[1]
Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: current status and perspectives. Med. Chem. Res., 2015, 24, 2771-2798.
[2]
Ventura, T.L.B.; Silva, D.R.S.; Lassounskaia, E.; Edmulson, M.J.; Muzitano, M.F.; de Oliveira, R.R. Coumarine Analogues with Antimycobacterial and Immunomodulatory Activity. Curr. Bioact. Compd., 2015, 11, 109-115.
[3]
Pérez-Cruz, F.; Vazquez-Rodriguez, S.; Matos, M.J.; Herrera-Morales, A.; Villamena, F.A.; Das, A.; Gopalakrishnan, B.; Olea-Azar, C.; Santana, L.; Uriarte, E. Synthesis and electrochemical and biological studies of novel coumarin-chalcone hybrid compounds. J. Med. Chem., 2013, 56(15), 6136-6145.
[4]
Kaur, A.; Haghighatbin, M.A.; Hogan, C.F.; New, E.J. A FRET-based ratiometric redox probe for detecting oxidative stress by confocal microscopy, FLIM and flow cytometry. Chem. Commun. (Camb.), 2015, 51(52), 10510-10513.
[5]
Bhila, V.G.; Patel, C.V.; Patel, N.H.; Brahmbhatt, D.I. One pot synthesis of some novel coumarins containing 5-(substituted-2-hydroxybenzoyl) pyridine as a new class of antimicrobial and antituberculosis agents. Med. Chem. Res., 2013, 22, 4338-4346.
[6]
Krishna, C.; Bhargavi, M.V.; Rao, C.P.; Krupadanam, G.L.D. Synthesis and antimicrobial assessment of novel coumarins featuring 1,2,4-oxadiazole. Med. Chem. Res., 2015, 24, 3743-3751.
[7]
Yusufzai, S.K.; Osman, H.; Khan, M.S.; Mohamad, S.; Sulaiman, O.; Parumasivam, T.; Gansau, J.A.; Johansah, N. Noviany. Design, characterization, in vitro antibacterial, antitubercular evaluation and structure–activity relationships of new hydrazinyl thiazolyl coumarin derivatives. Med. Chem. Res., 2017, 26, 1139-1148.
[8]
Peng, X.M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[9]
Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Coumarin: A Privileged Scaffold for the Design and Development of Antineurodegenerative Agents. Chem. Biol. Drug Des., 2016, 87(1), 21-38.
[10]
Amin, K.M.; Abou-Seri, S.M.; Awadallah, F.M.; Eissa, A.A.M.; Hassan, G.S.; Abdulla, M.M. Synthesis and anticancer activity of some 8-substituted-7-methoxy-2H-chromen-2-one derivatives toward hepatocellular carcinoma HepG2 cells. Eur. J. Med. Chem., 2015, 90, 221-231.
[11]
Lab, H.B.; Giri, R.R.; Chovatiya, Y.L.; Brahmbhatt, D.I. Synthesis of modified pyridine and bipyridine substituted coumarins as potent antimicrobial agents. J. Serb. Chem. Soc., 2015, 80, 739-747.
[12]
Amin, K.M.; Awadalla, F.M.; Eissa, A.A.M.; Abou-Seri, S.M.; Hassan, G.S. Design, synthesis and vasorelaxant evaluation of novel coumarin-pyrimidine hybrids. Bioorg. Med. Chem., 2011, 19(20), 6087-6097.
[13]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and antiinflammatory activity of coumarin derivatives. J. Med. Chem., 2005, 48(20), 6400-6408.
[14]
Gupta, W.N.; Sharima, B.R.; Avora, R.B. Pharmacologically active coumarin derivatives. I. Mannich bases from umbelliferone and 4-methylumbelliferone. J. Sci. Ind. Res. (India), 1961, 20B, 300-301.
[15]
Molho, D.; Boschetti, E. (1962) 7-Hydroxy-8-(dialkylaminomethyl)-coumarins. Fr Pat 1,310,535, p 7. CA (Edinb.), 1963, (58), 12517f.
[16]
Sandhu, S.; Bansal, Y.; Silakari, O.; Bansal, G. Coumarin hybrids as novel therapeutic agents. Bioorg. Med. Chem., 2014, 22(15), 3806-3814.
[17]
Roman, G. Mannich bases in medicinal chemistry and drug design. Eur. J. Med. Chem., 2015, 89, 743-816.
[18]
Gaudino, E.C.; Tagliapietra, S.; Martina, K.; Palmisano, G.; Cravotto, G. Recent advances and perspectives in the synthesis of bioactive coumarins. RSC Advances, 2016, 6, 46394-46405.
[19]
Lipeeva, A.V.; Khvostov, M.V.; Baev, D.S.; Shakirov, M.M.; Tolstikova, T.G.; Shults, E.E. Synthesis, in vivo anticoagulant evaluation and molecular docking studies of new groups of bicoumarins obtained from furocoumarin peucedanin. Med. Chem., 2016, 12(7), 674-683.
[20]
Najmanová, I.; Doseděl, M.; Hrdina, R.; Anzenbacher, P.; Filipský, T.; Říha, M.; Mladěnka, P. Cardiovascular effects of coumarins besides their antioxidant activity. Curr. Top. Med. Chem., 2015, 15(9), 830-849.
[21]
Fusi, F.; Sgaragli, G.; Ha, M.; Cuong, N.M.; Saponara, S. Mechanism of osthole inhibition of vascular Ca(v)1.2 current. Eur. J. Pharmacol., 2012, 680(1-3), 22-27.
[22]
Cuong, N.M.; Khanh, P.N.; Duc, H.V.; Huong, T.T.; Tai, B.H.; Binh, N.Q.; Durante, M.; Fusi, F. Vasorelaxing activity of two coumarins from Murraya paniculata leaves. Biol. Pharm. Bull., 2014, 37(4), 694-697.
[23]
Zawadowski, T.; Kossakowski, J. Synthesis of aminoalkanols derivatives of 6,7-dimethoxy-2H-1-benzopyran-2-one with antiarrhythmic activity. Acta Pol. Pharm., 1993, 50(6), 453-455.
[24]
Watanuki, S.; Matsuura, K.; Tomura, Y.; Okada, M.; Okazaki, T.; Ohta, M.; Tsukamoto, S. Synthesis and pharmacological evaluation of 1-isopropyl-1,2,3,4-tetrahydroisoquinoline derivatives as novel antihypertensive agents. Chem. Pharm. Bull. (Tokyo), 2011, 59(8), 1029-1037.
[25]
Ogiyama, T.; Yonezawa, K.; Inoue, M.; Watanabe, T.; Sugano, Y.; Gotoh, T.; Kiso, T.; Koakutsu, A.; Kakimoto, S.; Shishikura, J. Discovery of a 1-isopropyltetrahydroisoquinoline derivative as an orally active N-type calcium channel blocker for neuropathic pain. Bioorg. Med. Chem., 2015, 23(15), 4624-4637.
[26]
Tibbs, G.R.; Posson, D.J.; Goldstein, P.A. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol. Sci., 2016, 37(7), 522-542.
[27]
Osadchii, S.A.; Shul’ts, E.E.; Shakirov, M.M.; Tolstikov, G.A. Study of Plant Coumarins. 1. Transformations of peucedanin. Russ. Chem. Bull., 2006, 55, 375-379.
[28]
Shults, E.E.; Petrova, T.N.; Shakirov, M.M.; Chernyak, E.I.; Pokrovskii, L.M.; Nekhoroshev, S.A.; Tolstikov, G.A. Coumarins from the roots of Peucedanum morisonii Bess. Chem. Sust. Dev., 2003, 11, 683-691.
[29]
Bagryanskaya, I.Y.; Gatilov, Y.V.; Osadchii, S.A.; Martynov, A.A.; Shakirov, M.M.; Shul’ts, E.E.; Tolstikov, G.A. Plant Coumarins. 2. Beckmann rearrangement of oreoselone E- and Z-oximes. Chem. Nat. Compd., 2005, 41, 657-662.
[30]
Zhurakulov, S.N.; Vinogradova, V.I.; Levkovich, M.G. Synthesis of 1-aryltetrahydroisoquinoline alkaloids and their analogs. Chem. Nat. Compd., 2013, 49, 70-74.
[31]
Ábrányi-Balogh, P.; Földesi, T.; Milen, M. Total synthesis of racemic 1-aryl-tetrahydroisoquinoline alkaloids. Monatsh. Chem., 2015, 146, 1907-1912.
[32]
Khabriev, R.U. Preclinical researches of effectiveness of the pharmaceuticals intended for treatment of cardiovascular system diseases. In: Handbook of experimental research to clinical substances; Medicine: Moscow, 2005; pp. 393-476.
[33]
Tramontini, M. Advances in the Chemistry of Mannich Bases Synthesis, 1973, 12, 703-775.
[34]
Tramontini, M.; Angiolini, L. Further advances in the chemistry of Mannich bases. Tetrahedron, 1990, 46, 1791-1837.
[35]
Khilya, O.V.; Shablykina, O.V.; Frasinyuk, M.S.; Ishchenko, V.V.; Khilya, V.P. 3-(2-Pyridyl)coumarins. Chem. Nat. Compd., 2005, 41, 523-528.
[36]
Bondarenko, S.P.; Frasinyuk, M.S.; Vinogradova, V.I.; Khilya, V.P. Synthesis of flavonoid derivatives of cytisine. 1. Aminomethylation of 7-hydroxy-3-arylcoumarins. Chem. Nat. Compd., 2010, 46, 771-773.
[37]
Lipeeva, A.V.; Shul’ts, E.E.; Shakirov, M.M.; Tolstikov, G.A. Plant coumarins: Suzuki reaction in the synthesis of 3-aryl(hetaryl)furocoumarins. Russ. J. Org. Chem., 2011, 47, 1404-1409.