Title: Exploring Novel Approaches to Vaginal Drug Delivery
Volume: 5
Issue: 2
Author(s): Sonal Gupta, Reema Gabrani, Javed Ali and Shweta Dang
Affiliation:
Keywords:
Drug delivery, hydrogels, liposomes, mucoadhesive polymers, nanoemulsions, nanoparticles, vaginal route, Vaginal Drug Delivery, Carrageenan, Vaginal Films
Abstract: Vaginal route serves as a potential site of drug administration for local and systemic absorption of a variety of therapeutic agents. Despite being a non- invasive route of drug administration, the vagina has not been extensively explored as compared to other routes. Intravaginal drug delivery has been traditionally restricted to delivery of antinfectives to the local vaginal cavity. Concerted efforts have been made in the recent past to rediscover the vaginal route as a potential route for the delivery of therapeutically important molecules, proteins, peptides, small interfering RNAs, oligonucleotides, antigens, vaccines and hormones. The understanding of vaginal physiology has led to the design of specific intravaginal drug delivery systems to reach the systemic circulation. To overcome the limitations of conventional dosage forms administered through vaginal route various novel approaches like the use of mucoadhesive or bioadhesive polymers, pH- or temperature-sensitive polymers, liposomes, nanoemulsions, nanoparticles, vaginal inserts, multiple emulsions and hydrogels have been designed which enable controlled and prolonged release of drugs. The present article is a comprehensive review of the research and patents encompassing conventional dosage forms used for vaginal drug delivery with emphasis on newer platform technologies pertaining to intravaginal administration.