Title:Selected Natural and Synthetic Phenolic Compounds with Antileishmanial Activity: A Five-year Review
Volume: 8
Issue: 4
Author(s): Antonieta Rojas de Arias, Enrique Pandolfi, Maria Celeste Vega and Miriam Rolon
Affiliation:
Keywords:
Anti-leishmanial, chalcones, flavonoids, isolation, polyphenols, synthesis, Leishmaniasis, morbidity, parasite, promastigotes
Abstract: Leishmaniasis is among the neglected diseases that represent 90% of the world burden of morbidity. According
to the WHO, there are 12 million people, mostly deeply impoverished who suffer from visceral leishmaniasis (VL). The
drugs currently used for the treatment of human cutaneous and visceral leishmaniasis are toxic, have severe adverse reactions
which limit their use, and have presented teratogenic and cardiotoxic effects and increasing resistance. Given this
scenario, the search for new, accessible and effective drugs for the treatment of leishmaniasis is a priority.
This review aims to provide an overview of selected phenolic compounds with antileishmanial activities that have been
published from 2007 to the present. Natural source or efficient synthesis, biological assays and possible mechanisms of
actions are also described.
Five flavonoids, six chalcones and three polyphenols have shown a selective index (SI) equal or greater than 20 which
places them with greater antileishmanial activity. Quercitrin (3), hispidulin (6), octa-acetylhyperoside (11a), biochanin A
(13) and ageconyflavone C (14) showed a SI range between 19.5 and 100. Chalcones 31, 33, 41, 42 65 and 67 were the
highest antileishmanial compounds. Polyphenols 74 and 85 showed an important selective index when tested on
promastigotes (71.4) and amastigotes (36.5) of L major and axenic amastigotes of L. mexicana (20). Compound 83 has
demonstrated a potent in vitro (19.7) and in vivo effect on Balb/c mice experimentally infected with L. amazonensis.
A wide range of biological assays with several strains and different parasite forms, have identified promising compounds,
but few of them are conducted to clinical trials. This restriction emphasizes the necessity to reach a consensus regarding in
vitro and in vivo screening protocol to advance leading compounds to clinical trials.