.
[20]
Sayed, I.E.; Ramzy, F.; William, S.; Bahanasawy, M.E.; Sattar, M.M.A.E. Neocryptolepine analogues containing N-substituted side-chains at C-11: Synthesis and antischistosomicidal activity. Med. Chem. Res., 2012, 21, 4219-4229.
[21]
Mei, Z.W.; Wang, L.; Lu, W.J.; Pang, C.Q.; Maeda, T.; Peng, W.; Kaiser, M.; Sayed, I.E.; Inokuchi, T. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on indolo[2,3-b]quinolines. J. Med. Chem., 2013, 56, 1431-1442.
[22]
Schmittel, M.; Rodriguez, D.; Steffen, J.P. A highly efficient triplicate analogue of a thermal biradical cyclisation-The photochemical C2-C6 cyclisation of enyne-heteroallenes. Angew. Chem. Int. Ed., 2000, 39, 2152-2155.
[23]
Parvatkar, P.T.; Ajay, A.K.; Bhat, M.K.; Parameswaran, P.S.; Tilve, S.G. Iodine catalyzed one-pot synthesis of chloro-substituted linear and angular indoloquinolines and in vitro antiproliferative activity study of different indoloquinolines. Med. Chem. Res., 2013, 22, 88-93.
[24]
Kraus, G.A.; Guo, H.; Kumar, G.; Pollock, G.; Carruthers, H.; Chaudhary, D.; Beasley, J. A flexible synthesis of indoles from ortho-substituted anilines: A direct synthesis of isocryptolepine. Synthesis, 2010, 8, 1386-1389.
[25]
Cubillo, F.P.; Scott, J.S.; Walton, J.C. Microwave-assisted syntheses of N-Heterocycles using alkenone-, alkynone- and aryl-carbonyl O-phenyl oximes: Formal synthesis of neocryptolepine. J. Org. Chem., 2008, 73, 5558-5565.
[26]
Parvatkar, P.T.; Parameswaran, P.S.; Tilve, S.G. An expeditious I2-catalyzed entry into 6H-Indolo[2,3-b]quinoline system of cryptotackieine. J. Org. Chem., 2009, 74, 8369-8372.
[27]
Vaghei, R.G.; Malaekehpoor, S.M. N-Bromosuccinimide as an efficient catalyst for the synthesis of indolo[2,3-b]quinolines. Tetrahedron Lett., 2012, 53, 4751-4753.
[28]
Khorshidi, A.; Tabatabaeian, K. Ruthenium-exchanged FAU-Y zeolite catalyzed improvement in the synthesis of 6H-indolo[2,3-b]quinolines. J. Mol. Catal. Chem., 2011, 344, 128-131.
[29]
Matthew, K.V.; Aaron, X.S.; Daniel, S. Divergent reactions of indoles with aminobenzaldehydes: Indole ring-opening vs. annulation and facile synthesis of neocryptolepine. Chem. Sci., 2011, 2, 2178-2181.
[30]
Ali, S.; Li, Y.X.; Anwar, S.; Yang, F.; Chen, Z.S.; Liang, Y.M. One-pot access to Indolo[2,3-b]quinolines by electrophile-triggered cross-amination/friedel-crafts alkylation of indoles with 1-(2-tosylaminophenyl)ketones. J. Org. Chem., 2012, 77, 424-431.
[31]
Kadam, H.K.; Tilve, S.G. An alternate synthesis of 6H-indolo[2,3-b]quinoline via one-pot alkylation–dehydration–cyclization–aromatization approach. J. Heterocycl. Chem., 2016, 53, 2066-2069.
[32]
Kadam, H.K.; Parvatkar, P.T. Tilve, S.G. A concise synthesis of 6H-Indolo[2,3-b]quinolines: Formal synthesis of neocryptolepine. Synthesis, 2012, 44, 1339-1342.
[33]
Yan, Z.; Wan, C.; Wan, J.; Wang, Z. An efficient iron-promoted synthesis of 6H-indolo[2,3-b]quinolines and neocryptolepine derivatives. Org. Biomol. Chem., 2016, 14, 4405-4408.
[34]
Yu, S.; Li, Y.; Zhou, X.; Wang, H.; Kong, L.; Li, X. Access to structurally diverse quinoline-fused heterocycles via rhodium(iii)-catalyzed C−C/C−N coupling of bifunctional substrates. Org. Lett., 2016, 18, 2812-2815.
[35]
Shi, L.; Wang, B. Tandem Rh(III)-Catalyzed C−H amination/ annulation reactions: Synthesis of indoloquinoline derivatives in water. Org. Lett., 2016, 18, 2820-2823.
[36]
Parvatkar, P.T.; Tilve, S.G. An efficient synthesis of indoloquinoline alkaloid-neocryptolepine (cryptotackieine). Tetrahedron Lett., 2011, 52, 6594-6596.
[37]
Kadam, H.K.; Malik, D.D.; Salgaonkar, L.; Mandrekar, K.; Tilve, S.G. Facile convergent route to indoloquinolines. Synth. Commun., 2017, 47, 1980-1984.
[38]
Parvatkar, P.T.; Majik, M.S. Microwave-assisted reductive cyclization:
An easy entry to the indoloquinolines and spiro[2H-indole-
2,3’-oxindole]. RSC Adv.2014, 4, 22481-22486
[39]
Volvoikar, P.S.; Parvatkar, P.T.; Tilve, S.G. Tandem reductive cyclization–dehydration approach for the synthesis of cryptolepine hydroiodide and its analogues. Eur. J. Org. Chem., 2013, 2172-2178.
[40]
Mei, Z.W.; Wang, L.; Lu, W.J.; Pang, C.Q.; Maeda, T.; Peng, W.; Kaiser, M.; Sayed, I.E.; Inokuchi, T. Synthesis and in vitro antimalarial testing of neocryptolepines: SAR study for improved activity by introduction and modifications of side chains at C2 and C11 on Indolo[2,3-b]quinolines. J. Med. Chem., 2013, 56, 1431-1442.
[41]
Sayed, I.E.; Veken, P.; Steert, K.; Dhooghe, L.; Hostyn, S.; Baelen, G.; Lemie’re, G.; Maes, B.U.W.; Cos, P.; Maes, L.; Joossens, J.; Haemers, A.; Pieters, L.; Augustyns, K. Synthesis and antiplasmodial activity of aminoalkylamino-substituted neocryptolepine derivatives. J. Med. Chem., 2009, 52, 2979-2988.
[42]
Sunke, R.; Kumar, V.; Ashfaq, M.A.; Yellanki, S.; Medisetti, R.; Kulkarni, P.; Ramarao, V.S.; Ehtesham, N.Z.; Pal, M.A. Pd(II)-catalyzed C-H activation approach to densely functionalized N-heteroaromatics related to neocryptolepine: Their evaluation as potential inducers of apoptosis. RSC Adv, 2015, 5, 44722-44727.
[43]
James, K.M.; Willetts, N.; Procter, D.J. Samarium(II)-mediated linker cleavage-cyclization in fluorous synthesis: Reactions of samarium enolates. Org. Lett., 2008, 10, 1203-1206.
[44]
Miller, M.; Vogel, J.C.; Tsang, W.; Merrit, A.; Procter, D.J. Formation of N-heterocycles by the reaction of thiols with glyoxamides: Exploring a connective Pummerer-type cyclisation. Org. Biomol. Chem., 2009, 7, 589-597.
[45]
Li, M.Y.; Xu, H.W.; Fan, W.; Ye, Q.; Wang, X.; Jiang, B.; Wang, S.L.; Tu, S.J. New formal (3+3) cycloaddition of enaminones for forming tetracyclic indolo[2,3-b]quinolines under microwave irradiation. Tetrahedron, 2014, 70, 1004-1010.
[46]
Fan, L.; Liu, M.; Ye, Y.; Yin, G. Synthesis of 6-substituted 6h-indolo[2,3-b]quinolines from isoindigos. Org. Lett., 2017, 19, 186-189.
[47]
Li, B.S.; Wang, Y.; Proctor, R.S.J.; Zhang, Y.; Webster, R.D.; Yang, S.; Song, B.; Robin, C.Y. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process. Nat. Commun., 2016, 7, Art. no. 12933.
[48]
Pumphrey, A.L.; Dong, H.; Driver, T.G. RhII2-catalyzed synthesis of a-, b-, or d-carbolines from aryl azides. Angew. Chem. Int. Ed., 2012, 51, 5920-5923.
[49]
Hostyn, S.; Tehrani, K.A.; Lemiere, F.; Smout, V.; Maes, B.U.W. Highly efficient one-pot synthesis of D-ring chloro-substituted neocryptolepines via a condensation Pd-catalyzed intramolecular direct arylation strategy. Tetrahedron, 2011, 67, 655-659.
[50]
Boganyi, B.; Kaman, J. A concise synthesis of indoloquinoline skeletons applying two consecutive Pd-catalyzed reactions. Tetrahedron, 2013, 69, 9512-9519.
[51]
Haddadin, M.J.; Zerdan, R.M.B.; Kurth, M.J.; Fettinger, J.C. Efficient syntheses of the unknown quinolino[2,3-c]cinnolines; synthesis of neocryptolepines. Org. Lett., 2010, 12, 5502-5505.
[52]
Basavaiah, D.; Reddy, D.M. Baylis-Hillman acetates in organic synthesis: Convenient one-pot synthesis of α-carboline framework – a concise synthesis of neocryptolepine. Org. Biomol. Chem., 2012, 10, 8774-8777.
[53]
Wentrup, C.; Vosswinkel, M. Pyrolysis of annelated hexa- and heptamethylene-tetrazoles: Formation of 9- and 10-membered cyclic carbodiimides. J. Anal. Appl. Pyrolysis, 2016, 117, 214-219.
[54]
Pitchai, P.; Sathiyaseelan, M.; Nepolraj, A.; Gengan, R.M. An elegant synthesis of indoloquinoline alkaloid cryptotackieine via Vilsmeier-Haack approach. Indian J. Chem. B., 2015, 54B, 1290-1292.