Title:From Blood-to-Brain: Regulating the Permeability of the Blood-Brain Barrier
Volume: 1
Author(s): B. Gomez-Gonzalez, K. Sanchez-Alegria and J. Velazquez-Moctezuma
Affiliation:
Keywords:
blood-brain barrier permeability, brain endothelial cells, caveolae, receptor-mediated endocytosis, carrier systems, tight junctions, Beta-catenin, homotypically, paracellular leukocyte, lipophilic, neovascularization, abluminal, Plasminogen, diencephalon, dementia.
Abstract: The blood-brain barrier is the structure that maintains central nervous system homeostasis; it is composed of
brain endothelial cells, astroglia, pericytes, microglia, and of the extracellular matrix components basal lamina and
glycocalyx. The blood-brain barrier constitutes the main interface between the brain and the periphery; therefore it is the
main structure regulating the passage of molecules from blood-to-brain and vice versa. At brain endothelial cells are
expressed numerous members of the solute carrier (SLC) and ATP-binding cassette (ABC) gene families; those carriers
exert selective transport and preclude free exchange of molecules from blood-to-brain. In addition, brain endothelial cells
present low paracellular diffusion and vesicle-mediated transport. The regulation of the blood-brain barrier permeability is
essential to guarantee nutrient supply to brain cells, but also to allow selective passage of drugs designed to treat brain
diseases. This review describes both the pharmacological and physiological approaches to modulate the permeability of
the blood-brain barrier. Finally we propose that once more data on blood-brain barrier normal physiology are obtained,
health professionals will be able to take advantage of normal variations in blood-brain barrier permeability to administer
drugs aimed to affect the central nervous system in the critical time window of blood-brain barrier “opening”.