Review Article

被忽视疾病潜在药物候选者设计中的特权结构

卷 26, 期 23, 2019

页: [4323 - 4354] 页: 32

弟呕挨: 10.2174/0929867324666171023163752

价格: $65

摘要

背景:特权基序在广泛的生物活性化合物中反复出现,这些化合物可达到不同的药物靶标和途径,并可能成为接触被忽视疾病领域潜在候选人的合适起点。 当前用于治疗这些疾病的疗法是基于缺乏所需功效,负担得起的合成方法并允许产生抗性菌株的方法的药物。 由于缺乏财务回报,只有极少数的制药公司一直在投资研究被忽视疾病的新疗法。 方法:基于2002年至2016年的文献检索,我们讨论了在对某些被忽略的疾病有效的化合物中,六个邻位特异的化合物(特别是邻苯二甲酰亚胺,靛红,吲哚,硫代半碳酰胺,噻唑和噻唑烷酮)如何特别出现。 结果:观察到人们尤其关注南美锥虫病,疟疾,结核病,血吸虫病,利什曼病,登革热,非洲昏睡病(人类非洲锥虫病-HAT)和弓形虫病。 可以证实,在ND中,抗锥虫活性和抗疟原虫活性是搜索最多的。 此外,硫半脲部分似乎是用途最广且经常探索的支架。 同样,在ND领域也已探索了邻苯二甲酰亚胺,靛红,噻唑和噻唑烷酮核。 结论:某些描述的化合物似乎是有前途的候选药物,而另一些可能代表了对新的先导化合物的研究的宝贵启示。

关键词: 特有的结构,邻苯二甲酰亚胺,isatine,吲哚,thiosemicarbazone,噻唑,噻唑烷酮抗原虫化学疗法,利什曼原虫病,疟原虫,锥虫,抗寄生虫药。

[1]
Bongarzone, S.; Bolognesi, M.L. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin. Drug Discov., 2011, 6(3), 251-268.
[http://dx.doi.org/10.1517/17460441.2011.550914] [PMID: 22647203]
[2]
Evans, B.E.; Rittle, K.E.; Bock, M.G.; DiPardo, R.M.; Freidinger, R.M.; Whitter, W.L.; Lundell, G.F.; Veber, D.F.; Anderson, P.S.; Chang, R.S. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem., 1988, 31(12), 2235-2246.
[http://dx.doi.org/10.1021/jm00120a002] [PMID: 2848124]
[3]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[4]
Costantino, L.; Barlocco, D. Privileged structures as leads in medicinal chemistry. Curr. Med. Chem., 2006, 13(1), 65-85.
[http://dx.doi.org/10.2174/092986706775197999] [PMID: 16457640]
[5]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[6]
Polanski, J.; Kurczyk, A.; Bak, A.; Musiol, R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem., 2012, 19(13), 1921-1945.
[http://dx.doi.org/10.2174/092986712800167356] [PMID: 22376032]
[7]
Goldberg, F.W.; Kettle, J.G.; Kogej, T.; Perry, M.W.; Tomkinson, N.P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today, 2015, 20(1), 11-17.
[http://dx.doi.org/10.1016/j.drudis.2014.09.023] [PMID: 25281855]
[8]
Chen, H.; Zhou, X.; Wang, A.; Zheng, Y.; Gao, Y.; Zhou, J. Evolutions in fragment-based drug design: the deconstruction-reconstruction approach. Drug Discov. Today, 2015, 20(1), 105-113.
[http://dx.doi.org/10.1016/j.drudis.2014.09.015] [PMID: 25263697]
[9]
Jhoti, H.; Williams, G.; Rees, D.C.; Murray, C.W. The ‘rule of three’ for fragment-based drug discovery: where are we now? Nat. Rev. Drug Discov., 2013, 12(8), 644-645.
[http://dx.doi.org/10.1038/nrd3926-c1] [PMID: 23845999]
[10]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H.A. ‘rule of three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[11]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[http://dx.doi.org/10.2174/0929867321666141106122628] [PMID: 25386820]
[12]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[13]
Morphy, R.; Rankovic, Z. Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des., 2009, 15(6), 587-600.
[http://dx.doi.org/10.2174/138161209787315594] [PMID: 19199984]
[14]
Espinoza-Fonseca, L.M. The benefits of the multi-target approach in drug design and discovery. Bioorg. Med. Chem., 2006, 14(4), 896-897.
[http://dx.doi.org/10.1016/j.bmc.2005.09.011] [PMID: 16203151]
[15]
Müller-Schiffmann, A.; Sticht, H.; Korth, C. Hybrid compounds: from simple combinations to nanomachines. BioDrugs, 2012, 26(1), 21-31.
[http://dx.doi.org/10.2165/11597630-000000000-00000] [PMID: 22239618]
[16]
Alanazi, A.M.; El-Azab, A.S.; Al-Suwaidan, I.A.; ElTahir, K.E.; Asiri, Y.A.; Abdel-Aziz, N.I.; Abdel-Aziz, A.A. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur. J. Med. Chem., 2015, 92, 115-123.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.039] [PMID: 25549551]
[17]
Kamiński, K.; Obniska, J.; Wiklik, B.; Atamanyuk, D. Synthesis and anticonvulsant properties of new acetamide derivatives of phthalimide, and its saturated cyclohexane and norbornene analogs. Eur. J. Med. Chem., 2011, 46(9), 4634-4641.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.043] [PMID: 21840629]
[18]
Akgün, H.; Karamelekoğlu, I.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Öktem, S.; Kocagöz, T. Synthesis and antimycobacterial activity of some phthalimide derivatives. Bioorg. Med. Chem., 2012, 20(13), 4149-4154.
[http://dx.doi.org/10.1016/j.bmc.2012.04.060] [PMID: 22633120]
[19]
Abdel-Aziz, A.A.; El-Azab, A.S.; Attia, S.M.; Al-Obaid, A.M.; Al-Omar, M.A.; El-Subbagh, H.I. Synthesis and biological evaluation of some novel cyclic-imides as hypoglycaemic, anti-hyperlipidemic agents. Eur. J. Med. Chem., 2011, 46(9), 4324-4329.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.002] [PMID: 21783284]
[20]
Leite, A.C.L.; Barbosa, F.F. Phthaloyl amino acids as anti-inflammatory and immunomodulatory prototypes. Med. Chem. Res., 2014, 23, 1701-1708.
[http://dx.doi.org/10.1007/s00044-013-0730-1]
[21]
Singh, G.; Saroa, A.; Girdhar, S.; Rani, S.; Sahoo, S.; Choquesillo-Lazarte, D. Synthesis, characterization, electronic absorption and antimicrobial studies of N-(silatranylpropyl)phthalimide derived from phthalic anhydride. Inorg. Chim. Acta, 2015, 427, 232-239.
[http://dx.doi.org/10.1016/j.ica.2015.01.011]
[22]
Elumalai, K.; Ali, M.A.; Elumalai, M.; Eluri, K.; Srinivasan, S.; Sivannan, S. Synthesis, characterization and biological evaluation of acetazolamide, cycloserine and isoniazid condensed some novel phthalimide derivatives. Int. J. Chem. Anal. Sci., 2013, 4, 57-61.
[http://dx.doi.org/10.1016/j.ijcas.2013.04.004]
[23]
Williams, R.; Manka, J.T.; Rodriguez, A.L.; Vinson, P.N.; Niswender, C.M.; Weaver, C.D.; Jones, C.K.; Conn, P.J.; Lindsley, C.W.; Stauffer, S.R. Synthesis and SAR of centrally active mGlu5 positive allosteric modulators based on an aryl acetylenic bicyclic lactam scaffold. Bioorg. Med. Chem. Lett., 2011, 21(5), 1350-1353.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.044] [PMID: 21315585]
[24]
Cardoso, M.V.; Moreira, D.R.; Oliveira Filho, G.B.; Cavalcanti, S.M.; Coelho, L.C.; Espíndola, J.W.; Gonzalez, L.R.; Rabello, M.M.; Hernandes, M.Z.; Ferreira, P.M.; Pessoa, C.; Alberto de Simone, C.; Guimarães, E.T.; Soares, M.B.; Leite, A.C. Design, synthesis and structure-activity relationship of phthalimides endowed with dual antiproliferative and immunomodulatory activities. Eur. J. Med. Chem., 2015, 96, 491-503.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.041] [PMID: 25942060]
[25]
Coêlho, L.C.D. Novel phthalimide derivatives with TNF-α and IL-1β expression inhibitory and apoptotic inducing properties. MedChemComm, 2014, 5, 758.
[http://dx.doi.org/10.1039/C4MD00070F]
[26]
da Costa, P.M.; da Costa, M.P.; Carvalho, A.A.; Cavalcanti, S.M.; de Oliveira Cardoso, M.V.; de Oliveira Filho, G.B.; de Araújo Viana, D.; Fechine-Jamacaru, F.V.; Leite, A.C.; de Moraes, M.O.; Pessoa, C.; Ferreira, P.M. Improvement of in vivo anticancer and antiangiogenic potential of thalidomide derivatives. Chem. Biol. Interact., 2015, 239, 174-183.
[http://dx.doi.org/10.1016/j.cbi.2015.06.037] [PMID: 26134001]
[27]
Bal, T.R.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15(20), 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046] [PMID: 16115762]
[28]
Jiang, T.; Kuhen, K.L.; Wolff, K.; Yin, H.; Bieza, K.; Caldwell, J.; Bursulaya, B.; Tuntland, T.; Zhang, K.; Karanewsky, D.; He, Y. Design, synthesis, and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part 2. Bioorg. Med. Chem. Lett., 2006, 16(8), 2109-2112.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.066] [PMID: 16464578]
[29]
Tripathy, R.; Reiboldt, A.; Messina, P.A.; Iqbal, M.; Singh, J.; Bacon, E.R.; Angeles, T.S.; Yang, S.X.; Albom, M.S.; Robinson, C.; Chang, H.; Ruggeri, B.A.; Mallamo, J.P. Structure-guided identification of novel VEGFR-2 kinase inhibitors via solution phase parallel synthesis. Bioorg. Med. Chem. Lett., 2006, 16(8), 2158-2162.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.063] [PMID: 16460933]
[30]
Cane, A.; Tournaire, M-C.; Barritault, D.; Crumeyrolle-Arias, M. The endogenous oxindoles 5-hydroxyoxindole and isatin are antiproliferative and proapoptotic. Biochem. Biophys. Res. Commun., 2000, 276(1), 379-384.
[http://dx.doi.org/10.1006/bbrc.2000.3477] [PMID: 11006132]
[31]
da Silveira, V.C.; Luz, J.S.; Oliveira, C.C.; Graziani, I.; Ciriolo, M.R.; da Costa Ferreira, A.M. Double-strand DNA cleavage induced by oxindole-Schiff base copper(II) complexes with potential antitumor activity. J. Inorg. Biochem., 2008, 102(5-6), 1090-1103.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.12.033] [PMID: 18295339]
[32]
Rodríguez-Argüelles, M.C.; Mosquera-Vázquez, S.; Tourón-Touceda, P.; Sanmartín-Matalobos, J.; García-Deibe, A.M.; Belicchi-Ferrari, M.; Pelosi, G.; Pelizzi, C.; Zani, F. Complexes of 2-thiophenecarbonyl and isonicotinoyl hydrazones of 3-(N-methyl)isatin. A study of their antimicrobial activity. J. Inorg. Biochem., 2007, 101(1), 138-147.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.09.004] [PMID: 17070919]
[33]
Raj, A.A.; Raghunathan, R. SrideviKumari, M.R.; Raman, N. Synthesis, antimicrobial and antifungal activity of a new class of spiro pyrrolidines. Bioorg. Med. Chem., 2003, 11(3), 407-419.
[http://dx.doi.org/10.1016/S0968-0896(02)00439-X] [PMID: 12517436]
[34]
Maskell, L.; Blanche, E.A.; Colucci, M.A.; Whatmore, J.L.; Moody, C.J. Synthesis and evaluation of prodrugs for anti-angiogenic pyrrolylmethylidenyl oxindoles. Bioorg. Med. Chem. Lett., 2007, 17(6), 1575-1578.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.108] [PMID: 17254788]
[35]
Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm., 2004, 54(1), 49-56.
[PMID: 15050044]
[36]
Igosheva, N.; Lorz, C.; O’Conner, E.; Glover, V.; Mehmet, H. Isatin, an endogenous monoamine oxidase inhibitor, triggers a dose- and time-dependent switch from apoptosis to necrosis in human neuroblastoma cells. Neurochem. Int., 2005, 47(3), 216-224.
[http://dx.doi.org/10.1016/j.neuint.2005.02.011] [PMID: 15876476]
[37]
Fensome, A.; Adams, W.R.; Adams, A.L.; Berrodin, T.J.; Cohen, J.; Huselton, C.; Illenberger, A.; Kern, J.C.; Hudak, V.A.; Marella, M.A.; Melenski, E.G.; McComas, C.C.; Mugford, C.A.; Slayden, O.D.; Yudt, M.; Zhang, Z.; Zhang, P.; Zhu, Y.; Winneker, R.C.; Wrobel, J.E. Design, synthesis, and SAR of new pyrrole-oxindole progesterone receptor modulators leading to 5-(7-fluoro-3,3-dimethyl-2-oxo-2,3-dihydro-1H-indol-5-yl)-1-methyl-1H-pyrrole-2-carbonitrile (WAY-255348). J. Med. Chem., 2008, 51(6), 1861-1873.
[http://dx.doi.org/10.1021/jm701080t] [PMID: 18318463]
[38]
Kumari, G.; Nutan, M.; Modi, M.; Gupta, S.K.; Singh, R.K. Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur. J. Med. Chem., 2011, 46(4), 1181-1188.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.037] [PMID: 21339030]
[39]
Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P.P.; Tomita, Y.; Parrish, D.A.; Deschamps, J.R.; Wang, S. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc., 2005, 127(29), 10130-10131.
[http://dx.doi.org/10.1021/ja051147z] [PMID: 16028899]
[40]
Lo, M.M.; Neumann, C.S.; Nagayama, S.; Perlstein, E.O.; Schreiber, S.L. A library of spirooxindoles based on a stereoselective three-component coupling reaction. J. Am. Chem. Soc., 2004, 126(49), 16077-16086.
[http://dx.doi.org/10.1021/ja045089d] [PMID: 15584743]
[41]
Vintonyak, V.V.; Warburg, K.; Kruse, H.; Grimme, S.; Hübel, K.; Rauh, D.; Waldmann, H. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5902-5905.
[http://dx.doi.org/10.1002/anie.201002138] [PMID: 20632348]
[42]
Yeung, B.K.; Zou, B.; Rottmann, M.; Lakshminarayana, S.B.; Ang, S.H.; Leong, S.Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E.K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E.A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T.T.; Keller, T.H. Spirotetrahydro beta-carbolines (spiroindolones): a new class of potent and orally efficacious compounds for the treatment of malaria. J. Med. Chem., 2010, 53(14), 5155-5164.
[http://dx.doi.org/10.1021/jm100410f] [PMID: 20568778]
[43]
Rottmann, M.; McNamara, C.; Yeung, B.K.; Lee, M.C.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; Cohen, S.B.; Spencer, K.R.; González-Páez, G.E.; Lakshminarayana, S.B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E.K.; Beck, H.P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T.H.; Fidock, D.A.; Winzeler, E.A.; Diagana, T.T. Spiroindolones, a potent compound class for the treatment of malaria. Science, 2010, 329(5996), 1175-1180.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[44]
Feun, L.; Modiano, M.; Lee, K.; Mao, J.; Marini, A.; Savaraj, N.; Plezia, P.; Almassian, B.; Colacino, E.; Fischer, J.; MacDonald, S. Phase I and pharmacokinetic study of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) using a single intravenous dose schedule. Cancer Chemother. Pharmacol., 2002, 50(3), 223-229.
[http://dx.doi.org/10.1007/s00280-002-0480-0] [PMID: 12203104]
[45]
Kovala-Demertzi, D.; Demertzis, M.A.; Filiou, E.; Pantazaki, A.A.; Yadav, P.N.; Miller, J.R.; Zheng, Y.; Kyriakidis, D.A. Platinum(II) and palladium(II) complexes with 2-acetyl pyridine 4N-ethyl thiosemicarbazone able to overcome the cis-platin resistance. Structure, antibacterial activity and DNA strand breakage. Biometals, 2003, 16(3), 411-418.
[http://dx.doi.org/10.1023/A:1022543718598] [PMID: 12680703]
[46]
Kasuga, N.C.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Nakano, S.; Shimada, N.; Koumo, C.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands. J. Inorg. Biochem., 2003, 96(2-3), 298-310.
[http://dx.doi.org/10.1016/S0162-0134(03)00156-9] [PMID: 12888265]
[47]
Opletalová, V.; Kalinowski, D.S.; Vejsová, M.; Kunes, J.; Pour, M.; Jampílek, J.; Buchta, V.; Richardson, D.R. Identification and characterization of thiosemicarbazones with antifungal and antitumor effects: cellular iron chelation mediating cytotoxic activity. Chem. Res. Toxicol., 2008, 21(9), 1878-1889.
[http://dx.doi.org/10.1021/tx800182k] [PMID: 18698850]
[48]
Teitz, Y.; Ronen, D.; Vansover, A.; Stematsky, T.; Riggs, J.L. Inhibition of human immunodeficiency virus by N-methylisatin-beta 4′:4′-diethylthiosemicarbazone and N-allylisatin-beta-4′:4′-diallythiosemicarbazone. Antiviral Res., 1994, 24(4), 305-314.
[http://dx.doi.org/10.1016/0166-3542(94)90077-9] [PMID: 7993075]
[49]
Bharti, N.; Husain, K.; Gonzalez Garza, M.T.; Cruz-Vega, D.E.; Castro-Garza, J.; Mata-Cardenas, B.D.; Naqvi, F.; Azam, A. Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2002, 12(23), 3475-3478.
[http://dx.doi.org/10.1016/S0960-894X(02)00703-5] [PMID: 12419387]
[50]
Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.V.; Shen, Z.; Cook, L.S.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; Fang, Q.; de Fex, H.F.; McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Behnia, K.; Schieven, G.L.; Wityak, J.; Barrish, J.C. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem., 2006, 49(23), 6819-6832.
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[51]
de Souza, M.V.; de Almeida, M.V. Drogas anti-VIH: passado, presente e perspectivas futuras. Quim. Nova, 2003, 26, 366-372.
[http://dx.doi.org/10.1590/S0100-40422003000300014]
[52]
Pasqualotto, A.C.; Thiele, K.O.; Goldani, L.Z. Novel triazole antifungal drugs: focus on isavuconazole, ravuconazole and albaconazole. Curr. Opin. Investig. Drugs, 2010, 11(2), 165-174.
[PMID: 20112166]
[53]
Fox, L.M.; Saravolatz, L.D. Nitazoxanide: a new thiazolide antiparasitic agent. Clin. Infect. Dis., 2005, 40(8), 1173-1180.
[http://dx.doi.org/10.1086/428839] [PMID: 15791519]
[54]
Knadler, M.P.; Bergstrom, R.F.; Callaghan, J.T.; Rubin, A. Nizatidine, an H2-blocker. Its metabolism and disposition in man. Drug Metab. Dispos., 1986, 14(2), 175-182.
[PMID: 2870891]
[55]
Nauen, R.; Ebbinghaus-Kintscher, U.; Salgado, V.L.; Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol., 2003, 76, 55-69.
[http://dx.doi.org/10.1016/S0048-3575(03)00065-8]
[56]
el-Khawass, S.M.; Khalil, M.A.; Chaaban, I. Synthesis of some thiazoline and thiazolidinone derivatives of 1,4-benzoquinone as potential antimicrobial agents. Farmaco, 1989, 44(4), 415-421.
[PMID: 2673262]
[57]
Babaoglu, K.; Page, M.A.; Jones, V.C.; McNeil, M.R.; Dong, C.; Naismith, J.H.; Lee, R.E. Novel inhibitors of an emerging target in Mycobacterium tuberculosis; substituted thiazolidinones as inhibitors of dTDP-rhamnose synthesis. Bioorg. Med. Chem. Lett., 2003, 13(19), 3227-3230.
[http://dx.doi.org/10.1016/S0960-894X(03)00673-5] [PMID: 12951098]
[58]
Çapan, G.; Ulusoy, N.; Ergenç, N.; Kiraz, M. New 6-Phenylimidazo[2,1-b]thiazole derivatives: Synthesis and antifungal activity. Monatshefte Für Chemie. Chem. Mon., 1999, 130, 1399-1407.
[59]
Alves, A.J.; Leite, A.C.; De Santana, D.P.; Beltrao, T.M.; Coelho, M.R.; Gayral, P. Synthesis of some 4-oxo-delta 2-thiazolin-2-ylhydrazones as potential antiprotozoal agents. Farmaco, 1993, 48(8), 1167-1171.
[PMID: 8216678]
[60]
Rawal, R.K.; Prabhakar, Y.S.; Katti, S.B.; De Clercq, E. 2-(Aryl)-3-furan-2-ylmethyl-thiazolidin-4-ones as selective HIV-RT inhibitors. Bioorg. Med. Chem., 2005, 13(24), 6771-6776.
[http://dx.doi.org/10.1016/j.bmc.2005.07.063] [PMID: 16198576]
[61]
Vigorita, M.G.; Ottanà, R.; Monforte, F.; Maccari, R.; Trovato, A.; Monforte, M.T.; Taviano, M.F. Synthesis and antiinflammatory, analgesic activity of 3,3′-(1,2-ethanediyl)-bis[2-aryl-4-thiazolidinone] chiral compounds. Part 10. Bioorg. Med. Chem. Lett., 2001, 11(21), 2791-2794.
[http://dx.doi.org/10.1016/S0960-894X(01)00476-0] [PMID: 11597401]
[62]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Discovery of 2-arylthiazolidine-4-carboxylic acid amides as a new class of cytotoxic agents for prostate cancer. J. Med. Chem., 2005, 48(7), 2584-2588.
[http://dx.doi.org/10.1021/jm049208b] [PMID: 15801848]
[63]
Liesen, A.P.; De Aquino, T.M.; Góes, A.J.; De Lima, J.G.; De Faria, A.R.; Alves, A.J. Métodos de obtenção, reatividade e importância biológica de 4-tiazolidinonas. Quim. Nova, 2008, 31, 369-376.
[http://dx.doi.org/10.1590/S0100-40422008000200033]
[64]
Tenório, R.P.; Carvalho, C.S.; Pessanha, C.S.; de Lima, J.G.; de Faria, A.R.; Alves, A.J.; de Melo, E.J.; Góes, A.J. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg. Med. Chem. Lett., 2005, 15(10), 2575-2578.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.048] [PMID: 15863319]
[65]
de Aquino, T.M.; Liesen, A.P.; da Silva, R.E.; Lima, V.T.; Carvalho, C.S.; de Faria, A.R.; de Araújo, J.M.; de Lima, J.G.; Alves, A.J.; de Melo, E.J.; Góes, A.J. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg. Med. Chem., 2008, 16(1), 446-456.
[http://dx.doi.org/10.1016/j.bmc.2007.09.025] [PMID: 17905587]
[66]
Liesen, A.P.; de Aquino, T.M.; Carvalho, C.S.; Lima, V.T.; de Araújo, J.M.; de Lima, J.G.; de Faria, A.R.; de Melo, E.J.; Alves, A.J.; Alves, E.W.; Alves, A.Q.; Góes, A.J. Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur. J. Med. Chem., 2010, 45(9), 3685-3691.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.017] [PMID: 20541294]
[67]
Leite, A.C.; de Lima, R.S.; Moreira, D.R.; Cardoso, M.V.; Gouveia de Brito, A.C.; Farias Dos Santos, L.M.; Hernandes, M.Z.; Kiperstok, A.C.; de Lima, R.S.; Soares, M.B. Synthesis, docking, and in vitro activity of thiosemicarbazones, aminoacyl-thiosemicarbazides and acyl-thiazolidones against Trypanosoma cruzi. Bioorg. Med. Chem., 2006, 14(11), 3749-3757.
[http://dx.doi.org/10.1016/j.bmc.2006.01.034] [PMID: 16458521]
[68]
Leite, A.C.; Moreira, D.R.; Cardoso, M.V.; Hernandes, M.Z.; Alves Pereira, V.R.; Silva, R.O.; Kiperstok, A.C. Lima, Mda.S.; Soares, M.B. Synthesis, Cruzain docking, and in vitro studies of aryl-4-oxothiazolylhydrazones against Trypanosoma cruzi. ChemMedChem, 2007, 2(9), 1339-1345.
[http://dx.doi.org/10.1002/cmdc.200700022] [PMID: 17628867]
[69]
Hernandes, M.Z.; Rabello, M.M.; Leite, A.C.; Cardoso, M.V.; Moreira, D.R.; Brondani, D.J.; Simone, C.A.; Reis, L.C.; Souza, M.A.; Pereira, V.R.; Ferreira, R.S.; McKerrow, J.H. Studies toward the structural optimization of novel thiazolylhydrazone-based potent antitrypanosomal agents. Bioorg. Med. Chem., 2010, 18(22), 7826-7835.
[http://dx.doi.org/10.1016/j.bmc.2010.09.056] [PMID: 20961766]
[70]
Moreira, D.R.; Costa, S.P.; Hernandes, M.Z.; Rabello, M.M.; de Oliveira Filho, G.B.; de Melo, C.M.; da Rocha, L.F.; de Simone, C.A.; Ferreira, R.S.; Fradico, J.R.; Meira, C.S.; Guimarães, E.T.; Srivastava, R.M.; Pereira, V.R.; Soares, M.B.; Leite, A.C. Structural investigation of anti-Trypanosoma cruzi 2-iminothiazolidin-4-ones allows the identification of agents with efficacy in infected mice. J. Med. Chem., 2012, 55(24), 10918-10936.
[http://dx.doi.org/10.1021/jm301518v] [PMID: 23167554]
[71]
Moreira, D.R.; Leite, A.C.; Cardoso, M.V.; Srivastava, R.M.; Hernandes, M.Z.; Rabello, M.M.; da Cruz, L.F.; Ferreira, R.S.; de Simone, C.A.; Meira, C.S.; Guimaraes, E.T.; da Silva, A.C.; dos Santos, T.A.; Pereira, V.R.; Soares, M.B. Structural design, synthesis and structure-activity relationships of thiazolidinones with enhanced anti-Trypanosoma cruzi activity. ChemMedChem, 2014, 9(1), 177-188.
[http://dx.doi.org/10.1002/cmdc.201300354] [PMID: 24203393]
[72]
de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.; Ferreira, L.F.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.; Lima , Leite. A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486.
[http://dx.doi.org/10.1016/j.bmc.2015.10.048] [PMID: 26549870]
[73]
Chandra, J.N.; Malviya, M.; Sadashiva, C.T.; Subhash, M.N.; Rangappa, K.S. Effect of novel arecoline thiazolidinones as muscarinic receptor 1 agonist in Alzheimer’s dementia models. Neurochem. Int., 2008, 52(3), 376-383.
[http://dx.doi.org/10.1016/j.neuint.2007.07.006] [PMID: 17719699]
[74]
Crascì, L.; Vicini, P.; Incerti, M.; Cardile, V.; Avondo, S.; Panico, A. 2-Benzisothiazolylimino-5-benzylidene-4-thiazolidinones as protective agents against cartilage destruction. Bioorg. Med. Chem., 2015, 23(7), 1551-1556.
[http://dx.doi.org/10.1016/j.bmc.2015.02.002] [PMID: 25725607]
[75]
Ashour, H.M.; El-Ashmawy, I.M.; Bayad, A.E. Synthesis and pharmacological evaluation of new pyrazolyl benzenesulfonamides linked to polysubstituted pyrazoles and thiazolidinones as anti-inflammatory and analgesic agents. Monatsh. Chem., 2016, 147, 605-618.
[http://dx.doi.org/10.1007/s00706-015-1549-x]
[76]
Ottanà, R.; Maccari, R.; Barreca, M.L.; Bruno, G.; Rotondo, A.; Rossi, A.; Chiricosta, G.; Di Paola, R.; Sautebin, L.; Cuzzocrea, S.; Vigorita, M.G. 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(13), 4243-4252.
[http://dx.doi.org/10.1016/j.bmc.2005.04.058] [PMID: 15905093]
[77]
Cihan-Üstündağ, G.; Gürsoy, E.; Naesens, L.; Ulusoy-Güzeldemirci, N.; Çapan, G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2016, 24(2), 240-246.
[http://dx.doi.org/10.1016/j.bmc.2015.12.008] [PMID: 26707844]
[78]
Ottanà, R.; Carotti, S.; Maccari, R.; Landini, I.; Chiricosta, G.; Caciagli, B.; Vigorita, M.G.; Mini, E. In vitro antiproliferative activity against human colon cancer cell lines of representative 4-thiazolidinones. Part I. Bioorg. Med. Chem. Lett., 2005, 15(17), 3930-3933.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.093] [PMID: 15993594]
[79]
Kamel, M.M.; Ali, H.I.; Anwar, M.M.; Mohamed, N.A.; Soliman, A.M. Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. Chem., 2010, 45(2), 572-580.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.044] [PMID: 19932530]
[80]
Havrylyuk, D.; Mosula, L.; Zimenkovsky, B.; Vasylenko, O.; Gzella, A.; Lesyk, R. Synthesis and anticancer activity evaluation of 4-thiazolidinones containing benzothiazole moiety. Eur. J. Med. Chem., 2010, 45(11), 5012-5021.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.008] [PMID: 20810193]
[81]
Senkiv, J.; Finiuk, N.; Kaminskyy, D.; Havrylyuk, D.; Wojtyra, M.; Kril, I.; Gzella, A.; Stoika, R.; Lesyk, R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur. J. Med. Chem., 2016, 117, 33-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.089] [PMID: 27089210]
[82]
Rawal, R.K.; Kumar, A.; Siddiqi, M.I.; Katti, S.B. Molecular docking studies on 4-thiazolidinones as HIV-1 RT inhibitors. J. Mol. Model., 2007, 13(1), 155-161.
[http://dx.doi.org/10.1007/s00894-006-0138-7] [PMID: 16969668]
[83]
Secci, D.; Carradori, S.; Bizzarri, B.; Chimenti, P.; De Monte, C.; Mollica, A.; Rivanera, D.; Zicari, A.; Mari, E.; Zengin, G.; Aktumsek, A. Novel 1,3-thiazolidin-4-one derivatives as promising anti-Candida agents endowed with anti-oxidant and chelating properties. Eur. J. Med. Chem., 2016, 117, 144-156.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.012] [PMID: 27100030]
[84]
Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, spectral and biological evaluation of some new thiazolidinones and thiazoles based on t-3-alkyl-r-2,c-6-diarylpiperidin-4-ones. Eur. J. Med. Chem., 2009, 44(10), 4199-4210.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.015] [PMID: 19535178]
[85]
Patel, D.; Patel, N.; Kumari, P.; Patel, N. Synthesis and characterization of some new azetidin-2-ones containing coumarin moiety and their antimicrobial study. Int. J. Chem., 2011, 3, 117-123.
[http://dx.doi.org/10.5539/ijc.v3n2p117]
[86]
HO, WHO | Chagas disease (American trypanosomiasis), World Heal. Organ. (2015). Available at:. http://www.who.int/mediacentre/factsheets/fs340/en/ [Accessed November 18, 2015].
[87]
Aufderheide, A.C.; Salo, W.; Madden, M.; Streitz, J.; Buikstra, J.; Guhl, F.; Arriaza, B.; Renier, C.; Wittmers, L.E., Jr; Fornaciari, G.; Allison, M.A. 9,000-year record of Chagas’ disease. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2034-2039.
[http://dx.doi.org/10.1073/pnas.0307312101] [PMID: 14766963]
[88]
Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis., 2008, 2(9)e300
[http://dx.doi.org/10.1371/journal.pntd.0000300] [PMID: 18820747]
[89]
Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: a computational simulation model. Lancet Infect. Dis., 2013, 13(4), 342-348.
[http://dx.doi.org/10.1016/S1473-3099(13)70002-1] [PMID: 23395248]
[90]
Tarleton, R.L.; Reithinger, R.; Urbina, J.A.; Kitron, U.; Gürtler, R.E. The challenges of Chagas Disease-- grim outlook or glimmer of hope. PLoS Med., 2007, 4(12)e332
[http://dx.doi.org/10.1371/journal.pmed.0040332] [PMID: 18162039]
[91]
WHO. 2016, WHO | What is human african trypanosomiasis. 2016.
[92]
Pink, R.; Hudson, A.; Mouriès, M-A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4(9), 727-740.
[http://dx.doi.org/10.1038/nrd1824] [PMID: 16138106]
[93]
Pepin, J.; Milord, F.; Guern, C.; Mpia, B.; Ethier, L.; Mansinsa, D. Trial of prednisolone for prevention of melarsoprol-induced encephalopathy in gambiense sleeping sickness. Lancet, 1989, 1(8649), 1246-1250.
[http://dx.doi.org/10.1016/S0140-6736(89)92340-4] [PMID: 2566790]
[94]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: the advances continue…. Eur. J. Med. Chem., 2014, 72, 52-77.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.017] [PMID: 24355348]
[95]
WHO. 2016, WHO | Leishmaniasis. 2016.
[96]
Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[97]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[98]
Ansari, M.Y.; Dikhit, M.R.; Sahoo, G.C.; Das, P. Comparative modeling of HGPRT enzyme of L. donovani and binding affinities of different analogs of GMP. Int. J. Biol. Macromol., 2012, 50(3), 637-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.010] [PMID: 22327112]
[99]
Ansari, M.Y.; Equbal, A.; Dikhit, M.R.; Mansuri, R.; Rana, S.; Ali, V.; Sahoo, G.C.; Das, P. Establishment of correlation between in-silico and in-vitro test analysis against Leishmania HGPRT to inhibitors. Int. J. Biol. Macromol., 2016, 83, 78-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.051] [PMID: 26616453]
[100]
Ansari, M.Y.; Ahsan, M.J.; Yasmin, S.; Sahoo, G.C.; Saini, V.; Das, P. In silico identification of novel antagonists and binding insights by structural and functional analyses of guanylate kinase of Leishmania donovani and interaction with inhibitors. Gene Rep., 2017, 8, 134-143.
[http://dx.doi.org/10.1016/j.genrep.2017.07.003]
[101]
Ahsan, M.J.; Ansari, M.Y.; Kumar, P.; Soni, M.; Yasmin, S.; Jadav, S.S. In vitro studies of the antileishmanial activity of the newer 2-(substitutedphenoxy)-N-[(aryl)methylidene]acetohydrazide analogues, Beni-Suef Univ. J. Basic Appl. Sci., 2016, 5, 119-125.
[102]
Burrows, J.N.; Chibale, K.; Wells, T.N. The state of the art in anti-malarial drug discovery and development. Curr. Top. Med. Chem., 2011, 11(10), 1226-1254.
[http://dx.doi.org/10.2174/156802611795429194] [PMID: 21401508]
[103]
WHO. 2016, WHO | Malaria,. 2016.
[104]
Gamo, F-J.; Sanz, L.M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J-L.; Vanderwall, D.E.; Green, D.V.; Kumar, V.; Hasan, S.; Brown, J.R.; Peishoff, C.E.; Cardon, L.R.; Garcia-Bustos, J.F. Thousands of chemical starting points for antimalarial lead identification. Nature, 2010, 465(7296), 305-310.
[http://dx.doi.org/10.1038/nature09107] [PMID: 20485427]
[105]
Dorman, S.E.; Chaisson, R.E. From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat. Med., 2007, 13(3), 295-298.
[http://dx.doi.org/10.1038/nm0307-295] [PMID: 17342143]
[106]
Kaufmann, S.H.; van Embden, J.D. Tuberculosis: a neglected disease strikes back. Trends Microbiol., 1993, 1(1), 2-5.
[http://dx.doi.org/10.1016/0966-842X(93)90015-J] [PMID: 7908248]
[107]
Zumla, A.; Nahid, P.; Cole, S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov., 2013, 12(5), 388-404.
[http://dx.doi.org/10.1038/nrd4001] [PMID: 23629506]
[108]
Lewandowski, C.M.; Co-investigator, N.; Lewandowski, C.M. WHO Glocal tuberculosis report 2015, WHO - Glob. Tuberc. Rep., 2015, 2015(1), 1689-1699.
[109]
Abrahams, K.A.; Chung, C.W.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-López, M.J.; Gurcha, S.S.; Cox, J.A.; Mendoza, A.; Jiménez-Navarro, E.; Martínez-Martínez, M.S.; Neu, M.; Shillings, A.; Homes, P.; Argyrou, A.; Casanueva, R.; Loman, N.J.; Moynihan, P.J.; Lelièvre, J.; Selenski, C.; Axtman, M.; Kremer, L.; Bantscheff, M.; Angulo-Barturen, I.; Izquierdo, M.C.; Cammack, N.C.; Drewes, G.; Ballell, L.; Barros, D.; Besra, G.S.; Bates, R.H. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat. Commun., 2016, 7, 12581.
[http://dx.doi.org/10.1038/ncomms12581] [PMID: 27581223]
[110]
Ross, T.M. Dengue virus. Clin. Lab. Med., 2010, 30(1), 149-160.
[http://dx.doi.org/10.1016/j.cll.2009.10.007] [PMID: 20513545]
[111]
Pialoux, G.; Gaüzère, B-A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis., 2007, 7(5), 319-327.
[http://dx.doi.org/10.1016/S1473-3099(07)70107-X] [PMID: 17448935]
[112]
Hayes, E.B. Zika virus outside Africa. Emerg. Infect. Dis., 2009, 15(9), 1347-1350.
[http://dx.doi.org/10.3201/eid1509.090442] [PMID: 19788800]
[113]
Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; Myers, M.F.; George, D.B.; Jaenisch, T.; Wint, G.R.; Simmons, C.P.; Scott, T.W.; Farrar, J.J.; Hay, S.I. The global distribution and burden of dengue. Nature, 2013, 496(7446), 504-507.
[http://dx.doi.org/10.1038/nature12060] [PMID: 23563266]
[114]
Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis., 2012, 6(8)e1760
[http://dx.doi.org/10.1371/journal.pntd.0001760] [PMID: 22880140]
[115]
Pessoa, C.; Ferreira, P.M.; Lotufo, L.V.; de Moraes, M.O.; Cavalcanti, S.M.; Coêlho, L.C.; Hernandes, M.Z.; Leite, A.C.; De Simone, C.A.; Costa, V.M.; Souza, V.M. Discovery of phthalimides as immunomodulatory and antitumor drug prototypes. ChemMedChem, 2010, 5(4), 523-528.
[http://dx.doi.org/10.1002/cmdc.200900525] [PMID: 20112332]
[116]
Long, T.E.; Lu, X.; Galizzi, M.; Docampo, R.; Gut, J.; Rosenthal, P.J. Phosphonium lipocations as antiparasitic agents. Bioorg. Med. Chem. Lett., 2012, 22(8), 2976-2979.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.045] [PMID: 22414614]
[117]
González, M.A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues possessing a phthalimide group. Bioorg. Med. Chem. Lett., 2014, 24(22), 5234-5237.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.061] [PMID: 25316317]
[118]
Singh, A.K.; Rajendran, V.; Pant, A.; Ghosh, P.C.; Singh, N.; Latha, N.; Garg, S.; Pandey, K.C.; Singh, B.K.; Rathi, B. Design, synthesis and biological evaluation of functionalized phthalimides: a new class of antimalarials and inhibitors of falcipain-2, a major hemoglobinase of malaria parasite. Bioorg. Med. Chem., 2015, 23(8), 1817-1827.
[http://dx.doi.org/10.1016/j.bmc.2015.02.029] [PMID: 25766631]
[119]
Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem., 2009, 17(11), 3795-3799.
[120]
Gomes, P.A.; Oliveira, A.R.; Cardoso, M.V. Santiago, Ede.F.; Barbosa, Mde.O.; de Siqueira, L.R.; Moreira, D.R.; Bastos, T.M.; Brayner, F.A.; Soares, M.B.; Mendes, A.P.; de Castro, M.C.; Pereira, V.R.; Leite, A.C. Phthalimido-thiazoles as building blocks and their effects on the growth and morphology of Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 111, 46-57.
[121]
Santiago, Ede.F.; de Oliveira, S.A.; de Oliveira Filho, G.B.; Moreira, D.R.; Gomes, P.A.; da Silva, A.L.; de Barros, A.F.; da Silva, A.C.; Dos Santos, T.A.; Pereira, V.R.; Gonçalves, G.G.; Brayner, F.A.; Alves, L.C.; Wanderley, A.G.; Leite, A.C. Evaluation of the anti-Schistosoma mansoni activity of thiosemicarbazones and thiazoles. Antimicrob. Agents Chemother., 2014, 58(1), 352-363.
[http://dx.doi.org/10.1128/AAC.01900-13] [PMID: 24165185]
[122]
Rad, R.; Mracec, M.; Mracec, M.; Oprea, T. The privileged structures hypothesis for G proteincoupled receptors - some preliminar results. Rev. Roum. Chim., 2007, 52, 853-858.
[123]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[124]
Shimazaki, Y.; Yajima, T.; Takani, M.; Yamauchi, O. Metal complexes involving indole rings: Structures and effects of metal-indole interactions. Coord. Chem. Rev., 2009, 253, 479-492.
[http://dx.doi.org/10.1016/j.ccr.2008.04.012]
[125]
Bergman, J.; Lindström, J-O.; Tilstam, U. The structure and properties of some indolic constituents in Couroupita guianensis aubl. Tetrahedron, 1985, 41, 2879-2881.
[http://dx.doi.org/10.1016/S0040-4020(01)96609-8]
[126]
Chiyanzu, I.; Hansell, E.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and evaluation of isatins and thiosemicarbazone derivatives against cruzain, falcipain-2 and rhodesain. Bioorg. Med. Chem. Lett., 2003, 13(20), 3527-3530.
[http://dx.doi.org/10.1016/S0960-894X(03)00756-X] [PMID: 14505663]
[127]
Kekulé, A. Ueber die Constitution des Isatins, der Isatinsäure und des Indols. Ber. Dtsch. Chem. Ges., 1869, 2, 748-749.
[http://dx.doi.org/10.1002/cber.186900201293]
[128]
Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev., 2012, 112(11), 6104-6155.
[http://dx.doi.org/10.1021/cr300135y] [PMID: 22950860]
[129]
Raj, R.; Singh, P.; Singh, P.; Gut, J.; Rosenthal, P.J.; Kumar, V. Azide-alkyne cycloaddition en route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation. Eur. J. Med. Chem., 2013, 62, 590-596.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.032] [PMID: 23434528]
[130]
Raj, R.; Gut, J.; Rosenthal, P.J.; Kumar, V. 1H-1,2,3-Triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates: synthesis and antimalarial evaluation. Bioorg. Med. Chem. Lett., 2014, 24(3), 756-759.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.109] [PMID: 24424135]
[131]
Raj, R.; Biot, C.; Carrère-Kremer, S.; Kremer, L.; Guérardel, Y.; Gut, J.; Rosenthal, P.J.; Forge, D.; Kumar, V. 7-chloroquinoline-isatin conjugates: antimalarial, antitubercular, and cytotoxic evaluation. Chem. Biol. Drug Des., 2014, 83(5), 622-629.
[http://dx.doi.org/10.1111/cbdd.12273] [PMID: 24341638]
[132]
Martinez-Mayorga, K.; Byler, K.G.; Ramirez-Hernandez, A.I.; Terrazas-Alvares, D.E. Cruzain inhibitors: efforts made, current leads and a structural outlook of new hits. Drug Discov. Today, 2015, 20(7), 890-898.
[http://dx.doi.org/10.1016/j.drudis.2015.02.004] [PMID: 25697479]
[133]
Pervez, H.; Manzoor, N.; Yaqub, M.; Khan, K.M. 5-Nitroisatin-derived thiosemicarbazones: potential antileishmanial agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 628-632.
[http://dx.doi.org/10.3109/14756366.2013.836641] [PMID: 24090424]
[134]
Mishra, B.B.; Kale, R.R.; Singh, R.K.; Tiwari, V.K. Alkaloids: future prospective to combat leishmaniasis. Fitoterapia, 2009, 80(2), 81-90.
[http://dx.doi.org/10.1016/j.fitote.2008.10.009] [PMID: 19015012]
[135]
Chan-Bacab, M.J.; Peña-Rodríguez, L.M. Plant natural products with leishmanicidal activity. Nat. Prod. Rep., 2001, 18(6), 674-688.
[http://dx.doi.org/10.1039/b100455g] [PMID: 11820764]
[136]
Mishra, B.B.; Singh, R.K.; Srivastava, A.; Tripathi, V.J.; Tiwari, V.K. Fighting against Leishmaniasis: search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev. Med. Chem., 2009, 9(1), 107-123.
[http://dx.doi.org/10.2174/138955709787001758] [PMID: 19149664]
[137]
Lavrado, J.; Moreira, R.; Paulo, A. Indoloquinolines as scaffolds for drug discovery. Curr. Med. Chem., 2010, 17(22), 2348-2370.
[http://dx.doi.org/10.2174/092986710791698521] [PMID: 20491639]
[138]
Lavrado, J.; Paulo, A.; Gut, J.; Rosenthal, P.J.; Moreira, R. Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: synthesis, antiplasmodial activity, and cytotoxicity. Bioorg. Med. Chem. Lett., 2008, 18(4), 1378-1381.
[139]
Oluwafemi, A.J.; Okanla, E.O.; Camps, P.; Muñoz-Torrerob, D.; Mackey, Z.B.; Chiang, P.K.; Seville, S.; Wright, C.W. Evaluation of cryptolepine and huperzine derivatives as lead compounds towards new agents for the treatment of human African trypanosomiasis. Nat. Prod. Commun., 2009, 4(2), 193-198.
[PMID: 19370921]
[140]
Aguirre, G.; Boiani, L.; Cerecetto, H.; Fernández, M.; González, M.; Denicola, A.; Otero, L.; Gambino, D.; Rigol, C.; Olea-Azar, C.; Faundez, M. In vitro activity and mechanism of action against the protozoan parasite Trypanosoma cruzi of 5-nitrofuryl containing thiosemicarbazones. Bioorg. Med. Chem., 2004, 12(18), 4885-4893.
[http://dx.doi.org/10.1016/j.bmc.2004.07.003] [PMID: 15336268]
[141]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[142]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47(12), 3212-3219.
[http://dx.doi.org/10.1021/jm030549j] [PMID: 15163200]
[143]
Fujii, N.; Mallari, J.P.; Hansell, E.J.; Mackey, Z.; Doyle, P.; Zhou, Y.M.; Gut, J.; Rosenthal, P.J.; McKerrow, J.H.; Guy, R.K. Discovery of potent thiosemicarbazone inhibitors of rhodesain and cruzain. Bioorg. Med. Chem. Lett., 2005, 15(1), 121-123.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.023] [PMID: 15582423]
[144]
Siles, R.; Chen, S-E.; Zhou, M.; Pinney, K.G.; Trawick, M.L. Design, synthesis, and biochemical evaluation of novel cruzain inhibitors with potential application in the treatment of Chagas’ disease. Bioorg. Med. Chem. Lett., 2006, 16(16), 4405-4409.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.041] [PMID: 16781147]
[145]
Caputto, M.E.; Fabian, L.E.; Benítez, D.; Merlino, A.; Ríos, N.; Cerecetto, H.; Moltrasio, G.Y.; Moglioni, A.G.; González, M.; Finkielsztein, L.M. Thiosemicarbazones derived from 1-indanones as new anti-Trypanosoma cruzi agents. Bioorg. Med. Chem., 2011, 19(22), 6818-6826.
[http://dx.doi.org/10.1016/j.bmc.2011.09.037] [PMID: 22000947]
[146]
Magalhaes Moreira, D.R.; de Oliveira, A.D.; Teixeira de Moraes Gomes, P.A.; de Simone, C.A.; Villela, F.S.; Ferreira, R.S.; da Silva, A.C.; dos Santos, T.A.; Brelaz de Castro, M.C.; Pereira, V.R.; Leite, A.C. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death. Eur. J. Med. Chem., 2014, 75, 467-478.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.001] [PMID: 24561675]
[147]
Espíndola, J.W.; Cardoso, M.V.; Filho, G.B.; Oliveira, E. Silva, D.A.; Moreira, D.R.; Bastos, T.M.; Simone, C.A.; Soares, M.B.; Villela, F.S.; Ferreira, R.S.; Castro, M.C.; Pereira, V.R.; Murta, S.M.; Sales Junior, P.A.; Romanha, A.J.; Leite, A.C. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain. Eur. J. Med. Chem., 2015, 101, 818-835.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.048] [PMID: 26231082]
[148]
Vieites, M.; Otero, L.; Santos, D.; Olea-Azar, C.; Norambuena, E.; Aguirre, G.; Cerecetto, H.; González, M.; Kemmerling, U.; Morello, A.; Diego Maya, J.; Gambino, D. Platinum-based complexes of bioactive 3-(5-nitrofuryl)acroleine thiosemicarbazones showing anti-Trypanosoma cruzi activity. J. Inorg. Biochem., 2009, 103(3), 411-418.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.12.004] [PMID: 19187969]
[149]
Rettondin, A.R.; Carneiro, Z.A.; Gonçalves, A.C.; Ferreira, V.F.; Oliveira, C.G.; Lima, A.N.; Oliveira, R.J.; de Albuquerque, S.; Deflon, V.M.; Maia, P.I. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs. Eur. J. Med. Chem., 2016, 120, 217-226.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.003] [PMID: 27191616]
[150]
Britta, E.A.; Scariot, D.B.; Falzirolli, H.; Ueda-Nakamura, T.; Silva, C.C.; Filho, B.P.; Borsali, R.; Nakamura, C.V. Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-Nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol., 2014, 14, 236.
[http://dx.doi.org/10.1186/s12866-014-0236-0] [PMID: 25253283]
[151]
de Melos, J.L.; Torres-Santos, E.C. Faiões, Vdos.S.; Del Cistia, Cde.N.; Sant’Anna, C.M.; Rodrigues-Santos, C.E.; Echevarria, A. Novel 3,4-methylenedioxyde-6-X-benzaldehyde-thiosemicarbazones: Synthesis and antileishmanial effects against Leishmania amazonensis. Eur. J. Med. Chem., 2015, 103, 409-417.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.009] [PMID: 26375353]
[152]
Britta, E.A.; Silva, A.P.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Silva, C.C.; Sernaglia, R.L.; Nakamura, C.V. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis. PLoS One, 2012, 7(8)e41440
[http://dx.doi.org/10.1371/journal.pone.0041440] [PMID: 22870222]
[153]
Sijwali, P.S.; Rosenthal, P.J. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4384-4389.
[http://dx.doi.org/10.1073/pnas.0307720101] [PMID: 15070727]
[154]
Sijwali, P.S.; Kato, K.; Seydel, K.B.; Gut, J.; Lehman, J.; Klemba, M.; Goldberg, D.E.; Miller, L.H.; Rosenthal, P.J. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8721-8726.
[http://dx.doi.org/10.1073/pnas.0402738101] [PMID: 15166288]
[155]
de Oliveira, R.B.; de Souza-Fagundes, E.M.; Soares, R.P.; Andrade, A.A.; Krettli, A.U.; Zani, C.L. Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. Eur. J. Med. Chem., 2008, 43(9), 1983-1988.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.012] [PMID: 18222568]
[156]
Duan, L.P.; Zhang, H.B. Novel thiosemicarbazones derivatives bearing aromatic iodine moiety: Design, synthesis and anti-malarial activity. Arab. J. Chem., 2011, 4, 231-234.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.042]
[157]
Khanye, S.D.; Smith, G.S.; Lategan, C.; Smith, P.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis and in vitro evaluation of gold(I) thiosemicarbazone complexes for antimalarial activity. J. Inorg. Biochem., 2010, 104(10), 1079-1083.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.06.005] [PMID: 20621360]
[158]
Sriram, D.; Yogeeswari, P.; Dhakla, P.; Senthilkumar, P.; Banerjee, D. N-Hydroxythiosemicarbazones: synthesis and in vitro antitubercular activity. Bioorg. Med. Chem. Lett., 2007, 17(7), 1888-1891.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.037] [PMID: 17276683]
[159]
Pavan, F.R. da S Maia, P.I.; Leite, S.R.; Deflon, V.M.; Batista, A.A.; Sato, D.N.; Franzblau, S.G.; Leite, C.Q. Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti-Mycobacterium tuberculosis activity and cytotoxicity. Eur. J. Med. Chem., 2010, 45(5), 1898-1905.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.028] [PMID: 20163897]
[160]
Oliveira, C.G. da S Maia, P.I.; Souza, P.C.; Pavan, F.R.; Leite, C.Q.; Viana, R.B.; Batista, A.A.; Nascimento, O.R.; Deflon, V.M. Manganese(II) complexes with thiosemicarbazones as potential anti-Mycobacterium tuberculosis agents. J. Inorg. Biochem., 2014, 132, 21-29.
[http://dx.doi.org/10.1016/j.jinorgbio.2013.10.011] [PMID: 24188534]
[161]
da Silva, J.B.; Navarro, D.M.; da Silva, A.G.; Santos, G.K.; Dutra, K.A.; Moreira, D.R.; Ramos, M.N.; Espíndola, J.W.; de Oliveira, A.D.; Brondani, D.J.; Leite, A.C.; Hernandes, M.Z.; Pereira, V.R.; da Rocha, L.F.; de Castro, M.C.; de Oliveira, B.C.; Lan, Q.; Merz, K.M. Jr Thiosemicarbazones as Aedes aegypti larvicidal. Eur. J. Med. Chem., 2015, 100, 162-175.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.061] [PMID: 26087027]
[162]
Padmanabhan, P.; Khaleefathullah, S.; Kaveri, K.; Palani, G.; Ramanathan, G.; Thennarasu, S. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J. Med. Virol., 2016.
[PMID: 27490721]
[163]
Siddiqui, N.; Arshad, M.F.; Ahsan, W.; Alam, M.S. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res., 2009, 1, 136-143.
[164]
González Cabrera, D.; Douelle, F.; Feng, T-S.; Nchinda, A.T.; Younis, Y.; White, K.L.; Wu, Q.; Ryan, E.; Burrows, J.N.; Waterson, D.; Witty, M.J.; Wittlin, S.; Charman, S.A.; Chibale, K. Novel orally active antimalarial thiazoles. J. Med. Chem., 2011, 54(21), 7713-7719.
[http://dx.doi.org/10.1021/jm201108k] [PMID: 21966980]
[165]
Wilson, W.D.; Nguyen, B.; Tanious, F.A.; Mathis, A.; Hall, J.E.; Stephens, C.E.; Boykin, D.W. Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr. Med. Chem. Anticancer Agents, 2005, 5(4), 389-408.
[http://dx.doi.org/10.2174/1568011054222319] [PMID: 16101490]
[166]
Scott, F.J.; Khalaf, A.I.; Duffy, S.; Avery, V.M.; Suckling, C.J. Selective anti-malarial minor groove binders. Bioorg. Med. Chem. Lett., 2016, 26(14), 3326-3329.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.039] [PMID: 27212070]
[167]
Álvarez, G.; Varela, J.; Márquez, P.; Gabay, M.; Arias Rivas, C.E.; Cuchilla, K.; Echeverría, G.A.; Piro, O.E.; Chorilli, M.; Leal, S.M.; Escobar, P.; Serna, E.; Torres, S.; Yaluff, G.; Vera de Bilbao, N.I.; González, M.; Cerecetto, H. Optimization of antitrypanosomatid agents: identification of nonmutagenic drug candidates with in vivo activity. J. Med. Chem., 2014, 57(10), 3984-3999.
[http://dx.doi.org/10.1021/jm500018m] [PMID: 24749923]
[168]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[169]
Cardoso, M.V.; de Siqueira, L.R.; da Silva, E.B.; Costa, L.B.; Hernandes, M.Z.; Rabello, M.M.; Ferreira, R.S.; da Cruz, L.F.; Moreira, D.R.; Pereira, V.R.; de Castro, M.C.; Bernhardt, P.V.; Leite, A.C. 2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: structural design, synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2014, 86, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.012] [PMID: 25147146]
[170]
de Moraes Gomes, P.A.T.; de Oliveira Barbosa, M.; Farias Santiago, E.; de Oliveira Cardoso, M.V.; Capistrano Costa, N.T.; Hernandes, M.Z.; Moreira, D.R.M.; da Silva, A.C.; Dos Santos, T.A.R.; Pereira, V.R.A.; Brayner Dos Santosd, F.A.; do Nascimento Pereira, G.A.; Ferreira, R.S.; Leite, A.C.L. New 1,3-thiazole derivatives and their biological and ultrastructural effects on Trypanosoma cruzi. Eur. J. Med. Chem., 2016, 121, 387-398.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.050] [PMID: 27295485]
[171]
Costa, L.B.; Cardoso, M.V.; de Oliveira Filho, G.B.; de Moraes Gomes, P.A.; Espíndola, J.W.; de Jesus Silva, T.G.; Torres, P.H.; Silva, F.P., Junior; Martin, J.; de Figueiredo, R.C.; Leite, A.C. Compound profiling and 3D-QSAR studies of hydrazone derivatives with activity against intracellular Trypanosoma cruzi. Bioorg. Med. Chem., 2016, 24(8), 1608-1618.
[http://dx.doi.org/10.1016/j.bmc.2016.02.027] [PMID: 26964673]
[172]
Pages, L.B.; Pichel, J.C.; Menendez, R.F.; Esther, P.F.; Del Valle, S.G.; Maria, L.L.; Losana, A.M.; Wolfendale, M.J. (Pyrazol-3-yl)-1, 3, 4-thiadiazol-2-amine and (pyrazol-3- yl)-1, 3, 4-thiazol-2-amine compounds; 2013.
[173]
Shirude, P.S.; Madhavapeddi, P.; Naik, M.; Murugan, K.; Shinde, V.; Nandishaiah, R.; Bhat, J.; Kumar, A.; Hameed, S.; Holdgate, G.; Davies, G.; McMiken, H.; Hegde, N.; Ambady, A.; Venkatraman, J.; Panda, M.; Bandodkar, B.; Sambandamurthy, V.K.; Read, J.A. Methyl-thiazoles: a novel mode of inhibition with the potential to develop novel inhibitors targeting InhA in Mycobacterium tuberculosis. J. Med. Chem., 2013, 56(21), 8533-8542.
[http://dx.doi.org/10.1021/jm4012033] [PMID: 24107081]
[174]
Moraski, G.C.; Seeger, N.; Miller, P.A.; Oliver, A.G.; Boshoff, H.I.; Cho, S. Arrival of imidazo[2,1- b ]thiazole-5- carboxamides: Potent anti-tuberculosis agents that target QcrB. ACS Infect. Dis, 2016. acsinfecdis.5b00154.
[http://dx.doi.org/10.1021/acsinfecdis.5b00154]
[175]
Smith, T.K.; Young, B.L.; Denton, H.; Hughes, D.L.; Wagner, G.K. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg. Med. Chem. Lett., 2009, 19(6), 1749-1752.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.083] [PMID: 19217283]
[176]
Zhang, X.; Li, X.; Li, D.; Qu, G.; Wang, J.; Loiseau, P.M.; Fan, X. Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities. Bioorg. Med. Chem. Lett., 2009, 19(22), 6280-6283.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.101] [PMID: 19819695]
[177]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Day, C.W.; Smee, D.F.; Grellier, P.; Lesyk, R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur. J. Med. Chem., 2013, 66, 228-237.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.044]
[178]
Havrylyuk, D.; Zimenkovsky, B.; Karpenko, O.; Grellier, P.; Lesyk, R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur. J. Med. Chem., 2014, 85, 245-254.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.103] [PMID: 25089808]
[179]
Vintonyak, V.V.; Warburg, K.; Over, B.; Hübel, K.; Rauh, D.; Waldmann, H. Identification and further development of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Tetrahedron, 2011, 67, 6713-6729.
[http://dx.doi.org/10.1016/j.tet.2011.04.026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy