Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Sensitive Electrochemical Monitoring of Piroxicam in Pharmaceuticals Using Carbon Ionic Liquid Electrode

Author(s): Ghazal Ghobadpour, Fatemeh Farjami* and Farshid Fasihi

Volume 15, Issue 1, 2019

Page: [45 - 50] Pages: 6

DOI: 10.2174/1573412914666180427155235

Price: $65

Abstract

Background: Piroxicam is a non-steroidal anti-inflammatory drug. The prevailing clinical use and investigation of piroxicam necessitate a rapid and sensitive method for its determination. A carbon ionic liquid electrode, fabricated using graphite and the ionic liquid 1-octylpyridinium hexafluorophosphate (OPFP) was used as an electrochemical sensor for piroxicam determination.

Methods: The surface of the proposed electrode was characterized by scanning electron microscopy. Cyclic voltammetry (CV) was applied to study the oxidation of piroxicam and to acquire information about the reaction mechanism. Differential pulse voltammetry was also used as an analytical technique for quantification of the sub-micromolar concentration of piroxicam.

Results: One oxidation peak at 0.55V was observed at CILE. The oxidation peak at the CPE was weak, while the response was notably increased at the CILE. The proposed electrode exhibited interesting sensitivity towards the determination of piroxicam and the anodic peak current versus piroxicam concentration was linear in the ranges of 0.2-60 µM. The detection limit of 40 nM was achieved.

Conclusion: The electroxidation process was irreversible and revealed adsorption controlled behavior. The method was successfully applied for the determination of piroxicam content in pharmaceutical samples.

Keywords: Carbon paste electrode, cyclic voltammetry, differential pulse voltammetry, ionic liquid, non-steroidal antiinflammatory drugs, piroxicam.

Graphical Abstract
[1]
Hasnain, H.; Ali, H.; Tariq, A.; Zafar, F.; Naveed, S. NSAIDs; safety and risk assessment in CVS events, comparisons and facts. J. Bioequiv. Availab., 2016, 8, 84-88.
[2]
lshizaki, T.; Nomura, T.; Abe, T. Pharmacokinetics of piroxicam, a new nonsteroidal anti-inflammatory agent, under fasting and postprandial states in man. J. Pharmacokinet. Biopharm., 1979, 7, 369-381.
[3]
Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem., 2001, 76, 1895-1904.
[4]
Boudinot, S.G.; Funderburang, E.D.; Boudinot, F.D. Effects of age on the pharmacokinetics of piroxicam in rats. J. Pharm. Sci., 1993, 82, 254-257.
[5]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24, 121-132.
[6]
Bartsch, H.; Eiper, A.; Kopelent-Frank, H. Stability indicating assays for the determination of piroxicam-comparison of methods. J. Pharm. Biomed. Anal., 1999, 20, 531-541.
[7]
Milligan, P.A. Determination of piroxicam and its major metabolites in the plasma, urine and bile of humans by highperformance liquid chromatography. J. Chromatogr. B, 1992, 576, 121-128.
[8]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic and clinical pharmacology, 12th ed; McGraw-Hill Medical: New York, 2012.
[9]
Yua, F.; Zhang, Y.; Chena, F.; Chen, L. Chemiluminescence method for the determination of piroxicam by the enhancement of the tris-(4,7-diphenyl-1,10- phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–cerium(IV) system and its application. Luminescence, 2009, 24, 50-54.
[10]
Sanchez-Pedreno, C.; Garcia, M.S.; Albero, M.I.; Rodriguez, J. Flow-injection spectrophotometric determination of piroxicam. J. Pharm. Biomed. Anal., 1993, 11, 933-938.
[11]
Amin, A.S. Spectrophotometric determination of piroxicam and tenoxicam in pharmaceutical formulations using alizarin. J. Pharm. Biomed. Anal., 2002, 29, 729-736.
[12]
Nagaralli, B.S.; Seetharamappa, J.; Melwanki, M.B. Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 29, 859-864.
[13]
Amin, A.S.; Dessouki, H.A.; Khalil, K.M. Indirect spectrophotometric determination of piroxicam and tenoxicam through oxidation with potassium permanganate. Bull. Chem. Soc. Ethiop., 2010, 24, 121-126.
[14]
Nepote, A.J.; Vera-Candiotti, L.; Williner, M.R.; Damiani, P.C.; Olivieri, A.C. Development and validation of chemometrics-assisted spectrophotometry and micellar electrokinetic chromatography for the determination of four-component pharmaceuticals. Anal. Chim. Acta, 2003, 489, 77-84.
[15]
Pascual-Reguera, M.I.; Ayora-Canada, M.J.; Ruiz, M.S.C. Determination of piroxicam by solid-phase spectrophotometry in a continuous flow system. Eur. J. Pharm. Sci., 2002, 15, 179-184.
[16]
Bunaciu, A.A.; Fleschin, S. Aboul-Enein. H.Y. A new method for a quantitative determination of piroxicam in pharmaceutical formulations using FT-IR spectrometry. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11, 262-266.
[17]
Dixon, J.S.; Lowe, J.R. Rapid method for the determination of either piroxicam or tenoxicam in plasma using high-performance liquid chromatography. J. Chromatogr., 1984, 310, 455-459.
[18]
Cerretani, D.; Micheli, L.; Fiaschi, A.I.; Giorgi, G. Rapid and sensitive plasma, muscle and chromatography determination of piroxicam in rat skin by high-performance liquid. J. Chromatogr., 1993, 614, 103-108.
[19]
Avgerinos, A.; Axarlis, S.; Dragatsis, J.; Karidas, T.; Malamataris, S. Extractionless high-performance liquid chromatographic method for the simultaneous determination of piroxicam and 5′-hydroxypiroxicam in human plasma and urine. J. Chromatogr. B., 1995, 673, 142-146.
[20]
Dadashzadeh, S.; Vali, A.M.; Rezagholi, N. LC determination of piroxicam in human plasma. J. Pharm. Biomed. Anal., 2002, 28, 1201-1204.
[21]
Song, X.Y.; Shi, Y.P.; Chen, J. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography. Talanta, 2012, 100, 153-161.
[22]
Shirako, J.; Kawasaki, M.; Komine, K.; Kunisue, Y.; Terada, M.; Sasaki, C.; Irie, W.; Murakami, C.; Tonooka, K.; Tomobe, K.; Shinozuka, T. Simultaneous determination for oxicam non-steroidal anti-inflammatory drugs in human serum by liquid chromatography–tandem mass spectrometry. Forensic Sci. Int., 2013, 227, 100-102.
[23]
Dowling, G.; Malone, E. Analytical strategy for the confirmatory analysis of the non-steroidal anti-inflammatory drugs firocoxib, propyphenazone, ramifenazone and piroxicam in bovine plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2011, 56(2), 359-365.
[24]
Kaynak, M.S.; Akgeyik, E.; Ates, M.; Celebier, M. Sahin. S. Development of HPLC methods for individual determination of 20 active pharmaceutical ingredients for ussing-chamber studies. Curr. Pharm. Anal., 2017, 13, 145-153.
[25]
Arancibia, J.A.; Escandar, G.M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60, 1113-1121.
[26]
Escandar, G.M.; Bystol, A.J.; Campiglia, A.D. Spectrofluorimetric method for the determination of piroxicam and pyridoxine. Anal. Chim. Acta, 2002, 466, 275-283.
[27]
Chen, Y.; Wu, S. Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-inflammatory drugs in pharmaceuticals. Anal. Bioanal. Chem., 2005, 381, 907-912.
[28]
Boone, C.M.; Douma, J.W.; Franke, J.P.; de Zeeuw, R.A.; Ensing, K. Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. Forensic Sci. Int., 2001, 121, 89-96.
[29]
Dal, A.G.; Oktayer, Z.; Doğrukol-Ak, D. Validated method for the determination of piroxicam by capillary zone electrophoresis and its application to tablets. J. Anal. Methods Chem., 2014, 2014, 1-7.
[30]
Crecelius, A.; Clench, M.R.; Richards, D.S.; Parr, V. Quantitative determination of piroxicam by TLC-MALDI TOF MS. J. Pharm. Biomed. Anal., 2004, 35, 31-39.
[31]
Abo El-Maali, N.; Hassan, R.M. Electrooxidation and determination of the anti-inflammatory drugs piroxicam and tenoxicam at the carbon paste electrode. Bioelectroch. Bioener., 1990, 24, 155-163.
[32]
Paniagua, A.R.; Vazquez, M.D.; Tascon, M.L.; Sanchez-Batanero, P. Voltammetric determination of piroxicam after incorporation within carbon pastes. Electroanalysis, 1994, 6, 265-268.
[33]
Shaikh, T. uddin, S.; Talpur, F.N.; Khaskeli, A.R.; Agheem, M.H.; Shah, M.R.; Sherazi, T.H.; Siddiqui, S. Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode. J. Electron. Mater., 2017, 49, 5957-5966.
[34]
de Macêdo, I.Y.L.; Alecrim, M.F.; Garcia, L.F.; de Souza, A.R.; dos Santos, W.T.P.; de Souza Gil, E.; Cubillana-Aguilera, L.M.; Palacios-Santander, J.M. Differential pulse voltammetric determination of piroxicam on lanthanide ferric oxide nanoparticles-carbon paste modified electrode. Curr. Pharm. Anal., 2018, 14(3), 271-276.
[35]
Maleki, N.; Safavi, A.; Tajabadi, F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem., 2006, 78, 3820-3826.
[36]
Safavi, A.; Ahmadi, R.; Mahyari, F.A. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode. Amino Acids, 2014, 46, 1079-1085.
[37]
Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem., 2011, 656, 2-16.
[38]
Fisicaro, E.; Ghiozzi, A.; Pelizzetti, E.; Viscardi, G.; Quagliotto, P.L. Effect of the counterion on thermodynamic properties of aqueous micellar solutions of 1-(3,3,4,4,5,5,6,6,6-nonafluorohexyl) pyridinium halides. J. Colloid Interface Sci., 1996, 182, 549-557.
[39]
Kachoosangi, R.T.; Musameh, M.M.; Abu-Yousef, I.; Yousef, J.M.; Kanan, S.M.; Xiao, L.; Davies, S.G.; Russell, A.; Compton, R.G. Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem., 2009, 81, 435-442.
[40]
Aberoomand, A.P.; Farjami, F.; Saber, T.M.; Eslami, E. A carbon nanocomposite ionic liquid electrode based on montmorillonite nanoclay for sensitive voltammetric determination of thioridazine. Int. J. Electrochem. Sci., 2014, 9, 2535-2547.
[41]
Fasihi, F.; Farjami, F.; Shafiee, G.H. Highly sensitive determination of perphenazine on a carbon nanocomposite ionic liquid electrode. RSC Adv., 2015, 5, 95087-95095.
[42]
Radi, A.; El Ries, M.A.; El-Anwar, F.; El-Sherif, Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal. Lett., 2001, 35, 739-748.
[43]
Harrison, J.A.; Khan, Z.A. The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem., 1970, 28, 131-138.
[44]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, second ed; Wiley: New York, 2001.

© 2024 Bentham Science Publishers | Privacy Policy