Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Pharmacological Targeting of IDO-Mediated Tolerance for Treating Autoimmune Disease

Author(s): W. T. Penberthy

Volume 8, Issue 3, 2007

Page: [245 - 266] Pages: 22

DOI: 10.2174/138920007780362545

Price: $65

Open Access Journals Promotions 2
Abstract

Cells at the maternal-fetal interface express indoleamine 2,3 dioxygenase (IDO) to consume all local tryptophan for the express purpose of starving adjacent maternal T cells of this most limiting and essential amino acid. This stops local T cell proliferation to ultimately result in the most dramatic example of immune tolerance, acceptance of the fetus. By contrast, inhibition of IDO using 1- methyl-tryptophan causes a sudden catastrophic rejection of the mammalian fetus. Immunomodulatory factors including IFNγ , TNFα , IL- 1, and LPS use IDO induction in responsive antigen presenting cells (APCs) also to transmit tolerogenic signals to T cells. Thus it makes sense to consider IDO induction towards tolerance for autoimmune diseases in general. Approaches to cell specific therapeutic IDO induction with NAD precursor supplementation to prevent the collateral non-T cell pathogenesis due to chronic TNFα -IDO activated tryptophan depletion in autoimmune diseases are reviewed. Tryptophan is an essential amino acid most immediately because it is the only precursor for the endogenous biosynthesis of nicotinamide adenine dinucleotide (NAD). Both autoimmune disease and the NAD deficiency disease pellagra occur in women at greater than twice the frequency of occurrence in men. The importance of IDO dysregulation manifest as autoimmune pellagric dementia is genetically illustrated for Nasu-Hakola Disease (or PLOSL), which is caused by a mutation in the IDO antagonizing genes TYROBP/DAP12 or TREM2. Loss of function leads to psychotic symptoms rapidly progressing to presenile dementia likely due to unchecked increases in microglial IDO expression, which depletes neurons of tryptophan causing neurodegeneration. Administration of NAD precursors rescued entire mental hospitals of dementia patients literally overnight in the 1930s and NAD precursors should help Nasu-Hakola patients as well. NAD depletion mediated by peroxynitrate PARP1 activation is one of the few established mechanisms of necrosis. Chronic elevation of TNFα leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE2 and PGD2. Next, PGD2 is converted to the anti-inflammatory prostaglandin, 15d-PGJ2. These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPAR respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration. 1.

Keywords: NAD, autoimmune disease, pellagra, IDO, tryptophan, niacin, rheumatoid arthritis, type 1 diabetes


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy