Title:Epigenetic Regulation of Myocardial Homeostasis, Self-Regeneration and Senescence
Volume: 16
Issue: 8
Author(s): Marco Matteucci, Gaia Papini, Enrica Ciofini, Lucio Barile and Vincenzo Lionetti
Affiliation:
Keywords:
Ageing, cardiac remodeling, epigenetics, heart failure, myocardial regeneration, natural compounds.
Abstract: The adult myocardium has limited capacity to preserve, renew or rejuvenate itself. The local
microenvironment may induce epigenetic changes affecting the survival, proliferation, function and
senescence of cardiac cells at rest and following the exposure to different stressors. The cellular response
to microenvironment is characterized by the release of ions, oxygen free radicals,
auto/paracrine factors and RNAs that drive the magnitude of gene reprogramming through the interaction
with specific promoters. The epigenetic alterations may act at transcriptional and post-transcriptional level and
change cardiac physiological traits. The abnormal DNA methylation underlies the progressive decay of contractile function
and the angiogenic ability; while, the histone acetylation promotes the survival, function and proliferation of cardiac
cells in the presence of ischemic microenvironment. At least, the expression and secretion of microRNAs and long noncoding
RNAs may regulate the threshold to stress tolerance of adult cardiac cells and induce the matrix turnover as well.
Natural or synthetic active compounds effectively modulate the epigenetic state of cardiac cells. Plant foods contain many
active compounds with epigenetic properties and might assume a clinical significance as natural cardiac regenerators or
rejuvenators. Our review describes novel epigenetic mechanisms that underpin myocardial remodeling, repair/
regeneration or senescence in order to support the development of most effective and reproducible rescue therapy of
adult heart.