Title:Study on Osteoblast like Behavior of Umbilical Cord Blood Cells on Various Combinations of PLGA Scaffolds Prepared by Salt Fusion
Volume: 8
Issue: 3
Author(s): Naveen Kumar Mekala, Rama Raju Baadhe and Sreenivasa Rao Parcha
Affiliation:
Keywords:
Mesenchymal stem cells, osteoblasts, PLGA scaffolds, salt fusion, solvent casting, umbilical cord blood
Abstract: The osteogenic potential of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) on porous poly
lactide-co-glycolide (PLGA) scaffolds have been reported to differentially support osteogenic differentiation based on
polymer composition (80:20, 75:25 and 70:30 percent of PLA: PGA, respectively). Along with polymer composition;
fused NaCl crystal matrix prior to solvent casting improves the porosity and pore interconnectivity in 3D scaffolds, which
has significant impact on cell proliferation. FTIR and XRD studies of PLGA scaffolds also verified the intermolecular interactions,
phase distribution and crystallinity in scaffolds. Among three scaffold combinations, sample B (75:25) has
showed maximum porosity with optimum water uptake/retention abilities. Impact of polymer composition and porosity on
cell proliferation was investigated through MTT assay, where sample B was observed to be supporting better cell proliferation,
due to its internal structure. The above results were further confirmed by ALP and Col-I gene expression studies
using RT-PCR. Immunofluorescent studies also revealed the extracellular filamentous actin organization over the scaffolds,
where cell adhesion and proliferation was found to be higher with increase in PGA content, which is a hydrophilic
polymer.