Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Thiazole: A Privileged Motif in Marine Natural Products

Author(s): Sunil Kumar* and Ranjana Aggarwal

Volume 16, Issue 1, 2019

Page: [26 - 34] Pages: 9

DOI: 10.2174/1570193X15666180412152743

Price: $65

Open Access Journals Promotions 2
Abstract

Marine natural products have proven to be a rich source of drugs and drug leads. These natural products are secondary metabolites and show biological activity against bacteria, fungi and viruses. Natural products containing thiazole ring occur often in marine sources. They exhibit diverse and remarkable biological activities, including antitumor, antibacterial, anti-inflammatory and cytotoxic activities, to name a few. This review surveys the natural thiazole derivatives that have been isolated from marine microorganisms, with emphasis on biological implications in last three decades.

Keywords: Marine natural products, thiazoles, alkaloids, cytotoxic activity, privileged, secondary metabolite.

Graphical Abstract
[1]
Kumar, S.; Patil, M.T.; Kataria, R.; Salunke, D.B. 11. Thiazole: A privileged scaffold in drug discovery.In: Chemical Drug Design; , , Gupta, G.K.; Kumar, V., Eds.;De Gruyter: Berlin, pp. , pp. 243-282.
[2]
Umezawa, H.; Maeda, K.; Takeuchi, T.; Okami, Y. New antibiotics, Bleomycin A and B. J. Antibiot., 1966, 19, 200-209.
[3]
Twentyman, P.R. Bleomycin-mode of action with particular reference to the cell cycle. Pharmacol. Ther., 1983, 23, 417-441.
[4]
(a) Stubbe, J.; Kozarich, J.W.; Wu, W.; Vanderwall, D.E. Bleomycins: A structural model for specificity, binding, and double strand cleavage. Acc. Chem. Res., 1996, 29, 322-330.
(b) Hecht, S.M. Bleomycin: New perspectives on the mechanism of action. J. Nat. Prod., 2000, 63, 158-168.
(c) Aso, M.; Kondo, M.; Suemune, H.; Hecht, S.M. Chemistry of the bleomycin-induced alkali-labile DNA lesion. J. Am. Chem. Soc., 1999, 121, 9023-9033.
[5]
Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev., 2005, 105, 685-714.
[6]
(a) Kettenring, J.; Colombo, L.; Ferrari, P.; Tavecchia, P.; Nebuloni, M.; Vekey, K.; Gallo, G.G.; Selva, E. Antibiotic GE2270A: A novel inhibitor of bacterial protein synthesis. II. Structure elucidation. J. Antibiot., 1991, 44, 702-715.
(b) Suzumura, K.I.; Yokoi, T.; Funatsu, M.; Nagai, K.; Tanaka, K.; Zhang, H.; Suzuki, K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge II. Structure elucidation. J. Antibiot., 2003, 56, 129-134.
[7]
Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new bithiazole-type antibiotics from the myxobacterium Cystobacterfuscus. J. Antibiot., 1998, 51, 275-281.
[8]
Suzuki, Y.; Ojika, M.; Sakagami, Y.; Fudou, R.; Yamanaka, S. Cystothiazoles C-F, new bithiazole-type antibiotics from the Myxobacterium cystobacterfuscus. Tetrahedron, 1998, 54, 11399-11404.
[9]
Orjala, J.; Gerwick, W.H. Barbamide, a chlorinated metabolite with molluscicidal activity from the Caribbean cyanobacterium Lyngbya majuscule. J. Nat. Prod., 1996, 59(4), 427-430.
[10]
Clark, W.D.; Crews, P. A novel chlorinated ketide amino acid, herbamide A, from the marine sponge Dysideaherbacea. Tetrahedron Lett., 1995, 36, 1185-1188.
[11]
Tan, L.T.; Sitachitta, N.; Gerwick, W.H. The Guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod., 2003, 66, 764-771.
[12]
Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium lyngbyaconfervoides. J. Nat. Prod., 2002, 65, 29-31.
[13]
Luesch, H.; Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. U longamides A−F, New β-amino acid-containing cyclodepsipeptides from Palauan collections of the marine cyanobacteriumLyngbya sp. J. Nat. Prod., 2002, 65, 996-1000.
[14]
Williams, P.G.; Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Continuing studies on the Cyanobacterium Lyngbya sp.: Isolation and structure determination of 15-norlyngbyapeptin A and lyngbyabellin D. J. Nat. Prod., 2003, 66, 595-598.
[15]
Marquez, B.L.; Watts, K.S.; Yokochi, A.; Roberts, M.A.; Pinard, P.V.; Jimenez, J.I.; Hamel, E.; Scheuer, P.J.; Gerwick, W.H. Structure and absolute stereochemistry of hectochlorin, a potent stimulator of actin assembly. J. Nat. Prod., 2002, 65, 866-871.
[16]
Suntornchashwej, S.; Chaichit, N.; Isobe, M.; Suwanborirux, K. Hectochlorin and morpholinederivatives from the Thai sea hare. Bursatellaleachii. J. Nat. Prod, 2005, 68, 951-955.
[17]
Sudek, S.; Haygood, M.G.; Youssef, D.T.A.; Schmidt, E.W. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl. Environ. Microbiol., 2006, 72, 4382-4387.
[18]
Schmidt, E.W.; Nelson, J.T.; Rasko, D.A.; Sudek, S.; Eisen, J.A.; Haygood, M.G.; Ravel, J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. USA, 2005, 102, 7315-7320.
[19]
Aaron, M.S.; Richard, A.L.; David, C.R. Bacillamides from a hypersaline microbial mat bacterium. J. Nat. Prod., 2007, 70, 1793-1795.
[20]
Yu, L.; Li, Z.; Peng, C.; Li, Z.; Guo, Y. Neobacillamide A, a novel thiazole-containing alkaloid from the marine bacterium Bacillus vallismortis C89, associated with South China Sea Sponge Dysideaavar. Helv. Chim. Acta, 2009, 92, 607-612.
[21]
Matsuo, Y.; Kanoh, K.; Imagawa, H.; Adachi, K.; Nishizawa, M.; Shizuri, Y. Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. J. Antibiot., 2007, 60, 256-260.
[22]
Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Micromide and guamamide: Cytotoxic alkaloids from a species of the marine cyanobacterium Symploca. J. Nat. Prod., 2004, 67, 49-53.
[23]
Linington, R.G.; González, J.; Ureña, L.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the panamanian marine Cyanobacterium oscillatoria sp. J. Nat. Prod., 2007, 70, 397-401.
[24]
Taori, K.; Paul, V.J.; Luesch, H. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J. Am. Chem. Soc., 2008, 130, 1806-1807.
[25]
Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Hoiamide A, a sodium channel activator of unusual architecture from a consortium of two Papua New Guinea cyanobacteria. Chem. Biol., 2009, 16, 893-906.
[26]
Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Hoiamide A, a sodium channel activator of unusual architecture from a consortium of two Papua New Guinea cyanobacteria. Chem. Biol., 2009, 16, 1208.
[27]
Portmann, C.; Blom, J.F.; Gademann, K.; Jüttner, F. Aerucyclamides A and B: Isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J. Nat. Prod., 2008, 71, 1193-1196.
[28]
Portmann, C.; Blom, J.F.; Kaiser, M.; Brun, R.; Jüttner, F.; Gademann, K. Isolation of Aerucyclamides C and D and structure revision of Microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod., 2008, 71, 1891-1896.
[29]
Pettit, G.R.; Kamano, Y.; Herald, C.L.; Tuinman, A.A.; Boettner, F.E.; Kizu, H.; Schmidt, J.M.; Baczynkyji, L.; Tomer, K.B.; Bontems, R.J. The isolation and structure of a remarkable marine animal antineoplastic constituent: Dolastatin 10. J. Am. Chem. Soc., 1987, 109, 6883-6885.
[30]
Bai, R.; Pettit, G.R.; Hamel, E. Binding of Dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J. Biol. Chem., 1990, 265, 17141-17149.
[31]
Hamel, E. Interactions of antimitotic peptides and depsipeptides with tubulin. Biopolymers, 2002, 66, 142-160.
[32]
Pettit, G.R. The dolastatins. Fortschr. Chem. Org. Naturst., 1997, 70, 1-79.
[33]
Vaishampayan, H.; Glode, M.; Du, W.; Kraft, A.; Hudes, G.; Wright, J.; Hussain, M. Phase II study of Dolastatin-10 in patients with hormone-refractory metastatic prostate adenocarcinoma. Clin. Cancer Res., 2000, 6, 4205-4208.
[34]
Margolin, K.; Longmate, J.; Synold, T.W.; Gandara, D.R.; Weber, J.; Gonzalez, R.; Johansen, M.J.; Newman, R.; Doroshow, J.H. Dolastatin-10 in metastatic melanoma: A phase II and pharmokinetic trial of the California Cancer Consortium. Invest. New Drugs, 2001, 19, 335-340.
[35]
Harrigan, G.G.; Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Nagle, D.E.; Paul, V.J.; Mooberry, S.L.; Corbett, T.H.; Valeriote, F.A. Symplostatin 1: A Dolastatin 10 analogue from the marine cyanobacterium Symplocahydnoides. J. Nat. Prod., 1998, 61, 1075-1077.
[36]
Kazlauskas, R.; Lidgard, R.O.; Wells, R.J.; Vetter, W. A novel hexachloro-metabolite from the sponge Dysideaherbacea. Tetrahedron Lett., 1977, 18, 3183-3186.
[37]
Beaumont, S.; Ilardi, E.A.; Monroe, L.R.; Zakarian, A. Valence tautomerism in titanium enolates: Catalytic radical haloalkylation and application in the total synthesis of neodysidenin. J. Am. Chem. Soc., 2010, 132, 1482-1483.
[38]
Biskupiak, J.E.; Ireland, C.M. Revised absolute configuration of dysidenin and isodysidenin. Tetrahedron Lett., 1984, 25, 2935-2936.
[39]
Sande, J.V.; Deneubourg, F.; Beauwens, R.; Braekman, J.C.; Daloze, D.; Dumont, J.E. Inhibition of iodide transport in thyroid cells by dysidenin, a marine toxin, and some of its analogs. Mol. Pharmacol., 1990, 37, 583-589.
[40]
Flatt, P.; Gautschi, J.; Thacker, R.; Musafija-Girt, M.; Crews, P.; Gerwick, W. Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoriaspongeliae by CARD-FISH analysis. Mar. Biol. (Berl), 2005, 147, 761-774.
[41]
Carroll, A.R.; Coll, J.C.; Bourne, D.J.; MacLeod, J.K.; Ireland, C.M.; Bowden, B.F. Patellins 1-6 and trunkamide A: Novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians, Lissoclinum sp. Aust. J. Chem., 1996, 49, 659-667.
[42]
Rashid, M.A.; Gustafson, K.R.; Il, J.H.C.; Boyd, M.R. Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian lissoclinum patella. J. Nat. Prod., 1995, 58, 594-597.
[43]
Hamamoto, Y.; Endo, M.; Nakagawa, M.; Nakanishi, T.; Mizukawa, K. A new cyclic peptide, ascidiacyclamide, isolated from ascidian. J. Chem. Soc. Chem. Commun., 1983, 323-324.
[44]
McDonald, L.A.; Ireland, C.M.; Patellamide, E. A new cyclic peptide from the ascidian Lissoclinumpatella. J. Nat. Prod., 1992, 55, 376-379.
[45]
Ireland, C.M.; Durso, A.R., Jr; Newman, R.A.; Hacker, M.P. Antineoplastic cyclic peptides from the marine tunicate Lissoclinum patella. J. Org. Chem., 1982, 47, 1807-1811.
[46]
(a) Hamada, Y.; Shibata, M.; Shiori, T. New methods and reagents in organic synthesis. 58: A synthesis of patellamide A, a cytotoxic cyclic peptide from a tunicate. Revision of its proposed structure. Tetrahedron Lett., 1985, 26, 6501-6504.
(b) Reynaga, P.G.; Nieuwenhze, M.S.V. A new total synthesis of Patellamide A. Org. Lett., 2008, 10, 4621-4623.
[47]
Schmidt, E.W.; Nelson, J.T.; Rasko, D.A.; Sudek, S.; Eisen, J.A.; Haygood, M.G. Ravel, Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. J. Proc. Natl. Acad. Sci. USA, 2005, 102, 7315-7320.
[48]
(a) Gouiffès, D.; Moreau, S.; Helbecque, N.; Bernier, J.L.; Henichart, J.P.; Barbin, Y.; Laurent, D.; Verbist, J.F. Proton nuclear magnetic study of bistramide A, a new cytotoxic drug isolated from Lissoclinum Bistratum sluiter. Tetrahedron, 1988, 44, 451-459.
(b) Gouiffès, D.; Jugé, M.; Grimaud, N.; Welin, L.; Barbin, Y.; Laurent, D.; Roussakis, C.; Hénichart, J.P.; Verbist, J.F. Bistramide A, a new toxin from the urochordata Lissoclinum bistratum sluiter: isolation and preliminary characterization. Toxicon, 1988, 26, 1129-1136.
[49]
(a) Romero, F.; Malet, L.; Cañedo, M.L.; Cuevas, C.; Reyes, F. WO Patent 000880 A2, 2005.
(b) Kanoh, K.; Matsuo, Y.; Adachi, K.; Imagawa, H.; Nishizawa, M.; Shizuri, Y. Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J. Antibiot., 2005, 58, 289-292.
[50]
Harrigan, G.G.; Goetz, G.H.; Luesch, H.; Yang, S.; Likos, J. Dysideaprolines A-F and barbaleucamides A-B, novel polychlorinated compounds from a Dysidea species. J. Nat. Prod., 2001, 64, 1133-1138.
[51]
Stapleton, B.L.; Cameron, G.M.; Garson, M.J. New chlorinated peptide from the tropical marine sponge Dysidea sp. Tetrahedron, 2001, 57, 4603-4607.
[52]
Arda, A.; Rodriguez, J.; Nieto, R.M.; Bassarello, C.; Gomez-Paloma, L.; Bifulco, G.; Jimenez, C. NMR J-based analysis of nitrogen-containing moieties and application to dysithiazolamide, a new polychlorinated dipeptide from Dysidea sp. Tetrahedron, 2005, 61, 10093-10098.
[53]
(a) Donia, M.S.; Wang, B.; Dunbar, D.C.; Desai, P.V.; Patny, A.; Avery, M.; Hamann, M.T. Mollamides B and C, cyclic hexapeptides from the indonesian tunicate Didemnummolle. J. Nat. Prod., 2008, 71, 941-945.
(b) Fritch, P.C.; Wipf, P. Total synthesis and assignment of configuration of Lissoclinamide 7. J. Am. Chem. Soc., 1996, 118, 12358-12367.
[54]
Kehraus, S.; Konig, G.M.; Wright, A.D.; Woerheide, G.; Leucamide, A. A new cytotoxic heptapeptide from the Australian sponge Leucettamicroraphis. J. Org. Chem., 2002, 67, 4989-4992.
[55]
Dalisay, D.S.; Rogers, E.W.; Edison, A.S.; Molinski, T.F. Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchussanguineus. J. Nat. Prod., 2009, 72, 732-738.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy