Review Article

丝氨酸/苏氨酸蛋白磷酸酶抑制剂:生化和结构研究为进一步发展提供了洞察力

卷 26, 期 15, 2019

页: [2634 - 2660] 页: 27

弟呕挨: 10.2174/0929867325666180508095242

价格: $65

摘要

背景:蛋白质的可逆磷酸化调节真核细胞中的许多关键功能。磷酸化由蛋白激酶催化,大部分磷酸化发生在丝氨酸和苏氨酸残基的侧链上。由蛋白激酶产生的磷酸单酯被蛋白磷酸酶水解。在没有磷酸酶的情况下,磷酸烷基二甲酯在25℃下水解的半衰期超过1万亿年; knon~2 x 10-20 sec-1。因此,ser / thr磷酸酶对可逆磷酸化控制的过程至关重要。 方法:本评价基于现有数据库中搜索的文献。我们比较了PPP家族磷酸酶(PPPase)的催化机制和靶向这些酶的抑制剂的相互作用。 结果:PPPase是金属依赖性水解酶,其将水解速率([kcat / kM] / knon)提高~1021倍,使其成为地球上最强大的已知催化剂。生化和结构研究表明,通过10个保守氨基酸,DXH(X)~26DXXDR(X)〜20-26NH(X)~50H(X)~25-45R(X)~30,实现了PPP酶的显着催化效率。 -40H。六个作为金属配位残基。四个位置并定向基质磷酸盐。两个金属离子和10个催化残基一起定位磷酰基和活化的桥接水/氢氧化物亲核试剂,用于对基质磷原子的内联攻击。 PPPase在物种之间是保守的,并且许多结构上不同的天然毒素共同进化以靶向这些酶 结论:尽管催化位点是保守的,但是存在开发这种重要的金属酶组的选择性抑制剂的机会。

关键词: 磷酸酶,抑制剂,冈田酸,fostriecin,斑蝥素,tautomycin,microcystin晶体结构。

[1]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[2]
Milanesi, L.; Petrillo, M.; Sepe, L.; Boccia, A.; D’Agostino, N.; Passamano, M.; Di Nardo, S.; Tasco, G.; Casadio, R.; Paolella, G. Systematic analysis of human kinase genes: A large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics, 2005, 6(Suppl. 4), S20.
[http://dx.doi.org/10.1186/1471-2105-6-S4-S20] [PMID: 16351747]
[3]
Anamika, K.; Garnier, N.; Srinivasan, N. Functional diversity of human protein kinase splice variants marks significant expansion of human kinome. BMC Genomics, 2009, 10, 622.
[http://dx.doi.org/10.1186/1471-2164-10-622] [PMID: 20028505]
[4]
Sefton, B.M. Overview of protein phosphorylation. Curr. Protoc. Cell Biol. Editor. Board Juan Bonifacino Al,2001, Chapter 14, Unit 14.1.
[http://dx.doi.org/10.1002/0471142727.mb1801s33] [PMID: 18429113]
[5]
Brognard, J.; Hunter, T. Protein kinase signaling networks in cancer. Curr. Opin. Genet. Dev., 2011, 21(1), 4-11.
[http://dx.doi.org/10.1016/j.gde.2010.10.012] [PMID: 21123047]
[6]
Cohen, P. Protein kinases--the major drug targets of the twenty-first century? Nat. Rev. Drug Discov., 2002, 1(4), 309-315.
[http://dx.doi.org/10.1038/nrd773] [PMID: 12120282]
[7]
Rebelo, S.; Santos, M.; Martins, F. da Cruz e Silva, E.F.; da Cruz e Silva, O.A. Protein phosphatase 1 is a key player in nuclear events. Cell. Signal., 2015, 27(12), 2589-2598.
[http://dx.doi.org/10.1016/j.cellsig.2015.08.007] [PMID: 26275498]
[8]
Honkanen, R.E.; Golden, T. Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr. Med. Chem., 2002, 9(22), 2055-2075.
[http://dx.doi.org/10.2174/0929867023368836] [PMID: 12369870]
[9]
Cohen, P. The origins of protein phosphorylation. Nat. Cell Biol., 2002, 4(5), E127-E130.
[http://dx.doi.org/10.1038/ncb0502-e127] [PMID: 11988757]
[10]
Cohen, P. The regulation of protein function by multisite phosphorylation--a 25year update. Trends Biochem. Sci., 2000, 25(12), 596-601.
[http://dx.doi.org/10.1016/S0968-0004(00)01712-6] [PMID: 11116185]
[11]
Cohen, P. The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem., 2001, 268(19), 5001-5010.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02473.x] [PMID: 11589691]
[12]
Ubersax, J.A.; Ferrell, J.E., Jr Mechanisms of specificity in protein phosphorylation. Nat. Rev. Mol. Cell Biol., 2007, 8(7), 530-541.
[http://dx.doi.org/10.1038/nrm2203] [PMID: 17585314]
[13]
de Oliveira, P.S.L.; Ferraz, F.A.N.; Pena, D.A.; Pramio, D.T.; Morais, F.A.; Schechtman, D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci. Signal., 2016, 9(420), re3.
[http://dx.doi.org/10.1126/scisignal.aad4016] [PMID: 27016527]
[14]
Kobe, B.; Kampmann, T.; Forwood, J.K.; Listwan, P.; Brinkworth, R.I. Substrate specificity of protein kinases and computational prediction of substrates. Biochim. Biophys. Acta, 2005, 1754(1-2), 200-209.
[http://dx.doi.org/10.1016/j.bbapap.2005.07.036] [PMID: 16172032]
[15]
Almo, S.C.; Bonanno, J.B.; Sauder, J.M.; Emtage, S.; Dilorenzo, T.P.; Malashkevich, V.; Wasserman, S.R.; Swaminathan, S.; Eswaramoorthy, S.; Agarwal, R.; Kumaran, D.; Madegowda, M.; Ragumani, S.; Patskovsky, Y.; Alvarado, J.; Ramagopal, U.A.; Faber-Barata, J.; Chance, M.R.; Sali, A.; Fiser, A.; Zhang, Z.Y.; Lawrence, D.S.; Burley, S.K. Structural genomics of protein phosphatases. J. Struct. Funct. Genomics, 2007, 8(2-3), 121-140.
[http://dx.doi.org/10.1007/s10969-007-9036-1] [PMID: 18058037]
[16]
Cohen, P.T. Novel protein serine/threonine phosphatases: Variety is the spice of life. Trends Biochem. Sci., 1997, 22(7), 245-251.
[http://dx.doi.org/10.1016/S0968-0004(97)01060-8] [PMID: 9255065]
[17]
Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[18]
Moorhead, G.B.G.; De Wever, V.; Templeton, G.; Kerk, D. Evolution of protein phosphatases in plants and animals. Biochem. J., 2009, 417(2), 401-409.
[http://dx.doi.org/10.1042/BJ20081986] [PMID: 19099538]
[19]
Rebay, I. Multiple functions of the eya phosphotyrosine phosphatase. Mol. Cell. Biol., 2015, 36(5), 668-677.
[http://dx.doi.org/10.1128/MCB.00976-15] [PMID: 26667035]
[20]
Barford, D.; Das, A.K.; Egloff, M.P. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu. Rev. Biophys. Biomol. Struct., 1998, 27, 133-164.
[http://dx.doi.org/10.1146/annurev.biophys.27.1.133] [PMID: 9646865]
[21]
Jung, S-K.; Jeong, D.G.; Chung, S.J.; Kim, J.H.; Park, B.C.; Tonks, N.K.; Ryu, S.E.; Kim, S.J. Crystal structure of ED-Eya2: Insight into dual roles as a protein tyrosine phosphatase and a transcription factor. FASEB J., 2010, 24(2), 560-569.
[http://dx.doi.org/10.1096/fj.09-143891] [PMID: 19858093]
[22]
Graves, D.J.; Fischer, E.H.; Krebs, E.G. Specificity studies on muscle phosphorylase phosphatase. J. Biol. Chem., 1960, 235, 805-809.
[PMID: 13829077]
[23]
Ingebritsen, T.S.; Cohen, P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur. J. Biochem., 1983, 132(2), 255-261.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07357.x] [PMID: 6301824]
[24]
Shi, Y. Serine/threonine phosphatases: Mechanism through structure. Cell, 2009, 139(3), 468-484.
[http://dx.doi.org/10.1016/j.cell.2009.10.006] [PMID: 19879837]
[25]
Huang, X.; Honkanen, R.E. Molecular cloning, expression, and characterization of a novel human serine/threonine protein phosphatase, PP7, that is homologous to Drosophila retinal degeneration C gene product (rdgC). J. Biol. Chem., 1998, 273(3), 1462-1468.
[http://dx.doi.org/10.1074/jbc.273.3.1462] [PMID: 9430683]
[26]
Kennelly, P.J. Protein phosphatases--a phylogenetic perspective. Chem. Rev., 2001, 101(8), 2291-2312.
[http://dx.doi.org/10.1021/cr0002543] [PMID: 11749374]
[27]
Ceulemans, H.; Bollen, M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev., 2004, 84(1), 1-39.
[http://dx.doi.org/10.1152/physrev.00013.2003] [PMID: 14715909]
[28]
Virshup, D.M.; Shenolikar, S. From promiscuity to precision: Protein phosphatases get a makeover. Mol. Cell, 2009, 33(5), 537-545.
[http://dx.doi.org/10.1016/j.molcel.2009.02.015] [PMID: 19285938]
[29]
Chen, M.X.; McPartlin, A.E.; Brown, L.; Chen, Y.H.; Barker, H.M.; Cohen, P.T. A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J., 1994, 13(18), 4278-4290.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06748.x] [PMID: 7925273]
[30]
Kang, H.; Sayner, S.L.; Gross, K.L.; Russell, L.C.; Chinkers, M. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry, 2001, 40(35), 10485-10490.
[http://dx.doi.org/10.1021/bi010999i] [PMID: 11523989]
[31]
Goldberg, Y. Protein phosphatase 2A: Who shall regulate the regulator? Biochem. Pharmacol., 1999, 57(4), 321-328.
[http://dx.doi.org/10.1016/S0006-2952(98)00245-7] [PMID: 9933020]
[32]
Janssens, V.; Goris, J. Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J., 2001, 353(Pt 3), 417-439.
[http://dx.doi.org/10.1042/bj3530417] [PMID: 11171037]
[33]
Heroes, E.; Lesage, B.; Görnemann, J.; Beullens, M.; Van Meervelt, L.; Bollen, M. The PP1 binding code: A molecular-lego strategy that governs specificity. FEBS J., 2013, 280(2), 584-595.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08547.x] [PMID: 22360570]
[34]
Bollen, M.; Peti, W.; Ragusa, M.J.; Beullens, M. The extended PP1 toolkit: Designed to create specificity. Trends Biochem. Sci., 2010, 35(8), 450-458.
[http://dx.doi.org/10.1016/j.tibs.2010.03.002] [PMID: 20399103]
[35]
Caenepeel, S.; Charydczak, G.; Sudarsanam, S.; Hunter, T.; Manning, G. The mouse kinome: Discovery and comparative genomics of all mouse protein kinases. Proc. Natl. Acad. Sci. USA, 2004, 101(32), 11707-11712.
[http://dx.doi.org/10.1073/pnas.0306880101] [PMID: 15289607]
[36]
Manning, G.; Plowman, G.D.; Hunter, T.; Sudarsanam, S. Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci., 2002, 27(10), 514-520.
[http://dx.doi.org/10.1016/S0968-0004(02)02179-5] [PMID: 12368087]
[37]
Zulawski, M.; Schulze, G.; Braginets, R.; Hartmann, S.; Schulze, W.X. The arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics, 2014, 15, 548.
[http://dx.doi.org/10.1186/1471-2164-15-548] [PMID: 24984858]
[38]
Lesage, B.; Qian, J.; Bollen, M. Spindle checkpoint silencing: PP1 tips the balance. Curr. Biol., 2011, 21(21), R898-R903.
[http://dx.doi.org/10.1016/j.cub.2011.08.063] [PMID: 22075433]
[39]
Barker, H.M.; Craig, S.P.; Spurr, N.K.; Cohen, P.T. Sequence of human protein serine/threonine phosphatase 1 gamma and localization of the gene (PPP1CC) encoding it to chromosome bands 12q24.1-q24.2. Biochim. Biophys. Acta, 1993, 1178(2), 228-233.
[http://dx.doi.org/10.1016/0167-4889(93)90014-G] [PMID: 8394140]
[40]
Okano, K.; Heng, H.; Trevisanato, S.; Tyers, M.; Varmuza, S. Genomic organization and functional analysis of the murine protein phosphatase 1c gamma (Ppp1cc) gene. Genomics, 1997, 45(1), 211-215.
[http://dx.doi.org/10.1006/geno.1997.4907] [PMID: 9339378]
[41]
Chakrabarti, R.; Cheng, L.; Puri, P.; Soler, D.; Vijayaraghavan, S. Protein phosphatase PP1 gamma 2 in sperm morphogenesis and epididymal initiation of sperm motility. Asian J. Androl., 2007, 9(4), 445-452.
[http://dx.doi.org/10.1111/j.1745-7262.2007.00307.x] [PMID: 17589781]
[42]
Lechward, K.; Awotunde, O.S.; Swiatek, W.; Muszyńska, G. Protein phosphatase 2A: Variety of forms and diversity of functions. Acta Biochim. Pol., 2001, 48(4), 921-933.
[PMID: 11996003]
[43]
Van Hoof, C.; Goris, J. Phosphatases in apoptosis: To be or not to be, PP2A is in the heart of the question. Biochim. Biophys. Acta, 2003, 1640(2-3), 97-104.
[http://dx.doi.org/10.1016/S0167-4889(03)00029-6] [PMID: 12729918]
[44]
Janssens, V.; Zwaenepoel, K.; Rossé, C.; Petit, M.M.R.; Goris, J.; Parker, P.J. PP2A binds to the LIM domains of lipoma-preferred partner through its PR130/B″ subunit to regulate cell adhesion and migration. J. Cell Sci., 2016, 129(8), 1605-1618.
[http://dx.doi.org/10.1242/jcs.175778] [PMID: 26945059]
[45]
Chica, N.; Rozalén, A.E.; Pérez-Hidalgo, L.; Rubio, A.; Novak, B.; Moreno, S. Nutritional Control of Cell Size by the Greatwall-Endosulfine-PP2A·B55 Pathway. Curr. Biol., 2016, 26(3), 319-330.
[http://dx.doi.org/10.1016/j.cub.2015.12.035] [PMID: 26776736]
[46]
Seshacharyulu, P.; Pandey, P.; Datta, K.; Batra, S.K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett., 2013, 335(1), 9-18.
[http://dx.doi.org/10.1016/j.canlet.2013.02.036] [PMID: 23454242]
[47]
Wang, Y.; Xia, Y.; Kuang, D.; Duan, Y.; Wang, G. PP2A regulates SCF-induced cardiac stem cell migration through interaction with p38 MAPK. Life Sci., 2017, 191, 59-67.
[http://dx.doi.org/10.1016/j.lfs.2017.10.006] [PMID: 28986094]
[48]
Rusnak, F.; Mertz, P. Calcineurin: Form and function. Physiol. Rev., 2000, 80(4), 1483-1521.
[http://dx.doi.org/10.1152/physrev.2000.80.4.1483] [PMID: 11015619]
[49]
Musson, R.E.A.; Smit, N.P.M. Regulatory mechanisms of calcineurin phosphatase activity. Curr. Med. Chem., 2011, 18(2), 301-315.
[http://dx.doi.org/10.2174/092986711794088407] [PMID: 21110798]
[50]
Nygren, P.J.; Scott, J.D. Regulation of the phosphatase PP2B by protein-protein interactions. Biochem. Soc. Trans., 2016, 44(5), 1313-1319.
[http://dx.doi.org/10.1042/BST20160150] [PMID: 27911714]
[51]
Cohen, P.T.W.; Philp, A.; Vázquez-Martin, C. Protein phosphatase 4--from obscurity to vital functions. FEBS Lett., 2005, 579(15), 3278-3286.
[http://dx.doi.org/10.1016/j.febslet.2005.04.070] [PMID: 15913612]
[52]
Voss, M.; Campbell, K.; Saranzewa, N.; Campbell, D.G.; Hastie, C.J.; Peggie, M.W.; Martin-Granados, C.; Prescott, A.R.; Cohen, P.T.W. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with γ-tubulin. Cell Cycle, 2013, 12(17), 2876-2887.
[http://dx.doi.org/10.4161/cc.25919] [PMID: 23966160]
[53]
Martin-Granados, C.; Philp, A.; Oxenham, S.K.; Prescott, A.R.; Cohen, P.T.W. Depletion of protein phosphatase 4 in human cells reveals essential roles in centrosome maturation, cell migration and the regulation of Rho GTPases. Int. J. Biochem. Cell Biol., 2008, 40(10), 2315-2332.
[http://dx.doi.org/10.1016/j.biocel.2008.03.021] [PMID: 18487071]
[54]
Xie, Y.; Jüschke, C.; Esk, C.; Hirotsune, S.; Knoblich, J.A. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron, 2013, 79(2), 254-265.
[http://dx.doi.org/10.1016/j.neuron.2013.05.027] [PMID: 23830831]
[55]
Oler, A.J.; Cairns, B.R. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression. EMBO J., 2012, 31(6), 1440-1452.
[http://dx.doi.org/10.1038/emboj.2011.501] [PMID: 22333918]
[56]
Hastie, C.J.; Carnegie, G.K.; Morrice, N.; Cohen, P.T. A novel 50 kDa protein forms complexes with protein phosphatase 4 and is located at centrosomal microtubule organizing centres. Biochem. J., 2000, 347(Pt 3), 845-855.
[http://dx.doi.org/10.1042/bj3470845] [PMID: 10769191]
[57]
Gingras, A-C.; Caballero, M.; Zarske, M.; Sanchez, A.; Hazbun, T.R.; Fields, S.; Sonenberg, N.; Hafen, E.; Raught, B.; Aebersold, R. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol. Cell. Proteomics, 2005, 4(11), 1725-1740.
[http://dx.doi.org/10.1074/mcp.M500231-MCP200] [PMID: 16085932]
[58]
Chen, G.I.; Tisayakorn, S.; Jorgensen, C.; D’Ambrosio, L.M.; Goudreault, M.; Gingras, A-C. PP4R4/KIAA1622 forms a novel stable cytosolic complex with phosphoprotein phosphatase 4. J. Biol. Chem., 2008, 283(43), 29273-29284.
[http://dx.doi.org/10.1074/jbc.M803443200] [PMID: 18715871]
[59]
Skarra, D.V.; Goudreault, M.; Choi, H.; Mullin, M.; Nesvizhskii, A.I.; Gingras, A-C.; Honkanen, R.E. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for the human Ser/Thr protein phosphatase 5. Proteomics, 2011, 11(8), 1508-1516.
[http://dx.doi.org/10.1002/pmic.201000770] [PMID: 21360678]
[60]
Schopf, F.H.; Biebl, M.M.; Buchner, J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol., 2017, 18(6), 345-360.
[http://dx.doi.org/10.1038/nrm.2017.20] [PMID: 28429788]
[61]
Vaughan, C.K.; Mollapour, M.; Smith, J.R.; Truman, A.; Hu, B.; Good, V.M.; Panaretou, B.; Neckers, L.; Clarke, P.A.; Workman, P.; Piper, P.W.; Prodromou, C.; Pearl, L.H. Hsp90-dependent activation of protein kinases is regulated by chaperone-targeted dephosphorylation of Cdc37. Mol. Cell, 2008, 31(6), 886-895.
[http://dx.doi.org/10.1016/j.molcel.2008.07.021] [PMID: 18922470]
[62]
Oberoi, J.; Dunn, D.M.; Woodford, M.R.; Mariotti, L.; Schulman, J.; Bourboulia, D.; Mollapour, M.; Vaughan, C.K. Structural and functional basis of protein phosphatase 5 substrate specificity. Proc. Natl. Acad. Sci. USA, 2016, 113(32), 9009-9014.
[http://dx.doi.org/10.1073/pnas.1603059113] [PMID: 27466404]
[63]
Shao, J.; Hartson, S.D.; Matts, R.L. Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase. Biochemistry, 2002, 41(21), 6770-6779.
[http://dx.doi.org/10.1021/bi025737a] [PMID: 12022881]
[64]
Golden, T.; Swingle, M.; Honkanen, R.E. The role of serine/threonine protein phosphatase type 5 (PP5) in the regulation of stress-induced signaling networks and cancer. Cancer Metastasis Rev., 2008, 27(2), 169-178.
[http://dx.doi.org/10.1007/s10555-008-9125-z] [PMID: 18253812]
[65]
Zhou, G.; Golden, T.; Aragon, I.V.; Honkanen, R.E. Ser/Thr protein phosphatase 5 inactivates hypoxia-induced activation of an apoptosis signal-regulating kinase 1/MKK-4/JNK signaling cascade. J. Biol. Chem., 2004, 279(45), 46595-46605.
[http://dx.doi.org/10.1074/jbc.M408320200] [PMID: 15328343]
[66]
Urban, G.; Golden, T.; Aragon, I.V.; Scammell, J.G.; Dean, N.M.; Honkanen, R.E. Identification of an estrogen-inducible phosphatase (PP5) that converts MCF-7 human breast carcinoma cells into an estrogen-independent phenotype when expressed constitutively. J. Biol. Chem., 2001, 276(29), 27638-27646.
[http://dx.doi.org/10.1074/jbc.M103512200] [PMID: 11331294]
[67]
Zhang, Y.; Leung, D.Y.M.; Nordeen, S.K.; Goleva, E. Estrogen inhibits glucocorticoid action via protein phosphatase 5 (PP5)-mediated glucocorticoid receptor dephosphorylation. J. Biol. Chem., 2009, 284(36) 24542- 2[h4t5tp5:2//.d x.doi.org/10.1074/jbc.M109.021469] [PMID: 19586900]
[68]
Swingle, M.R.; Honkanen, R.E.; Ciszak, E.M. Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5. J. Biol. Chem., 2004, 279(32), 33992-33999.
[http://dx.doi.org/10.1074/jbc.M402855200] [PMID: 15155720]
[69]
Yang, J.; Roe, S.M.; Cliff, M.J.; Williams, M.A.; Ladbury, J.E.; Cohen, P.T.W.; Barford, D. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J., 2005, 24(1), 1-10.
[http://dx.doi.org/10.1038/sj.emboj.7600496] [PMID: 15577939]
[70]
Chen, M.X.; Cohen, P.T. Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett., 1997, 400(1), 136-140.
[http://dx.doi.org/10.1016/S0014-5793(96)01427-5] [PMID: 9000529]
[71]
Sinclair, C.; Borchers, C.; Parker, C.; Tomer, K.; Charbonneau, H.; Rossie, S. The tetratricopeptide repeat domain and a C-terminal region control the activity of Ser/Thr protein phosphatase 5. J. Biol. Chem., 1999, 274(33), 23666-23672.
[http://dx.doi.org/10.1074/jbc.274.33.23666] [PMID: 10438550]
[72]
Skinner, J.; Sinclair, C.; Romeo, C.; Armstrong, D.; Charbonneau, H.; Rossie, S. Purification of a fatty acid-stimulated protein-serine/threonine phosphatase from bovine brain and its identification as a homolog of protein phosphatase 5. J. Biol. Chem., 1997, 272(36), 22464-22471.
[http://dx.doi.org/10.1074/jbc.272.36.22464] [PMID: 9278397]
[73]
Ramsey, A.J.; Chinkers, M. Identification of potential physiological activators of protein phosphatase 5. Biochemistry, 2002, 41(17), 5625-5632.
[http://dx.doi.org/10.1021/bi016090h] [PMID: 11969423]
[74]
Rusin, S.F.; Schlosser, K.A.; Adamo, M.E.; Kettenbach, A.N. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells. Sci. Signal., 2015, 8(398), rs12.
[http://dx.doi.org/10.1126/scisignal.aab3138] [PMID: 26462736]
[75]
Zeng, K.; Bastos, R.N.; Barr, F.A.; Gruneberg, U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J. Cell Biol., 2010, 191(7), 1315-1332.
[http://dx.doi.org/10.1083/jcb.201008106] [PMID: 21187329]
[76]
Hu, M.W.; Wang, Z.B.; Teng, Y.; Jiang, Z.Z.; Ma, X.S.; Hou, N.; Cheng, X.; Schatten, H.; Xu, X.; Yang, X.; Sun, Q.Y. Loss of protein phosphatase 6 in oocytes causes failure of meiosis II exit and impaired female fertility. J. Cell Sci., 2015, 128(20), 3769-3780.
[http://dx.doi.org/10.1242/jcs.173179] [PMID: 26349807]
[77]
Ziembik, M.A.; Bender, T.P.; Larner, J.M.; Brautigan, D.L. Functions of protein phosphatase-6 in NF-κB signaling and in lymphocytes. Biochem. Soc. Trans., 2017, 45(3), 693-701.
[http://dx.doi.org/10.1042/BST20160169] [PMID: 28620030]
[78]
Wengrod, J.; Wang, D.; Weiss, S.; Zhong, H.; Osman, I.; Gardner, L.B. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Sci. Signal., 2015, 8(367), ra27.
[http://dx.doi.org/10.1126/scisignal.aaa0899] [PMID: 25759478]
[79]
Ye, J.; Shi, H.; Shen, Y.; Peng, C.; Liu, Y.; Li, C.; Deng, K.; Geng, J.; Xu, T.; Zhuang, Y.; Zheng, B.; Tao, W. PP6 controls T cell development and homeostasis by negatively regulating distal TCR signaling. J. Immunol., 2015, 194(4), 1654-1664.
[http://dx.doi.org/10.4049/jimmunol.1401692] [PMID: 25609840]
[80]
Hammond, D.; Zeng, K.; Espert, A.; Bastos, R.N.; Baron, R.D.; Gruneberg, U.; Barr, F.A. Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage owing to dysregulated Aurora-A. J. Cell Sci., 2013, 126(Pt 15), 3429-3440.
[http://dx.doi.org/10.1242/jcs.128397] [PMID: 23729733]
[81]
Stefansson, B.; Brautigan, D.L. Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. J. Biol. Chem., 2006, 281(32), 22624-22634.
[http://dx.doi.org/10.1074/jbc.M601772200] [PMID: 16769727]
[82]
Stefansson, B.; Ohama, T.; Daugherty, A.E.; Brautigan, D.L. Protein phosphatase 6 regulatory subunits composed of ankyrin repeat domains. Biochemistry, 2008, 47(5), 1442-1451.
[http://dx.doi.org/10.1021/bi7022877] [PMID: 18186651]
[83]
Andreeva, A.V.; Kutuzov, M.A. PPEF/PP7 protein Ser/Thr phosphatases. Cell. Mol. Life Sci., 2009, 66(19), 3103-3110.
[http://dx.doi.org/10.1007/s00018-009-0110-7] [PMID: 19662497]
[84]
Peti, W.; Nairn, A.C.; Page, R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J., 2013, 280(2), 596-611.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08509.x] [PMID: 22284538]
[85]
Verbinnen, I.; Ferreira, M.; Bollen, M. Biogenesis and activity regulation of protein phosphatase 1. Biochem. Soc. Trans., 2017, 45(1), 89-99.
[http://dx.doi.org/10.1042/BST20160154] [PMID: 28202662]
[86]
Xu, Y.; Xing, Y.; Chen, Y.; Chao, Y.; Lin, Z.; Fan, E.; Yu, J.W.; Strack, S.; Jeffrey, P.D.; Shi, Y. Structure of the protein phosphatase 2A holoenzyme. Cell, 2006, 127(6), 1239-1251.
[http://dx.doi.org/10.1016/j.cell.2006.11.033] [PMID: 17174897]
[87]
Chattopadhyay, D.; Swingle, M.R.; Salter, E.A.; Wood, E.; D’Arcy, B.; Zivanov, C.; Abney, K.; Musiyenko, A.; Rusin, S.F.; Kettenbach, A.; Yet, L.; Schroeder, C.E.; Golden, J.E.; Dunham, W.H.; Gingras, A-C.; Banerjee, S.; Forbes, D.; Wierzbicki, A.; Honkanen, R.E. Crystal structures and mutagenesis of PPP-family ser/thr protein phosphatases elucidate the selectivity of cantharidin and novel norcantharidin-based inhibitors of PP5C. Biochem. Pharmacol., 2016, 109, 14-26.
[http://dx.doi.org/10.1016/j.bcp.2016.03.011] [PMID: 27002182]
[88]
Bertini, I.; Calderone, V.; Fragai, M.; Luchinat, C.; Talluri, E. Structural basis of serine/threonine phosphatase inhibition by the archetypal small molecules cantharidin and norcantharidin. J. Med. Chem., 2009, 52(15), 4838-4843.
[http://dx.doi.org/10.1021/jm900610k] [PMID: 19601647]
[89]
Lad, C.; Williams, N.H.; Wolfenden, R. The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatases. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 5607-5610.
[http://dx.doi.org/10.1073/pnas.0631607100] [PMID: 12721374]
[90]
Zhang, J.; Zhang, Z.; Brew, K.; Lee, E.Y. Mutational analysis of the catalytic subunit of muscle protein phosphatase-1. Biochemistry, 1996, 35(20), 6276-6282.
[http://dx.doi.org/10.1021/bi952954l] [PMID: 8639569]
[91]
Zhang, L.; Lee, E.Y. Mutational analysis of substrate recognition by protein phosphatase 1. Biochemistry, 1997, 36(27), 8209-8214.
[http://dx.doi.org/10.1021/bi9704865] [PMID: 9204865]
[92]
Martin, B.L.; Jurado, L.A.; Hengge, A.C. Comparison of the reaction progress of calcineurin with Mn2+ and Mg2+. Biochemistry, 1999, 38(11), 3386-3392.
[http://dx.doi.org/10.1021/bi981748l] [PMID: 10079083]
[93]
Egloff, M.P.; Cohen, P.T.; Reinemer, P.; Barford, D. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate. J. Mol. Biol., 1995, 254(5), 942-959.
[http://dx.doi.org/10.1006/jmbi.1995.0667] [PMID: 7500362]
[94]
Xing, Y.; Xu, Y.; Chen, Y.; Jeffrey, P.D.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.B.; Shi, Y. Structure of protein phosphatase 2A core enzyme bound to tumor-inducing toxins. Cell, 2006, 127(2), 341-353.
[http://dx.doi.org/10.1016/j.cell.2006.09.025] [PMID: 17055435]
[95]
Heroes, E.; Rip, J.; Beullens, M.; Van Meervelt, L.; De Gendt, S.; Bollen, M. Metals in the active site of native protein phosphatase-1. J. Inorg. Biochem., 2015, 149, 1-5.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.03.012] [PMID: 25890482]
[96]
Namgaladze, D.; Hofer, H.W.; Ullrich, V. Redox control of calcineurin by targeting the binuclear Fe(2+)-Zn(2+) center at the enzyme active site. J. Biol. Chem., 2002, 277(8), 5962-5969.
[http://dx.doi.org/10.1074/jbc.M111268200] [PMID: 11741966]
[97]
Nishito, Y.; Usui, H.; Shinzawa-Itoh, K.; Inoue, R.; Tanabe, O.; Nagase, T.; Murakami, T.; Takeda, M. Direct metal analyses of Mn2+-dependent and -independent protein phosphatase 2A from human erythrocytes detect zinc and iron only in the Mn2+-independent one. FEBS Lett., 1999, 447(1), 29-33.
[http://dx.doi.org/10.1016/S0014-5793(99)00256-2] [PMID: 10218576]
[98]
King, M.M.; Huang, C.Y. The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate, and divalent metal ions. Identification of calcineurin as a Zn and Fe metalloenzyme. J. Biol. Chem., 1984, 259(14), 8847-8856.
[PMID: 6086614]
[99]
Martin, B.L.; Graves, D.J. Mechanistic aspects of the low-molecular-weight phosphatase activity of the calmodulin-activated phosphatase, calcineurin. J. Biol. Chem., 1986, 261(31), 14545-14550.
[PMID: 3771542]
[100]
Hengge, A.C.; Martin, B.L. Isotope effect studies on the calcineurin phosphoryl-transfer reaction: Transition state structure and effect of calmodulin and Mn2+. Biochemistry, 1997, 36(33), 10185-10191.
[http://dx.doi.org/10.1021/bi9706374] [PMID: 9254616]
[101]
Mondragon, A.; Griffith, E.C.; Sun, L.; Xiong, F.; Armstrong, C.; Liu, J.O. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center. Biochemistry, 1997, 36(16), 4934-4942.
[http://dx.doi.org/10.1021/bi9631935] [PMID: 9125515]
[102]
Martin, B.; Pallen, C.J.; Wang, J.H.; Graves, D.J. Use of fluorinated tyrosine phosphates to probe the substrate specificity of the low molecular weight phosphatase activity of calcineurin. J. Biol. Chem., 1985, 260(28), 14932-14937.
[PMID: 2415511]
[103]
Jackson, M.D.; Denu, J.M. Molecular reactions of protein phosphatases--insights from structure and chemistry. Chem. Rev., 2001, 101(8), 2313-2340.
[http://dx.doi.org/10.1021/cr000247e] [PMID: 11749375]
[104]
Bertini, I.; Luchinat, C. The reaction pathways of zinc enzymes and related biological catalysts. Bioinorg. Chem., Bertini, I.; Gray, H.B.; Lippard, S.J; Valentine, J.S., Ed.; University Science: California, 1994, pp. 37-106.
[105]
Bertini, I.; Luchinat, C.; Rosi, M.; Sgamellotti, A.; Tarantelli, F. pKa of zinc-bound water and nucleophilicity of hydroxo-containing species. ab initio calculations on models for zinc enzymes. Inorg. Chem., 1990, 29, 1460-1463.
[http://dx.doi.org/10.1021/ic00333a004]
[106]
Mesecar, A.D.; Stoddard, B.L.; Koshland, D.E., Jr Orbital steering in the catalytic power of enzymes: Small structural changes with large catalytic consequences. Science, 1997, 277(5323), 202-206.
[http://dx.doi.org/10.1126/science.277.5323.202] [PMID: 9211842]
[107]
Hoff, R.H.; Mertz, P.; Rusnak, F.; Hengge, A.C. The transition state of the phosphoryl-transfer reaction catalyzed by the lambda ser/thr protein phosphatase. J. Am. Chem. Soc., 1999, 121, 6382-6390.
[http://dx.doi.org/10.1021/ja990667p]
[108]
Rowlett, R.S.; Silverman, D.N. Kinetics of the protonation of buffer and hydration of carbon dioxide catalyzed by human carbonic anhydrase II. J. Am. Chem. Soc., 1982, 104, 6737-6741.
[http://dx.doi.org/10.1021/ja00388a043]
[109]
Azzi, J.R.; Sayegh, M.H.; Mallat, S.G. Calcineurin inhibitors: 40 years later, can’t live without..... J. Immunol., 2013, 191(12), 5785-5791.
[http://dx.doi.org/10.4049/jimmunol.1390055] [PMID: 24319282]
[110]
Barik, S. Immunophilins: For the love of proteins. Cell. Mol. Life Sci., 2006, 63(24), 2889-2900.
[http://dx.doi.org/10.1007/s00018-006-6215-3] [PMID: 17075696]
[111]
Harikishore, A.; Yoon, H.S. Immunophilins: Structures, mechanisms and ligands. Curr. Mol. Pharmacol., 2015, 9(1), 37-47.
[http://dx.doi.org/10.2174/1874467208666150519113427] [PMID: 25986569]
[112]
Grigoriu, S.; Bond, R.; Cossio, P.; Chen, J.A.; Ly, N.; Hummer, G.; Page, R.; Cyert, M.S.; Peti, W. The molecular mechanism of substrate engagement and immunosuppressant inhibition of calcineurin. PLoS Biol., 2013, 11(2)e1001492
[http://dx.doi.org/10.1371/journal.pbio.1001492] [PMID: 23468591]
[113]
Kissinger, C.R.; Parge, H.E.; Knighton, D.R.; Lewis, C.T.; Pelletier, L.A.; Tempczyk, A.; Kalish, V.J.; Tucker, K.D.; Showalter, R.E.; Moomaw, E.W. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature, 1995, 378(6557), 641-644.
[http://dx.doi.org/10.1038/378641a0] [PMID: 8524402]
[114]
Griffith, J.P.; Kim, J.L.; Kim, E.E.; Sintchak, M.D.; Thomson, J.A.; Fitzgibbon, M.J.; Fleming, M.A.; Caron, P.R.; Hsiao, K.; Navia, M.A. X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell, 1995, 82(3), 507-522.
[http://dx.doi.org/10.1016/0092-8674(95)90439-5] [PMID: 7543369]
[115]
Ke, H.; Huai, Q. Structures of calcineurin and its complexes with immunophilins-immunosuppressants. Biochem. Biophys. Res. Commun., 2003, 311(4), 1095-1102.
[http://dx.doi.org/10.1016/S0006-291X(03)01537-7] [PMID: 14623295]
[116]
Huai, Q.; Kim, H.Y.; Liu, Y.; Zhao, Y.; Mondragon, A.; Liu, J.O.; Ke, H. Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12037-12042.
[http://dx.doi.org/10.1073/pnas.192206699] [PMID: 12218175]
[117]
Takai, A.; Bialojan, C.; Troschka, M.; Rüegg, J.C. Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett., 1987, 217(1), 81-84.
[http://dx.doi.org/10.1016/0014-5793(87)81247-4] [PMID: 3036577]
[118]
Honkanen, R.E.; Zwiller, J.; Moore, R.E.; Daily, S.L.; Khatra, B.S.; Dukelow, M.; Boynton, A.L. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. J. Biol. Chem., 1990, 265(32), 19401-19404.
[PMID: 2174036]
[119]
Honkanen, R.E.; Dukelow, M.; Zwiller, J.; Moore, R.E.; Khatra, B.S.; Boynton, A.L. Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol. Pharmacol., 1991, 40(4), 577-583.
[PMID: 1656193]
[120]
Suganuma, M.; Fujiki, H.; Furuya-Suguri, H.; Yoshizawa, S.; Yasumoto, S.; Kato, Y.; Fusetani, N.; Sugimura, T. Calyculin A, an inhibitor of protein phosphatases, a potent tumor promoter on CD-1 mouse skin. Cancer Res., 1990, 50(12), 3521-3525.
[PMID: 2160320]
[121]
Ishihara, H.; Martin, B.L.; Brautigan, D.L.; Karaki, H.; Ozaki, H.; Kato, Y.; Fusetani, N.; Watabe, S.; Hashimoto, K.; Uemura, D. Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity. Biochem. Biophys. Res. Commun., 1989, 159(3), 871-877.
[http://dx.doi.org/10.1016/0006-291X(89)92189-X] [PMID: 2539153]
[122]
Capon, R.J.; Rooney, F.; Murray, L.M.; Collins, E.; Sim, A.T.R.; Rostas, J.A.P.; Butler, M.S.; Carroll, A.R. Dragmacidins: New protein phosphatase inhibitors from a southern australian deep-water marine sponge, Spongosorites sp. J. Nat. Prod., 1998, 61(5), 660-662.
[http://dx.doi.org/10.1021/np970483t] [PMID: 9599272]
[123]
Matsuzawa, S.; Suzuki, T.; Suzuki, M.; Matsuda, A.; Kawamura, T.; Mizuno, Y.; Kikuchi, K. Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett., 1994, 356(2-3), 272-274.
[http://dx.doi.org/10.1016/0014-5793(94)01281-4] [PMID: 7805852]
[124]
Mamber, S.W.; Okasinski, W.G.; Pinter, C.D.; Tunac, J.B. Antimycotic effects of the novel antitumor agents fostriecin (CI-920), PD 113,270 and PD 113,271. J. Antibiot. (Tokyo), 1986, 39(10), 1467-1472.
[http://dx.doi.org/10.7164/antibiotics.39.1467] [PMID: 3781915]
[125]
Burke, C.P.; Haq, N.; Boger, D.L. Total synthesis, assignment of the relative and absolute stereochemistry, and structural reassignment of phostriecin (aka Sultriecin). J. Am. Chem. Soc., 2010, 132(7), 2157-2159.
[http://dx.doi.org/10.1021/ja9097252] [PMID: 20108904]
[126]
Ohkuma, H.; Naruse, N.; Nishiyama, Y.; Tsuno, T.; Hoshino, Y.; Sawada, Y.; Konishi, M.; Oki, T. Sultriecin, a new antifungal and antitumor antibiotic from Streptomyces roseiscleroticus. Production, isolation, structure and biological activity. J. Antibiot. (Tokyo), 1992, 45(8), 1239-1249.
[http://dx.doi.org/10.7164/antibiotics.45.1239] [PMID: 1399844]
[127]
Lawhorn, B.G.; Boga, S.B.; Wolkenberg, S.E.; Colby, D.A.; Gauss, C-M.; Swingle, M.R.; Amable, L.; Honkanen, R.E.; Boger, D.L. Total synthesis and evaluation of cytostatin, its C10-C11 diastereomers, and additional key analogues: Impact on PP2A inhibition. J. Am. Chem. Soc., 2006, 128(51), 16720-16732.
[http://dx.doi.org/10.1021/ja066477d] [PMID: 17177422]
[128]
Ozasa, T.; Tanaka, K.; Sasamata, M.; Kaniwa, H.; Shimizu, M.; Matsumoto, H.; Iwanami, M. Novel antitumor antibiotic phospholine. 2. Structure determination. J. Antibiot. (Tokyo), 1989, 42(9), 1339-1343.
[http://dx.doi.org/10.7164/antibiotics.42.1339] [PMID: 2793587]
[129]
Kohama, T.; Enokita, R.; Okazaki, T.; Miyaoka, H.; Torikata, A.; Inukai, M.; Kaneko, I.; Kagasaki, T.; Sakaida, Y.; Satoh, A. Novel microbial metabolites of the phoslactomycins family induce production of colony-stimulating factors by bone marrow stromal cells. I. Taxonomy, fermentation and biological properties. J. Antibiot. (Tokyo), 1993, 46(10), 1503-1511.
[http://dx.doi.org/10.7164/antibiotics.46.1503] [PMID: 7503975]
[130]
Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H. Studies on new phosphate ester antifungal antibiotics phoslactomycins. I. Taxonomy, fermentation, purification and biological activities. J. Antibiot. (Tokyo), 1989, 42(7), 1019-1025.
[http://dx.doi.org/10.7164/antibiotics.42.1019] [PMID: 2753808]
[131]
Hori, M.; Magae, J.; Han, Y.G.; Hartshorne, D.J.; Karaki, H. A novel protein phosphatase inhibitor, tautomycin. Effect on smooth muscle. FEBS Lett., 1991, 285(1), 145-148.
[http://dx.doi.org/10.1016/0014-5793(91)80745-O] [PMID: 1648511]
[132]
Cheng, X.C.; Kihara, T.; Ying, X.; Uramoto, M.; Osada, H.; Kusakabe, H.; Wang, B.N.; Kobayashi, Y.; Ko, K.; Yamaguchi, I. A new antibiotic, tautomycetin. J. Antibiot. (Tokyo), 1989, 42(1), 141-144.
[http://dx.doi.org/10.7164/antibiotics.42.141] [PMID: 2921220]
[133]
Honkanen, R.E. Cantharidin, another natural toxin that inhibits the activity of serine/threonine protein phosphatases types 1 and 2A. FEBS Lett., 1993, 330(3), 283-286.
[http://dx.doi.org/10.1016/0014-5793(93)80889-3] [PMID: 8397101]
[134]
Dawson, R.M. The toxicology of microcystins. Toxicon, 1998, 36(7), 953-962.
[http://dx.doi.org/10.1016/S0041-0101(97)00102-5] [PMID: 9690788]
[135]
Bishop, C.T.; Anet, E.F.; Gorham, P.R. Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1. Can. J. Biochem. Physiol., 1959, 37(3), 453-471.
[http://dx.doi.org/10.1139/o59-047] [PMID: 13638864]
[136]
Konst, H.; McKercher, P.D.; Gorham, P.R.; Robertson, A.; Howell, J. Symptoms and pathology produced by toxic Microcystis aeruginosa NRC-1 in laboratory and domestic animals. Can. J. Comp. Med. Vet. Sci., 1965, 29(9), 221-228.
[PMID: 4221987]
[137]
Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R.; Hagenbuch, B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol., 2005, 203(3), 257-263.
[http://dx.doi.org/10.1016/j.taap.2004.08.012] [PMID: 15737679]
[138]
Hastie, C.J.; Cohen, P.T. Purification of protein phosphatase 4 catalytic subunit: Inhibition by the antitumour drug fostriecin and other tumour suppressors and promoters. FEBS Lett., 1998, 431(3), 357-361.
[http://dx.doi.org/10.1016/S0014-5793(98)00775-3] [PMID: 9714542]
[139]
Swingle, M.; Ni, L.; Honkanen, R.E. Small-molecule inhibitors of ser/thr protein phosphatases: Specificity, use and common forms of abuse. Methods Mol. Biol., 2007, 365, 23-38.
[PMID: 17200551]
[140]
Prickett, T.D.; Brautigan, D.L. The alpha4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J. Biol. Chem., 2006, 281(41), 30503-30511.
[http://dx.doi.org/10.1074/jbc.M601054200] [PMID: 16895907]
[141]
MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Cohen, P.; Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett., 1990, 264(2), 187-192.
[http://dx.doi.org/10.1016/0014-5793(90)80245-E] [PMID: 2162782]
[142]
Goldberg, J.; Huang, H.B.; Kwon, Y.G.; Greengard, P.; Nairn, A.C.; Kuriyan, J. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature, 1995, 376(6543), 745-753.
[http://dx.doi.org/10.1038/376745a0] [PMID: 7651533]
[143]
Maynes, J.T.; Bateman, K.S.; Cherney, M.M.; Das, A.K.; Luu, H.A.; Holmes, C.F.B.; James, M.N.G. Crystal structure of the tumor-promoter okadaic acid bound to protein phosphatase-1. J. Biol. Chem., 2001, 276(47), 44078-44082.
[http://dx.doi.org/10.1074/jbc.M107656200] [PMID: 11535607]
[144]
Valdiglesias, V.; Prego-Faraldo, M.V.; Pásaro, E.; Méndez, J.; Laffon, B. Okadaic acid: More than a diarrheic toxin. Mar. Drugs, 2013, 11(11), 4328-4349.
[http://dx.doi.org/10.3390/md11114328] [PMID: 24184795]
[145]
Prego-Faraldo, M.V.; Valdiglesias, V.; Méndez, J.; Eirín-López, J.M. Okadaic acid meet and greet: An insight into detection methods, response strategies and genotoxic effects in marine invertebrates. Mar. Drugs, 2013, 11(8), 2829-2845.
[http://dx.doi.org/10.3390/md11082829] [PMID: 23939476]
[146]
Bialojan, C.; Takai, A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J., 1988, 256(1), 283-290.
[http://dx.doi.org/10.1042/bj2560283] [PMID: 2851982]
[147]
Ni, L.; Swingle, M.S.; Bourgeois, A.C.; Honkanen, R.E. High yield expression of serine/threonine protein phosphatase type 5, and a fluorescent assay suitable for use in the detection of catalytic inhibitors. Assay Drug Dev. Technol., 2007, 5(5), 645-653.
[http://dx.doi.org/10.1089/adt.2007.079] [PMID: 17939754]
[148]
Zhang, L.; Zhang, Z.; Long, F.; Lee, E.Y. Tyrosine-272 is involved in the inhibition of protein phosphatase-1 by multiple toxins. Biochemistry, 1996, 35(5), 1606-1611.
[http://dx.doi.org/10.1021/bi9521396] [PMID: 8634292]
[149]
MacKintosh, C.; Klumpp, S. Tautomycin from the bacterium Streptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A. FEBS Lett., 1990, 277(1-2), 137-140.
[http://dx.doi.org/10.1016/0014-5793(90)80828-7] [PMID: 2176611]
[150]
Honkanen, R.E.; Codispoti, B.A.; Tse, K.; Boynton, A.L.; Honkanan, R.E. Characterization of natural toxins with inhibitory activity against serine/threonine protein phosphatases. Toxicon, 1994, 32(3), 339-350.
[http://dx.doi.org/10.1016/0041-0101(94)90086-8] [PMID: 8016855]
[151]
Kelker, M.S.; Page, R.; Peti, W. Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: A novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J. Mol. Biol., 2009, 385(1), 11-21.
[http://dx.doi.org/10.1016/j.jmb.2008.10.053] [PMID: 18992256]
[152]
Wakimoto, T.; Matsunaga, S.; Takai, A.; Fusetani, N. Insight into binding of calyculin A to protein phosphatase 1: Isolation of hemicalyculin a and chemical transformation of calyculin A. Chem. Biol., 2002, 9(3), 309-319.
[http://dx.doi.org/10.1016/S1074-5521(02)00118-7] [PMID: 11927256]
[153]
Kita, A.; Matsunaga, S.; Takai, A.; Kataiwa, H.; Wakimoto, T.; Fusetani, N.; Isobe, M.; Miki, K. Crystal structure of the complex between calyculin A and the catalytic subunit of protein phosphatase 1. Structure, 2002, 10(5), 715-724.
[http://dx.doi.org/10.1016/S0969-2126(02)00764-5] [PMID: 12015153]
[154]
Lê, L.H.; Erlichman, C.; Pillon, L.; Thiessen, J.J.; Day, A.; Wainman, N.; Eisenhauer, E.A.; Moore, M.J. Phase I and pharmacokinetic study of fostriecin given as an intravenous bolus daily for five consecutive days. Invest. New Drugs, 2004, 22(2), 159-167.
[http://dx.doi.org/10.1023/B:DRUG.0000011792.13160.b0] [PMID: 14739664]
[155]
Jackson, R.C.; Fry, D.W.; Boritzki, T.J.; Roberts, B.J.; Hook, K.E.; Leopold, W.R. The biochemical pharmacology of CI-920, a structurally novel antibiotic with antileukemic activity. Adv. Enzyme Regul., 1985, 23, 193-215.
[http://dx.doi.org/10.1016/0065-2571(85)90048-2] [PMID: 3840949]
[156]
Leopold, W.R.; Shillis, J.L.; Mertus, A.E.; Nelson, J.M.; Roberts, B.J.; Jackson, R.C. Anticancer activity of the structurally novel antibiotic Cl-920 and its analogues. Cancer Res., 1984, 44(5), 1928-1932.
[PMID: 6546897]
[157]
Walsh, A.H.; Cheng, A.; Honkanen, R.E. Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A. FEBS Lett., 1997, 416(3), 230-234.
[http://dx.doi.org/10.1016/S0014-5793(97)01210-6] [PMID: 9373158]
[158]
Swingle, M.R.; Amable, L.; Lawhorn, B.G.; Buck, S.B.; Burke, C.P.; Ratti, P.; Fischer, K.L.; Boger, D.L.; Honkanen, R.E. Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and(beta12-beta13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors. J. Pharmacol. Exp. Ther., 2009, 331(1), 45-53.
[http://dx.doi.org/10.1124/jpet.109.155630] [PMID: 19592665]
[159]
Buck, S.B.; Hardouin, C.; Ichikawa, S.; Soenen, D.R.; Gauss, C-M.; Hwang, I.; Swingle, M.R.; Bonness, K.M.; Honkanen, R.E.; Boger, D.L. Fundamental role of the fostriecin unsaturated lactone and implications for selective protein phosphatase inhibition. J. Am. Chem. Soc., 2003, 125(51), 15694-15695.
[http://dx.doi.org/10.1021/ja038672n] [PMID: 14677930]
[160]
Takeuchi, T.; Takahashi, N.; Ishi, K.; Kusayanagi, T.; Kuramochi, K.; Sugawara, F. Antitumor antibiotic fostriecin covalently binds to cysteine-269 residue of protein phosphatase 2A catalytic subunit in mammalian cells. Bioorg. Med. Chem., 2009, 17(23), 8113-8122.
[http://dx.doi.org/10.1016/j.bmc.2009.09.050] [PMID: 19857968]
[161]
Evans, D.R.; Simon, J.A. The predicted beta12-beta13 loop is important for inhibition of PP2Acalpha by the antitumor drug fostriecin. FEBS Lett., 2001, 498(1), 110-115.
[http://dx.doi.org/10.1016/S0014-5793(01)02448-6] [PMID: 11389908]
[162]
Moed, L.; Shwayder, T.A.; Chang, M.W. Cantharidin revisited: A blistering defense of an ancient medicine. Arch. Dermatol., 2001, 137(10), 1357-1360.
[http://dx.doi.org/10.1001/archderm.137.10.1357] [PMID: 11594862]
[163]
Wang, G.S. Medical uses of mylabris in ancient China and recent studies. J. Ethnopharmacol., 1989, 26(2), 147-162.
[http://dx.doi.org/10.1016/0378-8741(89)90062-7] [PMID: 2689797]
[164]
Liao, Y.F.; Wang, Y.; Huang, Y.; Zha, S.F.; Liu, J.J.; Wang, Z.K.; Yin, Y.P.; Liao, Y.F.; Wang, Y. isolation and functional analysis of mcmena, a gene encoding a 1,4-dihydroxy-2-naphthoate octaprenyltransferase in mylabris cichorii. Arch. Insect Biochem. Physiol., 2015, 89(3), 127-137.
[http://dx.doi.org/10.1002/arch.21229] [PMID: 25772016]
[165]
Oaks, W.W.; Ditunno, J.F.; Magnani, T.; Levy, H.A.; Mills, L.C. Cantharidin poisoning. Arch. Intern. Med., 1960, 105, 574-582.
[http://dx.doi.org/10.1001/archinte.1960.00270160072009] [PMID: 14428136]
[166]
Al-Dawsari, N.A.; Masterpol, K.S. Cantharidin in Dermatology. Skinmed, 2016, 14(2), 111-114.
[PMID: 27319954]
[167]
Prickett, T.D.; Brautigan, D.L. The α4 regulatory subunit exerts opposing allosteric effects on protein phosphatases PP6 and PP2A. J. Biol. Chem., 2006, 281(41), 30503-30511.
[http://dx.doi.org/10.1074/jbc.M601054200] [PMID: 16895907]
[168]
Li, Y.M.; Mackintosh, C.; Casida, J.E. Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Inhibitor specificity of cantharidin and ATP analogues. Biochem. Pharmacol., 1993, 46(8), 1435-1443.
[http://dx.doi.org/10.1016/0006-2952(93)90109-A] [PMID: 8240393]
[169]
Swingle, M.R.; Honkanen, R.E. Development and validation of a robust and sensitive assay for the discovery of selective inhibitors for serine/threonine protein phosphatases PP1α (PPP1C) and PP5 (PPP5C). Assay Drug Dev. Technol., 2014, 12(8), 481-496.
[http://dx.doi.org/10.1089/adt.2014.603] [PMID: 25383722]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy