Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

General Review Article

PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy

Author(s): Dipanjan Karati, Ankur Saha, Souvik Roy and Swarupananda Mukherjee*

Volume 24, Issue 28, 2024

Published on: 18 September, 2024

Page: [2489 - 2508] Pages: 20

DOI: 10.2174/0115680266321659240906114742

Price: $65

Open Access Journals Promotions 2
Abstract

Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.

Keywords: Tumorigenesis, PIM kinase, microRNA, JAK/STAT, FDA approved, Epigenetic.

Graphical Abstract
[1]
Karati, D.; Shaoo, K.K.; Mahadik, K.R.; Kumr, D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. Results Chem., 2022, 4, 100532.
[http://dx.doi.org/10.1016/j.rechem.2022.100532]
[2]
Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[3]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[4]
Arrouchi, H.; Lakhlili, W.; Ibrahimi, A. A review on PIM kinases in tumors. Bioinformation, 2019, 15(1), 40-45.
[http://dx.doi.org/10.6026/97320630015040] [PMID: 31359998]
[5]
Panchal, N.K.; Sabina, E.P. A serine/threonine protein PIM kinase as a biomarker of cancer and a target for anti-tumor therapy. Life Sci., 2020, 255, 117866.
[http://dx.doi.org/10.1016/j.lfs.2020.117866] [PMID: 32479955]
[6]
Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM kinase as an executional target in cancer. J. Cancer Prev., 2018, 23(3), 109-116.
[http://dx.doi.org/10.15430/JCP.2018.23.3.109] [PMID: 30370255]
[7]
Drygin, D.; Haddach, M.; Pierre, F.; Ryckman, D.M. Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy. J. Med. Chem., 2012, 55(19), 8199-8208.
[http://dx.doi.org/10.1021/jm3009234] [PMID: 22924342]
[8]
Rathi, A.; Kumar, D.; Hasan, G.M.; Haque, M.M.; Hassan, M.I. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(11), 129995.
[http://dx.doi.org/10.1016/j.bbagen.2021.129995] [PMID: 34455019]
[9]
Asati, V.; Mahapatra, D.K.; Bharti, S.K. PIM kinase inhibitors: Structural and pharmacological perspectives. Eur. J. Med. Chem., 2019, 172, 95-108.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.050] [PMID: 30954777]
[10]
Daenthanasanmak, A.; Wu, Y.; Iamsawat, S.; Nguyen, H.D.; Bastian, D.; Zhang, M.; Sofi, M.H.; Chatterjee, S.; Hill, E.G.; Mehrotra, S.; Kraft, A.S.; Yu, X.Z. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J. Clin. Invest., 2018, 128(7), 2787-2801.
[http://dx.doi.org/10.1172/JCI95407] [PMID: 29781812]
[11]
Le, B.T.; Kumarasiri, M.; Adams, J.R.J.; Yu, M.; Milne, R.; Sykes, M.J.; Wang, S. Targeting Pim kinases for cancer treatment: Opportunities and challenges. Future Med. Chem., 2015, 7(1), 35-53.
[http://dx.doi.org/10.4155/fmc.14.145] [PMID: 25582332]
[12]
Qian, K.C.; Wang, L.; Hickey, E.R.; Studts, J.; Barringer, K.; Peng, C.; Kronkaitis, A.; Li, J.; White, A.; Mische, S.; Farmer, B. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J. Biol. Chem., 2005, 280(7), 6130-6137.
[http://dx.doi.org/10.1074/jbc.M409123200] [PMID: 15525646]
[13]
Zhukova, IuN.; Alekseeva, M.G.; Zakharevich, N.V.; Shtil’, A.A.; Danilenko, V.N. [The Pim family of protein kinases: Structure, functions and roles in hematopoietic malignancies]. Mol. Biol. (Mosk.), 2011, 45(5), 755-764.
[PMID: 22393773]
[14]
Razmazma, H.; Ebrahimi, A.; Hashemi, M. Structural insights for rational design of new PIM-1 kinase inhibitors based on 3,5-disubstituted indole derivatives: An integrative computational approach. Comput. Biol. Med., 2020, 118, 103641.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103641] [PMID: 32174320]
[15]
Wang, Y.; Xiu, J.; Ren, C.; Yu, Z. Protein kinase PIM2: A simple PIM family kinase with complex functions in cancer metabolism and therapeutics. J. Cancer, 2021, 12(9), 2570-2581.
[http://dx.doi.org/10.7150/jca.53134] [PMID: 33854618]
[16]
Bachmann, M.; Möröy, T. The serine/threonine kinase Pim-1. Int. J. Biochem. Cell Biol., 2005, 37(4), 726-730.
[http://dx.doi.org/10.1016/j.biocel.2004.11.005] [PMID: 15694833]
[17]
Friedmann, M.; Nissen, M.S.; Hoover, D.S.; Reeves, R.; Magnuson, N.S. Characterization of the proto-oncogene Pim-1: Kinase activity and substrate recognition sequence. Arch. Biochem. Biophys., 1992, 298(2), 594-601.
[http://dx.doi.org/10.1016/0003-9861(92)90454-5] [PMID: 1416988]
[18]
Eswaran, J.; Knapp, S. Insights into protein kinase regulation and inhibition by large scale structural comparison. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 429-432.
[http://dx.doi.org/10.1016/j.bbapap.2009.10.013] [PMID: 19854302]
[19]
Mukaida, N.; Wang, Y.Y.; Li, Y.Y. Roles of Pim‐3, a novel survival kinase, in tumorigenesis. Cancer Sci., 2011, 102(8), 1437-1442.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01966.x] [PMID: 21518143]
[20]
Fujii, C.; Nakamoto, Y.; Lu, P.; Tsuneyama, K.; Popivanova, B.K.; Kaneko, S.; Mukaida, N. Aberrant expression of serine/threonine kinase Pim‐3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int. J. Cancer, 2005, 114(2), 209-218.
[http://dx.doi.org/10.1002/ijc.20719] [PMID: 15540201]
[21]
Narlik-Grassow, M.; Blanco-Aparicio, C.; Carnero, A. The PIM family of serine/threonine kinases in cancer. Med. Res. Rev., 2014, 34(1), 136-159.
[http://dx.doi.org/10.1002/med.21284] [PMID: 23576269]
[22]
Hogan, C.; Hutchison, C.; Marcar, L.; Milne, D.; Saville, M.; Goodlad, J.; Kernohan, N.; Meek, D. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J. Biol. Chem., 2008, 283(26), 18012-18023.
[http://dx.doi.org/10.1074/jbc.M709695200] [PMID: 18467333]
[23]
Wang, Z.; Bhattacharya, N.; Weaver, M.; Petersen, K.; Meyer, M.; Gapter, L.; Magnuson, N.S. Pim-1: A serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J. Vet. Sci., 2001, 2(3), 167-179.
[http://dx.doi.org/10.4142/jvs.2001.2.3.167] [PMID: 12441685]
[24]
White, E. The pims and outs of survival signaling: role for the Pim-2 protein kinase in the suppression of apoptosis by cytokines. Genes Dev., 2003, 17(15), 1813-1816.
[http://dx.doi.org/10.1101/gad.1123103] [PMID: 12897050]
[25]
Jiménez-García, M.P.; Lucena-Cacace, A.; Robles-Frías, M.J.; Narlik-Grassow, M.; Blanco-Aparicio, C.; Carnero, A. The role of PIM1/PIM2 kinases in tumors of the male reproductive system. Sci. Rep., 2016, 6(1), 38079.
[http://dx.doi.org/10.1038/srep38079] [PMID: 27901106]
[26]
Liang, C.; Li, Y.Y. Use of regulators and inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy (Review). Mol. Med. Rep., 2014, 9(6), 2051-2060.
[http://dx.doi.org/10.3892/mmr.2014.2139] [PMID: 24737044]
[27]
Gu, L.; Vogiatzi, P.; Puhr, M.; Dagvadorj, A.; Lutz, J.; Ryder, A.; Addya, S.; Fortina, P.; Cooper, C.; Leiby, B.; Dasgupta, A.; Hyslop, T.; Bubendorf, L.; Alanen, K.; Mirtti, T.; Nevalainen, M.T. Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. Relat. Cancer, 2010, 17(2), 481-493.
[http://dx.doi.org/10.1677/ERC-09-0328] [PMID: 20233708]
[28]
Horinaga, M.; Okita, H.; Nakashima, J.; Kanao, K.; Sakamoto, M.; Murai, M. Clinical and pathologic significance of activation of signal transducer and activator of transcription 3 in prostate cancer. Urology, 2005, 66(3), 671-675.
[http://dx.doi.org/10.1016/j.urology.2005.03.066] [PMID: 16140113]
[29]
Hellsten, R.; Lilljebjörn, L.; Johansson, M.; Leandersson, K.; Bjartell, A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC‐like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Prostate, 2019, 79(14), 1611-1621.
[http://dx.doi.org/10.1002/pros.23885] [PMID: 31348843]
[30]
Luszczak, S.; Kumar, C.; Sathyadevan, V.K.; Simpson, B.S.; Gately, K.A.; Whitaker, H.C.; Heavey, S. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer. Signal Transduct. Target. Ther., 2020, 5(1), 7.
[http://dx.doi.org/10.1038/s41392-020-0109-y] [PMID: 32296034]
[31]
Nosaka, T.; Kitamura, T. Pim-1 expression is sufficient to induce cytokine independence in murine hematopoietic cells, but is dispensable for BCR-ABL–mediated transformation. Exp. Hematol., 2002, 30(7), 697-702.
[http://dx.doi.org/10.1016/S0301-472X(02)00808-1] [PMID: 12135666]
[32]
Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica, 2010, 95(6), 1004-15.
[http://dx.doi.org/10.3324/haematol.2009.017079.]
[33]
Janku, F.; Yap, T.A.; Meric-Bernstam, F. Targeting the PI3K pathway in cancer: Are we making headway? Nat. Rev. Clin. Oncol., 2018, 15(5), 273-291.
[http://dx.doi.org/10.1038/nrclinonc.2018.28] [PMID: 29508857]
[34]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[35]
Mabuchi, S.; Kuroda, H.; Takahashi, R.; Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol. Oncol., 2015, 137(1), 173-179.
[http://dx.doi.org/10.1016/j.ygyno.2015.02.003] [PMID: 25677064]
[36]
Wee, P.; Wang, Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 2017, 9(5), 52.
[http://dx.doi.org/10.3390/cancers9050052] [PMID: 28513565]
[37]
Aziz, A.; Farid, S.; Qin, K.; Wang, H.; Liu, B. PIM kinases and their relevance to the PI3K/AKT/mTOR pathway in the regulation of ovarian cancer. Biomolecules, 2018, 8(1), 7.
[http://dx.doi.org/10.3390/biom8010007] [PMID: 29401696]
[38]
Gyori, D.; Chessa, T.; Hawkins, P.; Stephens, L. Class (I) phosphoinositide 3-kinases in the tumor microenvironment. Cancers (Basel), 2017, 9(3), 24.
[http://dx.doi.org/10.3390/cancers9030024] [PMID: 28273837]
[39]
Fruman, D.A.; Rommel, C. PI3K and cancer: Lessons, challenges and opportunities. Nat. Rev. Drug Discov., 2014, 13(2), 140-156.
[http://dx.doi.org/10.1038/nrd4204] [PMID: 24481312]
[40]
Dobbin, Z.; Landen, C. The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int. J. Mol. Sci., 2013, 14(4), 8213-8227.
[http://dx.doi.org/10.3390/ijms14048213] [PMID: 23591839]
[41]
Laychock, S.G. Insulin receptor signaling. In: Encyclopedia of Hormones; , 2003; pp. 368-380.
[http://dx.doi.org/10.1016/B0-12-341103-3/00177-7.]
[42]
Muraski, J.A.; Rota, M.; Misao, Y.; Fransioli, J.; Cottage, C.; Gude, N.; Esposito, G.; Delucchi, F.; Arcarese, M.; Alvarez, R.; Siddiqi, S.; Emmanuel, G.N.; Wu, W.; Fischer, K.; Martindale, J.J.; Glembotski, C.C.; Leri, A.; Kajstura, J.; Magnuson, N.; Berns, A.; Beretta, R.M.; Houser, S.R.; Schaefer, E.M.; Anversa, P.; Sussman, M.A. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat. Med., 2007, 13(12), 1467-1475.
[http://dx.doi.org/10.1038/nm1671] [PMID: 18037896]
[43]
Warfel, N.A.; Kraft, A.S. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol. Ther., 2015, 151, 41-49.
[http://dx.doi.org/10.1016/j.pharmthera.2015.03.001] [PMID: 25749412]
[44]
Cen, B.; Xiong, Y.; Song, J.H.; Mahajan, S.; DuPont, R.; McEachern, K.; DeAngelo, D.J.; Cortes, J.E.; Minden, M.D.; Ebens, A.; Mims, A.; LaRue, A.C.; Kraft, A.S. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol. Cell. Biol., 2014, 34(13), 2517-2532.
[http://dx.doi.org/10.1128/MCB.00147-14] [PMID: 24777602]
[45]
Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell, 2012, 149(2), 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017.]
[46]
Mabuchi, S.; Hisamatsu, T.; Kimura, T. Targeting mTOR signaling pathway in ovarian cancer. Curr. Med. Chem., 2011, 18(19), 2960-2968.
[http://dx.doi.org/10.2174/092986711796150450] [PMID: 21651485]
[47]
Laplante, M.; Sabatini, D.M. mTOR signaling at a glance. J. Cell Sci., 2009, 122(20), 3589-3594.
[http://dx.doi.org/10.1242/jcs.051011] [PMID: 19812304]
[48]
Viel, S.; Besson, L.; Marotel, M.; Walzer, T.; Marçais, A. Regulation of mTOR, metabolic fitness, and effector functions by cytokines in natural killer cells. Cancers (Basel), 2017, 9(10), 132.
[http://dx.doi.org/10.3390/cancers9100132] [PMID: 28956813]
[49]
Faes, S.; Santoro, T.; Demartines, N.; Dormond, O. Evolving significance and future relevance of anti-angiogenic activity of mTOR inhibitors in cancer therapy. Cancers (Basel), 2017, 9(11), 152.
[http://dx.doi.org/10.3390/cancers9110152] [PMID: 29104248]
[50]
Lu, J.; Zavorotinskaya, T.; Dai, Y.; Niu, X.H.; Castillo, J.; Sim, J.; Yu, J.; Wang, Y.; Langowski, J.L.; Holash, J.; Shannon, K.; Garcia, P.D. Pim2 is required for maintaining multiple myeloma cell growth through modulating TSC2 phosphorylation. Blood, 2013, 122(9), 1610-1620.
[http://dx.doi.org/10.1182/blood-2013-01-481457] [PMID: 23818547]
[51]
Bellon, M.; Nicot, C. Targeting Pim kinases in hematological cancers: Molecular and clinical review. Mol. Cancer, 2023, 22(1), 18.
[http://dx.doi.org/10.1186/s12943-023-01721-1] [PMID: 36694243]
[52]
van der Lugt, N.M.; Domen, J.; Verhoeven, E.; Linders, K.; van der Gulden, H.; Allen, J.; Berns, A. Proviral tagging in E mu-myc transgenic mice lacking the Pim-1 proto-oncogene leads to compensatory activation of Pim-2. EMBO J., 1995, 14(11), 2536-2544.
[http://dx.doi.org/10.1002/j.1460-2075.1995.tb07251.x] [PMID: 7781606]
[53]
Blanco-Aparicio, C.; Carnero, A. Pim kinases in cancer: Diagnostic, prognostic and treatment opportunities. Biochem. Pharmacol., 2013, 85(5), 629-643.
[http://dx.doi.org/10.1016/j.bcp.2012.09.018] [PMID: 23041228]
[54]
Horiuchi, D.; Kusdra, L.; Huskey, N.E.; Chandriani, S.; Lenburg, M.E.; Gonzalez-Angulo, A.M.; Creasman, K.J.; Bazarov, A.V.; Smyth, J.W.; Davis, S.E.; Yaswen, P.; Mills, G.B.; Esserman, L.J.; Goga, A. MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J. Exp. Med., 2012, 209(4), 679-696.
[http://dx.doi.org/10.1084/jem.20111512] [PMID: 22430491]
[55]
Shirogane, T.; Fukada, T.; Muller, J.M.M.; Shima, D.T.; Hibi, M.; Hirano, T. Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity, 1999, 11(6), 709-719.
[http://dx.doi.org/10.1016/S1074-7613(00)80145-4] [PMID: 10626893]
[56]
Anderson, P.D.; McKissic, S.A.; Logan, M.; Roh, M.; Franco, O.E.; Wang, J.; Doubinskaia, I.; Meer, R.; Hayward, S.W.; Eischen, C.M.; Eltoum, I.E.; Abdulkadir, S.A. Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis. J. Clin. Invest., 2012, 122(5), 1907-1919.
[http://dx.doi.org/10.1172/JCI58540] [PMID: 22484818]
[57]
Pestell, R.G.; Albanese, C.; Reutens, A.T.; Segall, J.E.; Lee, R.J.; Arnold, A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr. Rev., 1999, 20(4), 501-534.
[PMID: 10453356]
[58]
Morishita, D.; Katayama, R.; Sekimizu, K.; Tsuruo, T.; Fujita, N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res., 2008, 68(13), 5076-5085.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0634] [PMID: 18593906]
[59]
Jessus, C.; Ozon, R. Function and regulation of cdc25 protein phosphatase through mitosis and meiosis. Prog. Cell Cycle Res., 1995, 1, 215-228.
[http://dx.doi.org/10.1007/978-1-4615-1809-9_17] [PMID: 9552365]
[60]
Kumagai, A.; Dunphy, W.G. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev., 1999, 13(9), 1067-1072.
[http://dx.doi.org/10.1101/gad.13.9.1067] [PMID: 10323858]
[61]
Yang, E.; Zha, J.; Jockel, J.; Boise, L.H.; Thompson, C.B.; Korsmeyer, S.J. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death. Cell, 1995, 80(2), 285-291.
[http://dx.doi.org/10.1016/0092-8674(95)90411-5] [PMID: 7834748]
[62]
Asano, J.; Nakano, A.; Oda, A.; Amou, H.; Hiasa, M.; Takeuchi, K.; Miki, H.; Nakamura, S.; Harada, T.; Fujii, S.; Kagawa, K.; Endo, I.; Yata, K.; Sakai, A.; Ozaki, S.; Matsumoto, T.; Abe, M. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia, 2011, 25(7), 1182-1188.
[http://dx.doi.org/10.1038/leu.2011.60] [PMID: 21475253]
[63]
Kapelko-Slowik, K.; Owczarek, T.B.; Grzymajlo, K.; Urbaniak-Kujda, D.; Jazwiec, B.; Slowik, M.; Kuliczkowski, K.; Ugorski, M. Elevated PIM2 gene expression is associated with poor survival of patients with acute myeloid leukemia. Leuk. Lymphoma, 2016, 57(9), 2140-2149.
[http://dx.doi.org/10.3109/10428194.2015.1124991] [PMID: 26764044]
[64]
Kapelko-Słowik, K.; Dybko, J.; Grzymajło, K.; Jaźwiec, B.; Urbaniak-Kujda, D.; Słowik, M.; Potoczek, S.; Wołowiec, D. Expression of the PIM2 gene is associated with more aggressive clinical course in patients with chronic lymphocytic leukemia. Adv. Clin. Exp. Med., 2018, 28(3), 385-390.
[http://dx.doi.org/10.17219/acem/90771] [PMID: 30525315]
[65]
Dai, H.; Li, R.; Wheeler, T.; de Vivar, A.D.; Frolov, A.; Tahir, S.; Agoulnik, I.; Thompson, T.; Rowley, D.; Ayala, G. Pim‐2 upregulation: Biological implications associated with disease progression and perinueral invasion in prostate cancer. Prostate, 2005, 65(3), 276-286.
[http://dx.doi.org/10.1002/pros.20294] [PMID: 16015593]
[66]
Li, Y.Y.; Mukaida, N. Pathophysiological roles of Pim-3 kinase in pancreatic cancer development and progression. World J. Gastroenterol., 2014, 20(28), 9392-9404.
[PMID: 25071334]
[67]
Zha, J.; Harada, H.; Yang, E.; Jockel, J.; Korsmeyer, S.J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell, 1996, 87(4), 619-628.
[http://dx.doi.org/10.1016/S0092-8674(00)81382-3] [PMID: 8929531]
[68]
Liang, C.; Yu, X.J.; Guo, X.Z.; Sun, M.H.; Wang, Z.; Song, Y.; Ni, Q.X.; Li, H.Y.; Mukaida, N.; Li, Y.Y. MicroRNA-33a-mediated downregulation of Pim-3 kinase expression renders human pancreatic cancer cells sensitivity to gemcitabine. Oncotarget, 2015, 6(16), 14440-14455.
[http://dx.doi.org/10.18632/oncotarget.3885] [PMID: 25971209]
[69]
Gapter, L.A.; Magnuson, N.S.; Ng, K.; Hosick, H.L. Pim-1 kinase expression during murine mammary development. Biochem. Biophys. Res. Commun., 2006, 345(3), 989-997.
[http://dx.doi.org/10.1016/j.bbrc.2006.04.110] [PMID: 16712793]
[70]
Brasó-Maristany, F.; Filosto, S.; Catchpole, S.; Marlow, R.; Quist, J.; Francesch-Domenech, E.; Plumb, D.A.; Zakka, L.; Gazinska, P.; Liccardi, G.; Meier, P.; Gris-Oliver, A.; Cheang, M.C.U.; Perdrix-Rosell, A.; Shafat, M.; Noël, E.; Patel, N.; McEachern, K.; Scaltriti, M.; Castel, P.; Noor, F.; Buus, R.; Mathew, S.; Watkins, J.; Serra, V.; Marra, P.; Grigoriadis, A.; Tutt, A.N. PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat. Med., 2016, 22(11), 1303-1313.
[http://dx.doi.org/10.1038/nm.4198] [PMID: 27775704]
[71]
Lofterød, T.; Mortensen, E.S.; Nalwoga, H.; Wilsgaard, T.; Frydenberg, H.; Risberg, T.; Eggen, A.E.; McTiernan, A.; Aziz, S.; Wist, E.A.; Stensvold, A.; Reitan, J.B.; Akslen, L.A.; Thune, I. Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer, 2018, 18(1), 654.
[http://dx.doi.org/10.1186/s12885-018-4568-2] [PMID: 29902993]
[72]
Horiuchi, D.; Camarda, R.; Zhou, A.Y.; Yau, C.; Momcilovic, O.; Balakrishnan, S.; Corella, A.N.; Eyob, H.; Kessenbrock, K.; Lawson, D.A.; Marsh, L.A.; Anderton, B.N.; Rohrberg, J.; Kunder, R.; Bazarov, A.V.; Yaswen, P.; McManus, M.T.; Rugo, H.S.; Werb, Z.; Goga, A. PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression. Nat. Med., 2016, 22(11), 1321-1329.
[http://dx.doi.org/10.1038/nm.4213] [PMID: 27775705]
[73]
Zippo, A.; De Robertis, A.; Serafini, R.; Oliviero, S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol., 2007, 9(8), 932-944.
[http://dx.doi.org/10.1038/ncb1618] [PMID: 17643117]
[74]
Zhao, W.; Qiu, R.; Li, P.; Yang, J. PIM1: A promising target in patients with triple-negative breast cancer. Med. Oncol., 2017, 34(8), 142.
[http://dx.doi.org/10.1007/s12032-017-0998-y] [PMID: 28721678]
[75]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[76]
Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. Adv Exp Med Biol, 2016, 893, 1-19.
[http://dx.doi.org/10.1007/978-3-319-24223-1_1]
[77]
Jiang, W.; Chen, Y.; Song, X.; Shao, Y.; Ning, Z.; Gu, W. Pim-1 inhibitor SMI-4a suppresses tumor growth in non-small cell lung cancer via PI3K/AKT/mTOR pathway. OncoTargets Ther., 2019, 12, 3043-3050.
[http://dx.doi.org/10.2147/OTT.S203142] [PMID: 31114247]
[78]
Sun, Z.; Zeng, L.; Zhang, M.; Zhang, Y.; Yang, N. PIM1 inhibitor synergizes the anti-tumor effect of osimertinib via STAT3 dephosphorylation in EGFR-mutant non-small cell lung cancer. Ann. Transl. Med., 2020, 8(6), 366.
[http://dx.doi.org/10.21037/atm.2020.02.43]
[79]
Liao, Y.; Feng, Y.; Shen, J.; Gao, Y.; Cote, G.; Choy, E.; Harmon, D.; Mankin, H.; Hornicek, F.; Duan, Z. Clinical and biological significance of PIM1 kinase in osteosarcoma. J. Orthop. Res., 2016, 34(7), 1185-1194.
[http://dx.doi.org/10.1002/jor.23134] [PMID: 26687194]
[80]
Altieri, D.C. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol. Med., 2001, 7(12), 542-547.
[http://dx.doi.org/10.1016/S1471-4914(01)02243-2] [PMID: 11733216]
[81]
Narlik-Grassow, M.; Blanco-Aparicio, C.; Cecilia, Y.; Perez, M.; Muñoz-Galvan, S.; Cañamero, M.; Carnero, A.; Carnero, A. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One, 2013, 8(4), e60277.
[http://dx.doi.org/10.1371/journal.pone.0060277] [PMID: 23565217]
[82]
Li, Y.Y.; Popivanova, B.K.; Nagai, Y.; Ishikura, H.; Fujii, C.; Mukaida, N. Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res., 2006, 66(13), 6741-6747.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4272] [PMID: 16818649]
[83]
Xu, J.; Zhang, T.; Wang, T.; You, L.; Zhao, Y. PIM kinases: An overview in tumors and recent advances in pancreatic cancer. Future Oncol., 2014, 10(5), 865-876.
[http://dx.doi.org/10.2217/fon.13.229] [PMID: 24799066]
[84]
Zhang, Y.; Wang, Z.; Li, X.; Magnuson, N.S. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene, 2008, 27(35), 4809-4819.
[http://dx.doi.org/10.1038/onc.2008.123] [PMID: 18438430]
[85]
Ingle, K.; LaComb, J.F.; Graves, L.M.; Baines, A.T.; Bialkowska, A.B. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor. PLoS One, 2023, 18(11), e0294065.
[http://dx.doi.org/10.1371/journal.pone.0294065] [PMID: 37943821]
[86]
Bleeker, F.E.; Molenaar, R.J.; Leenstra, S. Recent advances in the molecular understanding of glioblastoma. J. Neurooncol., 2012, 108(1), 11-27.
[http://dx.doi.org/10.1007/s11060-011-0793-0] [PMID: 22270850]
[87]
Serrano-Saenz, S.; Palacios, C.; Delgado-Bellido, D.; López-Jiménez, L.; Garcia-Diaz, A.; Soto-Serrano, Y.; Casal, J.I.; Bartolomé, R.A.; Fernández-Luna, J.L.; López-Rivas, A.; Oliver, F.J. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death Dis., 2019, 10(2), 51.
[http://dx.doi.org/10.1038/s41419-018-1293-3] [PMID: 30718520]
[88]
Seifert, C.; Balz, E.; Herzog, S.; Korolev, A.; Gaßmann, S.; Paland, H.; Fink, M.A.; Grube, M.; Marx, S.; Jedlitschky, G.; Tzvetkov, M.V.; Rauch, B.H.; Schroeder, H.W.S.; Bien-Möller, S. PIM-1 inhibition affects glioblastoma stem cell behavior and kills glioblastoma stem-like cells. Int. J. Mol. Sci., 2021, 22(20), 11126.
[http://dx.doi.org/10.3390/ijms222011126] [PMID: 34681783]
[89]
Iqbal, A.; Eckerdt, F.; Bell, J.; Nakano, I.; Giles, F.J.; Cheng, S.Y.; Lulla, R.R.; Goldman, S.; Platanias, L.C. Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110α inhibition. Oncotarget, 2016, 7(22), 33192-33201.
[http://dx.doi.org/10.18632/oncotarget.8899] [PMID: 27120806]
[90]
Akhavan, D.; Cloughesy, T.F.; Mischel, P.S. mTOR signaling in glioblastoma: Lessons learned from bench to bedside. Neuro-oncol., 2010, 12(8), 882-889.
[http://dx.doi.org/10.1093/neuonc/noq052] [PMID: 20472883]
[91]
Sami, A.; Karsy, M. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: Novel therapeutic agents and advances in understanding. Tumour Biol., 2013, 34(4), 1991-2002.
[http://dx.doi.org/10.1007/s13277-013-0800-5] [PMID: 23625692]
[92]
Zhao, H.; Wang, J.; Shao, W.; Wu, C.; Chen, Z.; To, S.T.; Li, W. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer, 2017, 16(1), 100.
[http://dx.doi.org/10.1186/s12943-017-0670-3] [PMID: 28592260]
[93]
Bhargavi, R.; Khilwani, B.; Kour, B.; Shukla, N.; Aradhya, R.; Sharma, D.; Vijayvargiya, M.; Ansari, A.S.; Sugunakar, V.; Mathur, P.; Mishra, A. Prostate cancer in India: Current perspectives and the way forward. J. Reprod. Health Med., 2023, 4(8), 1.
[94]
Fang, F.; Rycyzyn, M.A.; Clevenger, C.V. Role of c-Myb during prolactin-induced signal transducer and activator of transcription 5a signaling in breast cancer cells. Endocrinology, 2009, 150(4), 1597-1606.
[http://dx.doi.org/10.1210/en.2008-1079] [PMID: 19036881]
[95]
Ren, K.; Gou, X.; Xiao, M.; Wang, M.; Liu, C.; Tang, Z.; He, W. The over-expression of Pim-2 promote the tumorigenesis of prostatic carcinoma through phosphorylating eIF4B. Prostate, 2013, 73(13), 1462-1469.
[http://dx.doi.org/10.1002/pros.22693] [PMID: 23813671]
[96]
Kirschner, A.N.; Wang, J.; van der Meer, R.; Anderson, P.D.; Franco-Coronel, O.E.; Kushner, M.H.; Everett, J.H.; Hameed, O.; Keeton, E.K.; Ahdesmaki, M.; Grosskurth, S.E.; Huszar, D.; Abdulkadir, S.A. PIM kinase inhibitor AZD1208 for treatment of MYC-driven prostate cancer. J. Natl. Cancer Inst., 2014, 107(2), 107.
[PMID: 25505253]
[97]
Chatterjee, S.; Chakraborty, P.; Daenthanasanmak, A.; Iamsawat, S.; Andrejeva, G.; Luevano, L.A.; Wolf, M.; Baliga, U.; Krieg, C.; Beeson, C.C.; Mehrotra, M.; Hill, E.G.; Rathmell, J.C.; Yu, X.Z.; Kraft, A.S.; Mehrotra, S. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin. Cancer Res., 2019, 25(3), 1036-1049.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0706] [PMID: 30327305]
[98]
Alvarado, Y.; Giles, F.J.; Swords, R.T. The PIM kinases in hematological cancers. Expert Rev. Hematol., 2012, 5(1), 81-96.
[http://dx.doi.org/10.1586/ehm.11.69] [PMID: 22272708]
[99]
Woodland, R.T.; Fox, C.J.; Schmidt, M.R.; Hammerman, P.S.; Opferman, J.T.; Korsmeyer, S.J.; Hilbert, D.M.; Thompson, C.B. Multiple signaling pathways promote B lymphocyte stimulator–dependent B-cell growth and survival. Blood, 2008, 111(2), 750-760.
[http://dx.doi.org/10.1182/blood-2007-03-077222] [PMID: 17942753]
[100]
Brault, L.; Menter, T.; Obermann, E.C.; Knapp, S.; Thommen, S.; Schwaller, J.; Tzankov, A. PIM kinases are progression markers and emerging therapeutic targets in diffuse large B-cell lymphoma. Br. J. Cancer, 2012, 107(3), 491-500.
[http://dx.doi.org/10.1038/bjc.2012.272] [PMID: 22722314]
[101]
Bahrami, A.; Hasanzadeh, M.; Hassanian, S.M.; ShahidSales, S.; Ghayour-Mobarhan, M.; Ferns, G.A.; Avan, A. The potential value of the PI3K/Akt/mTOR signaling pathway for assessing prognosis in cervical cancer and as a target for therapy. J. Cell. Biochem., 2017, 118(12), 4163-4169.
[http://dx.doi.org/10.1002/jcb.26118] [PMID: 28475243]
[102]
Yang, H.; He, K.; Dong, W.; Fang, J.; Zhong, S.; Tang, L.; Long, L. PIM-1 may function as an oncogene in cervical cancer via activating the EGFR signaling. Int. J. Biol. Markers, 2020, 35(3), 67-73.
[http://dx.doi.org/10.1177/1724600820936295] [PMID: 32914663]
[103]
Liu, Z.; He, W.; Gao, J.; Luo, J.; Huang, X.; Gao, C. Computational prediction and experimental validation of a novel synthesized pan-PIM inhibitor PI003 and its apoptosis-inducing mechanisms in cervical cancer. Oncotarget, 2015, 6(10), 8019-8035.
[http://dx.doi.org/10.18632/oncotarget.3139] [PMID: 25749522]
[104]
Nakano, H.; Hasegawa, T.; Kojima, H.; Okabe, T.; Nagano, T. Design and synthesis of potent and selective PIM kinase inhibitors by targeting unique structure of ATP-binding pocket. ACS Med. Chem. Lett., 2017, 8(5), 504-509.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00518] [PMID: 28523101]
[105]
issa; Hammam, A.; Sakr, H.; Ayyad, R. PIM kinases inhibitors and pyrimidine-based anticancer agents. Al-Azhar J Pharm Sci, 2023, 67(1), 68-83.
[http://dx.doi.org/10.21608/ajps.2023.311247]
[106]
Xu, Y.; Brenning, B.G.; Kultgen, S.G.; Foulks, J.M.; Clifford, A.; Lai, S.; Chan, A.; Merx, S.; McCullar, M.V.; Kanner, S.B.; Ho, K.K. Synthesis and biological evaluation of pyrazolo [1, 5-a] pyrimidine compounds as potent and selective PIM-1 inhibitors. ACS Med. Chem. Lett., 2015, 6(1), 63-67.
[http://dx.doi.org/10.1021/ml500300c] [PMID: 25589932]
[107]
Rachel, K.T.; Noel, A.F. Targeting PIM kinases to overcome therapeutic resistance in cancer. Mol. Cancer Ther., 2021, 20(1)
[108]
Foulks, J.M.; Carpenter, K.J.; Luo, B.; Xu, Y.; Senina, A.; Nix, R.; Chan, A.; Clifford, A.; Wilkes, M.; Vollmer, D.; Brenning, B.; Merx, S.; Lai, S.; McCullar, M.V.; Ho, K.K.; Albertson, D.J.; Call, L.T.; Bearss, J.J.; Tripp, S.; Liu, T.; Stephens, B.J.; Mollard, A.; Warner, S.L.; Bearss, D.J.; Kanner, S.B. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia, 2014, 16(5), 403-412.
[http://dx.doi.org/10.1016/j.neo.2014.05.004] [PMID: 24953177]
[109]
Burger, M.T.; Nishiguchi, G.; Han, W.; Lan, J.; Simmons, R.; Atallah, G.; Ding, Y.; Tamez, V.; Zhang, Y; Mathur, M.; Muller, K. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies. J Med Chem, 2015, 58(21), 8373-86.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01275.]
[110]
Paíno, T.; Garcia-Gomez, A.; González-Méndez, L.; San-Segundo, L.; Hernández-García, S.; López-Iglesias, A.A.; Algarín, E.M.; Martín-Sánchez, M.; Corbacho, D.; Ortiz-de-Solorzano, C.; Corchete, L.A.; Gutiérrez, N.C.; Maetos, M.V.; Garayoa, M.; Ocio, E.M. The novel pan-PIM kinase inhibitor, PIM447, displays dual antimyeloma and bone-protective effects, and potently synergizes with current standards of care. Clin. Cancer Res., 2017, 23(1), 225-238.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0230] [PMID: 27440267]
[111]
Koblish, H.; Li, Y.; Shin, N.; Hall, L.; Wang, Q.; Wang, K.; Covington, M.; Marando, C.; Bowman, K.; Boer, J.; Burke, K.; Wynn, R.; Margulis, A.; Reuther, G.W.; Lambert, Q.T.; Dostalik Roman, V.; Zhang, K.; Feng, H.; Xue, C.B.; Diamond, S.; Hollis, G.; Yeleswaram, S.; Yao, W.; Huber, R.; Vaddi, K.; Scherle, P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One, 2018, 13(6), e0199108.
[http://dx.doi.org/10.1371/journal.pone.0199108] [PMID: 29927999]
[112]
Xia, Z.; Knaak, C.; Ma, J.; Beharry, Z.M.; McInnes, C.; Wang, W.; Kraft, A.S.; Smith, C.D. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J. Med. Chem., 2009, 52(1), 74-86.
[http://dx.doi.org/10.1021/jm800937p] [PMID: 19072652]
[113]
Anizon, F.; Shtil, A.A.; Danilenko, V.N.; Moreau, P. Fighting tumor cell survival: Advances in the design and evaluation of Pim inhibitors. Curr. Med. Chem., 2010, 17(34), 4114-4133.
[http://dx.doi.org/10.2174/092986710793348554] [PMID: 20939820]
[114]
Xu, L.; Meng, Y.C.; Guo, P.; Li, M.; Shao, L.; Huang, J.H. Recent research advances in small-molecule Pan-PIM inhibitors. Pharm Fronts, 2022, 4(4), e207-e222.
[http://dx.doi.org/10.1055/s-0042-1758692]
[115]
Aykul, S.; Martinez-Hackert, E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal. Biochem., 2016, 508, 97-103.
[http://dx.doi.org/10.1016/j.ab.2016.06.025] [PMID: 27365221]
[116]
Xiang, R.; Lu, M.; Wu, T.; Yang, C.; Jia, Y.; Liu, X.; Deng, M.; Ge, Y.; Xu, J.; Cai, T.; Ling, Y.; Zhou, Y. Discovery of a high potent PIM kinase inhibitor for acute myeloid leukemia based on N-pyridinyl amide scaffold by optimizing the fragments toward to Lys67 and Asp128/Glu171. Eur. J. Med. Chem., 2023, 257, 115514.
[http://dx.doi.org/10.1016/j.ejmech.2023.115514] [PMID: 37262997]
[117]
Naguib, B.H.; El-Nassan, H.B.; Abdelghany, T.M. Synthesis of new pyridothienopyrimidinone derivatives as Pim-1 inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 457-467.
[http://dx.doi.org/10.1080/14756366.2016.1261130] [PMID: 28097906]
[118]
Nafie, M.S.; Amer, A.M.; Mohamed, A.K.; Tantawy, E.S. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells. Bioorg. Med. Chem., 2020, 28(24), 115828.
[http://dx.doi.org/10.1016/j.bmc.2020.115828] [PMID: 33166925]
[119]
Abouzid, K.A.M.; Al-Ansary, G.H.; El-Naggar, A.M. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities. Eur. J. Med. Chem., 2017, 134, 357-365.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.024] [PMID: 28431341]
[120]
Farrag, A.M.; Ibrahim, M.H.; Mehany, A.B.M.; Ismail, M.M.F. New cyanopyridine-based scaffold as PIM-1 inhibitors and apoptotic inducers: Synthesis and SARs study. Bioorg. Chem., 2020, 105, 104378.
[http://dx.doi.org/10.1016/j.bioorg.2020.104378] [PMID: 33099167]
[121]
Naguib, B.H.; El-Nassan, H.B. Synthesis of new thieno[2,3- b ]pyridine derivatives as pim-1 inhibitors. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1718-1725.
[http://dx.doi.org/10.3109/14756366.2016.1158711] [PMID: 27541740]
[122]
El-Nassan, H.B.; Naguib, B.H.; Beshay, E.A. Synthesis of new pyridothienopyrimidinone and pyridothienotriazolopyrimidine derivatives as pim-1 inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 58-66.
[http://dx.doi.org/10.1080/14756366.2017.1389921] [PMID: 29161928]
[123]
Wurz, R.P.; Sastri, C.; D’Amico, D.C.; Herberich, B.; Jackson, C.L.M.; Pettus, L.H.; Tasker, A.S.; Wu, B.; Guerrero, N.; Lipford, J.R.; Winston, J.T.; Yang, Y.; Wang, P.; Nguyen, Y.; Andrews, K.L.; Huang, X.; Lee, M.R.; Mohr, C.; Zhang, J.D.; Reid, D.L.; Xu, Y.; Zhou, Y.; Wang, H.L. Discovery of imidazopyridazines as potent Pim-1/2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(22), 5580-5590.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.067] [PMID: 27769621]
[124]
Castanet, A.S.; Nafie, M.S.; Said, S.A.; Arafa, R.K. Discovery of PIM-1 kinase inhibitors based on the 2,5-disubstituted 1,3,4-oxadiazole scaffold against prostate cancer: Design, synthesis, in vitro and in vivo cytotoxicity investigation. Eur. J. Med. Chem., 2023, 250, 115220.
[http://dx.doi.org/10.1016/j.ejmech.2023.115220] [PMID: 36848846]
[125]
El-Miligy, M.M.M.; Abdelaziz, M.E.; Fahmy, S.M.; Ibrahim, T.M.; Abu-Serie, M.M.; Mahran, M.A.; Hazzaa, A.A. Discovery of new pyridine-quinoline hybrids as competitive and non-competitive PIM-1 kinase inhibitors with apoptosis induction and caspase 3/7 activation capabilities. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2152810.
[http://dx.doi.org/10.1080/14756366.2022.2152810] [PMID: 36629075]
[126]
More, K.N.; Hong, V.S.; Lee, A.; Park, J.; Kim, S.; Lee, J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(14), 2513-2517.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.054] [PMID: 29871845]
[127]
Barberis, C.; Erdman, P.; Czekaj, M.; Fire, L.; Pribish, J.; Tserlin, E.; Maniar, S.; Batchelor, J.D.; Liu, J.; Patel, V.F.; Hebert, A.; Levit, M.; Wang, A.; Sun, F.; Huang, S.M.A. Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model. Bioorg. Med. Chem. Lett., 2020, 30(23), 127625.
[http://dx.doi.org/10.1016/j.bmcl.2020.127625] [PMID: 33096160]
[128]
Cee, V.J.; Chavez, F., Jr; Herberich, B.; Lanman, B.A.; Pettus, L.H.; Reed, A.B.; Wu, B.; Wurz, R.P.; Andrews, K.L.; Chen, J.; Hickman, D.; Laszlo, J., III; Lee, M.R.; Guerrero, N.; Mattson, B.K.; Nguyen, Y.; Mohr, C.; Rex, K.; Sastri, C.E.; Wang, P.; Wu, Q.; Wu, T.; Xu, Y.; Zhou, Y.; Winston, J.T.; Lipford, J.R.; Tasker, A.S.; Wang, H.L. Discovery and optimization of macrocyclic quinoxaline-pyrrolo-dihydropiperidinones as potent PIM-1/2 kinase inhibitors. ACS Med. Chem. Lett., 2016, 7(4), 408-412.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00403] [PMID: 27096050]
[129]
Bataille, C.J.R.; Brennan, M.B.; Byrne, S.; Davies, S.G.; Durbin, M.; Fedorov, O.; Huber, K.V.M.; Jones, A.M.; Knapp, S.; Liu, G.; Nadali, A.; Quevedo, C.E.; Russell, A.J.; Walker, R.G.; Westwood, R.; Wynne, G.M. Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorg. Med. Chem., 2017, 25(9), 2657-2665.
[http://dx.doi.org/10.1016/j.bmc.2017.02.056] [PMID: 28341403]
[130]
Wang, H.L.; Andrews, K.L.; Booker, S.K.; Canon, J.; Cee, V.J.; Chavez, F., Jr; Chen, Y.; Eastwood, H.; Guerrero, N.; Herberich, B.; Hickman, D.; Lanman, B.A.; Laszlo, J., III; Lee, M.R.; Lipford, J.R.; Mattson, B.; Mohr, C.; Nguyen, Y.; Norman, M.H.; Pettus, L.H.; Powers, D.; Reed, A.B.; Rex, K.; Sastri, C.; Tamayo, N.; Wang, P.; Winston, J.T.; Wu, B.; Wu, Q.; Wu, T.; Wurz, R.P.; Xu, Y.; Zhou, Y.; Tasker, A.S. Discovery of ( R )-8-(6-Methyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,4- b ]pyrrol-2-yl)-3-(1-methylcyclopropyl)-2-((1-methylcyclopropyl)amino)quinazolin-4(3 H )-one, a Potent and Selective Pim-1/2 Kinase Inhibitor for Hematological Malignancies. J. Med. Chem., 2019, 62(3), 1523-1540.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01733] [PMID: 30624936]
[131]
Ibrahim, M.H.; Harras, M.F.; Mostafa, S.K.; Mohyeldin, S.M.; Al kamaly, O.; Altwaijry, N.; Sabour, R. Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation. Bioorg. Chem., 2022, 129, 106122.
[http://dx.doi.org/10.1016/j.bioorg.2022.106122] [PMID: 36084418]
[132]
Al-Sanea, M.M.; Nasr, T.M.; Bondock, S.; Gawish, A.Y.; Mohamed, N.M. Design, synthesis and cytotoxic evaluation of novel bis-thiazole derivatives as preferential Pim1 kinase inhibitors with in vivo and in silico study. J. Enzyme Inhib. Med. Chem., 2023, 38(1), 2166936.
[http://dx.doi.org/10.1080/14756366.2023.2166936] [PMID: 36728746]
[133]
Pettus, L.H.; Andrews, K.L.; Booker, S.K.; Chen, J.; Cee, V.J.; Chavez, F., Jr; Chen, Y.; Eastwood, H.; Guerrero, N.; Herberich, B.; Hickman, D.; Lanman, B.A.; Laszlo, J., III; Lee, M.R.; Lipford, J.R.; Mattson, B.; Mohr, C.; Nguyen, Y.; Norman, M.H.; Powers, D.; Reed, A.B.; Rex, K.; Sastri, C.; Tamayo, N.; Wang, P.; Winston, J.T.; Wu, B.; Wu, T.; Wurz, R.P.; Xu, Y.; Zhou, Y.; Tasker, A.S.; Wang, H.L. Discovery and optimization of quinazolinone-pyrrolopyrrolones as potent and orally bioavailable pan-pim kinase inhibitors. J. Med. Chem., 2016, 59(13), 6407-6430.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00610] [PMID: 27285051]
[134]
Shaban, S.M.; Eltamany, E.H.; Boraei, A.T.A.; Nafie, M.S.; Gad, E.M. Design and synthesis of novel pyridine-based compounds as Potential PIM-1 Kinase inhibitors, apoptosis, and autophagy inducers targeting MCF-7 cell lines: In vitro and in vivo studies. ACS Omega, 2023, 8(49), 46922-46933.
[http://dx.doi.org/10.1021/acsomega.3c06700] [PMID: 38107909]
[135]
Rizk, O.H.; Teleb, M.; Abu-Serie, M.M.; Shaaban, O.G. Dual VEGFR-2/PIM-1 kinase inhibition towards surmounting the resistance to antiangiogenic agents via hybrid pyridine and thienopyridine-based scaffolds: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 92, 103189.
[http://dx.doi.org/10.1016/j.bioorg.2019.103189] [PMID: 31473473]
[136]
AboulMagd, A.M.; Hassan, H.M.; Sayed, A.M.; Abdelmohsen, U.R.; Abdel-Rahman, H.M. Saccharomonosporine A inspiration; Synthesis of potent analogues as potential PIM kinase inhibitors. RSC Advances, 2020, 10(12), 6752-6762.
[http://dx.doi.org/10.1039/C9RA10216G] [PMID: 35493904]
[137]
Tursynbay, Y.; Zhang, J.; Li, Z.; Tokay, T.; Zhumadilov, Z.; Wu, D.; Xie, Y. Pim-1 kinase as cancer drug target: An update. Biomed. Rep., 2016, 4(2), 140-146.
[http://dx.doi.org/10.3892/br.2015.561] [PMID: 26893828]
[138]
Kim, J.; Roh, M.; Abdulkadir, S.A. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer, 2010, 10(1), 248.
[http://dx.doi.org/10.1186/1471-2407-10-248]
[139]
Wang, J.; Kim, J.; Roh, M.; Franco, O.E.; Hayward, S.W.; Wills, M.L.; Abdulkadir, S.A. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene, 2010, 29(17), 2477-2487.
[http://dx.doi.org/10.1038/onc.2010.10] [PMID: 20140016]
[140]
Nawijn, M.C.; Alendar, A.; Berns, A. For better or for worse: The role of Pim oncogenes in tumorigenesis. Nat. Rev. Cancer, 2011, 11(1), 23-34.
[http://dx.doi.org/10.1038/nrc2986] [PMID: 21150935]
[141]
Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1(1), 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[142]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs — microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[143]
Calin, G.A.; Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer, 2006, 6(11), 857-866.
[http://dx.doi.org/10.1038/nrc1997] [PMID: 17060945]
[144]
Thomas, M.; Lange-Grünweller, K.; Weirauch, U.; Gutsch, D.; Aigner, A.; Grünweller, A.; Hartmann, R.K. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene, 2012, 31(7), 918-928.
[http://dx.doi.org/10.1038/onc.2011.278] [PMID: 21743487]
[145]
Zhang, G.; Liu, Z.; Cui, G.; Wang, X.; Yang, Z. MicroRNA-486-5p targeting PIM-1 suppresses cell proliferation in breast cancer cells. Tumour Biol., 2014, 35(11), 11137-11145.
[http://dx.doi.org/10.1007/s13277-014-2412-0] [PMID: 25104088]
[146]
Tian, Z.; Zhao, J.; Tai, Y.T.; Amin, S.B.; Hu, Y.; Berger, A.J.; Richardson, P.; Chauhan, D.; Anderson, K.C. Investigational agent MLN9708/2238 targets tumor-suppressor miR33b in MM cells. Blood, 2012, 120(19), 3958-3967.
[http://dx.doi.org/10.1182/blood-2012-01-401794] [PMID: 22983447]
[147]
Chang, W.; Liu, M.; Xu, J.; Fu, H.; Zhou, B.; Yuan, T.; Chen, P. MiR-377 inhibits the proliferation of pancreatic cancer by targeting Pim-3. Tumour Biol., 2016, 37(11), 14813-14824.
[http://dx.doi.org/10.1007/s13277-016-5295-4] [PMID: 27638830]
[148]
Pan, X.P.; Wang, H.X.; Tong, D.M.; Li, Y.; Huang, L.H.; Wang, C. miRNA-370 acts as a tumor suppressor via the downregulation of PIM1 in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(6), 1254-1263.
[PMID: 28387905]
[149]
Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.; Satija, S.; Metha, M.; Chellappan, D.K.; Shrivastava, G.; Gupta, G.; Negi, P.; Dua, K.; Zacconi, F.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B, 2020, 10(11), 2075-2109.
[http://dx.doi.org/10.1016/j.apsb.2020.10.005] [PMID: 33304780]
[150]
Fan, X.; Xie, Y.; Zhang, L.; Gao, X.; Han, J.; Chen, Y.; Yang, J.; Li, S. Effect of PIM-3 downregulation on proliferation and apoptosis in lung adenocarcinoma A549 cells. Ann. Clin. Lab. Sci., 2019, 49(6), 770-776.
[PMID: 31882428]
[151]
Mawas, A.S.; Amatya, V.J.; Suzuki, R.; Kushitani, K.; Mohi El-Din, M.M.; Takeshima, Y. PIM1 knockdown inhibits cell proliferation and invasion of mesothelioma cells. Int. J. Oncol., 2017, 50(3), 1029-1034.
[http://dx.doi.org/10.3892/ijo.2017.3863] [PMID: 28197633]
[152]
Li, S.; Xi, Y.; Zhang, H.; Wang, Y.; Wang, X.; Liu, H.; Chen, K. A pivotal role for Pim-1 kinase in esophageal squamous cell carcinoma involving cell apoptosis induced by reducing Akt phosphorylation. Oncol. Rep., 2010, 24(4), 997-1004.
[PMID: 20811681]
[153]
Arrouchi, H.; Lakhlili, W.; Ibrahimi, A. Re-positioning of known drugs for Pim-1 kinase target using molecular docking analysis. Bioinformation, 2019, 15(2), 116-120.
[http://dx.doi.org/10.6026/97320630015116] [PMID: 31435157]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy