Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Mini-Review Article

Advances in Research on Adropin: Potential Implications for Clinical Diagnosis and Possible Treatment – A Mini-Review

Author(s): Agnieszka Berdowska* and Sylwia Berdowska

Volume 21, Issue 4, 2024

Published on: 11 September, 2024

Page: [205 - 216] Pages: 12

DOI: 10.2174/0115701646301720240830070246

Open Access Journals Promotions 2
Abstract

Adropin is 76-amino acids protein. It was discovered in 2008. Adropin expression was found in the liver, brain, heart, kidneys, pancreas, testis and ovary, umbilical vein, coronary artery endothelial cells, aortic smooth muscle cells and monocytes/macrophages. Adropin is involved in energy balance, and it has an endothelial protective effect. Changes in adropin content have been found in many diseases and disorders, such as obesity, diabetes mellitus type 1 and 2, coronary artery disease, myocardial infarction, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, nonalcoholic fatty liver disease, polycystic ovary syndrome and preeclampsia. This mini-review focuses on those papers that have potential implications for clinical diagnosis or possible treatment. It can be assumed that adropin can be useful in the diagnosis of certain diseases. It seems to be a promising candidate for the treatment of diabetes, atherosclerosis, polycystic ovary syndrome and diseases of the nervous system associated with cognitive decline.

Keywords: Adropin, energy homeostasis, liver, obesity, diabetes mellitus, cardiovascular diseases.

Next »
Graphical Abstract
[1]
Aydin, S. Three new players in energy regulation: Preptin, adropin and irisin. Peptides, 2014, 56, 94-110.
[http://dx.doi.org/10.1016/j.peptides.2014.03.021] [PMID: 24721335]
[2]
Kumar, K.G.; Trevaskis, J.L.; Lam, D.D.; Sutton, G.M.; Koza, R.A.; Chouljenko, V.N.; Kousoulas, K.G.; Rogers, P.M.; Kesterson, R.A.; Thearle, M.; Ferrante, A.W., Jr; Mynatt, R.L.; Burris, T.P.; Dong, J.Z.; Halem, H.A.; Culler, M.D.; Heisler, L.K.; Stephens, J.M.; Butler, A.A. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab., 2008, 8(6), 468-481.
[http://dx.doi.org/10.1016/j.cmet.2008.10.011] [PMID: 19041763]
[3]
Bozic, J.; Kumric, M.; Ticinovic Kurir, T.; Males, I.; Borovac, J.A.; Martinovic, D.; Vilovic, M. Role of adropin in cardiometabolic disorders: from pathophysiological mechanisms to therapeutic target. Biomedicines, 2021, 9(10), 1407.
[http://dx.doi.org/10.3390/biomedicines9101407] [PMID: 34680524]
[4]
Ali, I.I.; D’Souza, C.; Singh, J.; Adeghate, E. Adropin’s role in energy homeostasis and metabolic disorders. Int. J. Mol. Sci., 2022, 23(15), 8318.
[http://dx.doi.org/10.3390/ijms23158318] [PMID: 35955453]
[5]
Ganesh-Kumar, K.; Zhang, J.; Gao, S.; Rossi, J.; McGuinness, O.P.; Halem, H.H.; Culler, M.D.; Mynatt, R.L.; Butler, A.A. Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 2012, 20(7), 1394-1402.
[http://dx.doi.org/10.1038/oby.2012.31] [PMID: 22318315]
[6]
Butler, A.A.; St-Onge, M.P.; Siebert, E.A.; Medici, V.; Stanhope, K.L.; Havel, P.J. Differential responses of plasma adropin concentrations to dietary glucose or fructose consumption in humans. Sci. Rep., 2015, 5(1), 14691.
[http://dx.doi.org/10.1038/srep14691] [PMID: 26435060]
[7]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[8]
Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; Žídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444.
[http://dx.doi.org/10.1093/nar/gkab1061] [PMID: 34791371]
[9]
Meng, E.C.; Goddard, T.D.; Pettersen, E.F. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci., 2023, Sep 29:. 2023, 2023, e4792.
[10]
Wong, C.M.; Wang, Y.; Lee, J.T.H.; Huang, Z.; Wu, D.; Xu, A.; Lam, K.S.L. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J. Biol. Chem., 2014, 289(37), 25976-25986.
[http://dx.doi.org/10.1074/jbc.M114.576058] [PMID: 25074942]
[11]
Aydin, S.; Kuloglu, T.; Aydin, S.; Eren, M.N.; Yilmaz, M.; Kalayci, M.; Sahin, İ.; Kocaman, N.; Citil, C.; Kendir, Y. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol. Cell. Biochem., 2013, 380(1-2), 73-81.
[http://dx.doi.org/10.1007/s11010-013-1660-4] [PMID: 23620340]
[12]
Kuloglu, T.; Aydin, S. Immunohistochemical expressions of adropin and ınducible nitric oxide synthase in renal tissues of rats with streptozotocin-ınduced experimental diabetes. Biotech. Histochem., 2014, 89(2), 104-110.
[http://dx.doi.org/10.3109/10520295.2013.821713] [PMID: 23957703]
[13]
Tripathi, S.; Maurya, S.; Singh, A. Adropin, a novel hepatokine: localization and expression during postnatal development and its impact on testicular functions of pre-pubertal mice. Cell Tissue Res., 2023.
[http://dx.doi.org/10.1007/s00441-023-03852-9] [PMID: 38087073]
[14]
Maurya, S.; Tripathi, S.; Singh, A. Ontogeny of adropin and its receptor expression during postnatal development and its pro-gonadal role in the ovary of pre-pubertal mouse. J. Steroid Biochem. Mol. Biol., 2023, 234, 106404.
[http://dx.doi.org/10.1016/j.jsbmb.2023.106404] [PMID: 37743028]
[15]
Lovren, F.; Pan, Y.; Quan, A.; Singh, K.K.; Shukla, P.C.; Gupta, M.; Al-Omran, M.; Teoh, H.; Verma, S. Adropin is a novel regulator of endothelial function. Circulation, 2010, 122(11_suppl_1)(Suppl.), S185-S192.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.931782] [PMID: 20837912]
[16]
Sato, K.; Yamashita, T.; Shirai, R.; Shibata, K.; Okano, T.; Yamaguchi, M.; Mori, Y.; Hirano, T.; Watanabe, T. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int. J. Mol. Sci., 2018, 19(5), 1293.
[http://dx.doi.org/10.3390/ijms19051293] [PMID: 29701665]
[17]
Aydin, S.; Kuloglu, T.; Aydin, S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides, 2013, 47, 66-70.
[http://dx.doi.org/10.1016/j.peptides.2013.07.001] [PMID: 23850897]
[18]
Kurt, E.; Tekin, E.; Kurt, N.; Bayramoglu, A. The role of adropin, HIF-1α and apelin biomarkers in the diagnosis of acute mesentaric ischemia. Am. J. Emerg. Med., 2022, 51, 223-227.
[http://dx.doi.org/10.1016/j.ajem.2021.10.058] [PMID: 34775196]
[19]
Yolbas, S.; Kara, M.; Kalayci, M.; Yildirim, A.; Gundogdu, B.; Aydin, S.; Koca, S.S. ENHO gene expression and serum adropin level in rheumatoid arthritis and systemic lupus erythematosus. Adv. Clin. Exp. Med., 2018, 27(12), 1637-1641.
[http://dx.doi.org/10.17219/acem/75944] [PMID: 30141839]
[20]
Lian, W.; Gu, X.; Qin, Y.; Zheng, X. Elevated plasma levels of adropin in heart failure patients. Intern. Med., 2011, 50(15), 1523-1527.
[http://dx.doi.org/10.2169/internalmedicine.50.5163] [PMID: 21804276]
[21]
Kong, Z.; Liu, Y. Soluble vascular adhesion protein-1 level correlates with adropin and inflammatory biomarkers in patients with obstructive sleep apnea. Ear Nose Throat J., 2022, 1455613221074147
[http://dx.doi.org/10.1177/01455613221074147] [PMID: 35261273]
[22]
Erman, H.; Ozdemir, A.; Sitar, M.E.; Cetin, S.I.; Boyuk, B. Role of serum adropin measurement in the assessment of insulin resistance in obesity. J. Investig. Med., 2021, 69(7), 1318-1323.
[http://dx.doi.org/10.1136/jim-2021-001796] [PMID: 34016737]
[23]
Hosseini, A.; Shanaki, M.; Emamgholipour, S.; Nakhjavani, M.; Razi, F.; Golmohammadi, T. Elevated serum levels of adropin in patients with type 2 diabetes mellitus and its association with insulin resistance. J. Biol. Todays World, 2016, 5(3), 44-49.
[http://dx.doi.org/10.15412/J.JBTW.01050301]
[24]
Es-haghi, A.; Al-Abyadh, T.; Mehrad-Majd, H. The clinical value of serum adropin level in early detection of diabetic nephropathy. Kidney Blood Press. Res., 2021, 46(6), 734-740.
[http://dx.doi.org/10.1159/000519173] [PMID: 34644709]
[25]
Chen, X.; Sun, X.; Shen, T.; Chen, Q.; Chen, S.; Pang, J.; Mi, J.; Tang, Y.; You, Y.; Xu, H.; Ling, W. Lower adropin expression is associated with oxidative stress and severity of nonalcoholic fatty liver disease. Free Radic. Biol. Med., 2020, 160, 191-198.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.005] [PMID: 32810635]
[26]
Danolić, M.J.; Perković, D.; Petrić, M.; Barišić, I.; Gugo, K.; Božić, J. Adropin serum levels in patients with primary Sjögren’s syndrome. Biomolecules, 2021, 11(9), 1296.
[http://dx.doi.org/10.3390/biom11091296] [PMID: 34572509]
[27]
Zang, H.; Jiang, F.; Cheng, X.; Xu, H.; Hu, X. Serum adropin levels are decreased in Chinese type 2 diabetic patients and negatively correlated with body mass index. Endocr. J., 2018, 65(7), 685-691.
[http://dx.doi.org/10.1507/endocrj.EJ18-0060] [PMID: 29669965]
[28]
Li, S.; Sun, J.; Hu, W.; Liu, Y.; Lin, D.; Duan, H.; Liu, F. The association of serum and vitreous adropin concentrations with diabetic retinopathy. Ann. Clin. Biochem., 2019, 56(2), 253-258.
[http://dx.doi.org/10.1177/0004563218820359] [PMID: 30514096]
[29]
Simac, P.; Perkovic, D.; Bozic, I.; Bilopavlovic, N.; Martinovic, D.; Bozic, J. Serum adropin levels in patients with rheumatoid arthritis. Life (Basel), 2022, 12(2), 169.
[http://dx.doi.org/10.3390/life12020169] [PMID: 35207457]
[30]
Polkowska, A.; Pasierowska, I.E.; Pasławska, M.; Pawluczuk, E.; Bossowski, A. Assessment of serum concentrations of adropin, afamin, and neudesin in children with type 1 diabetes. BioMed Res. Int., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/6128410] [PMID: 31781629]
[31]
Hu, W.; Chen, L. Association of serum adropin concentrations with diabetic nephropathy. Mediators Inflamm., 2016, 2016, 1-5.
[http://dx.doi.org/10.1155/2016/6038261] [PMID: 27546995]
[32]
Li, B.; Tian, X.; Guo, S.; Zhang, M.; Li, J.; Zhai, N.; Wang, H.; Zhang, Y. Pentraxin-3 and adropin as inflammatory markers of early renal damage in type 2 diabetes patients. Int. Urol. Nephrol., 2020, 52(11), 2145-2152.
[http://dx.doi.org/10.1007/s11255-020-02568-x] [PMID: 32661627]
[33]
Karaca, E.; Ercan, C.C.; Akdemir, C.; Sivrikoz, T.S.; Salmaslioglu, A.; Verit, F.F.; Gurdol, F.; Omer, B. The evaluation of adropin and autotaxin as potential markers of endothelial dysfunction in preeclampsia. Angiology, 2023, 33197231183228 Online ahead of print
[http://dx.doi.org/10.1177/00033197231183228] [PMID: 37587899]
[34]
Beigi, A.; Shirzad, N.; Nikpour, F.; Nasli Esfahani, E.; Emamgholipour, S.; Bandarian, F. Association between serum adropin levels and gestational diabetes mellitus; a case–control study. Gynecol. Endocrinol., 2015, 31(12), 939-941.
[http://dx.doi.org/10.3109/09513590.2015.1081681] [PMID: 26376846]
[35]
Butler, A.A.; Tam, C.S.; Stanhope, K.L.; Wolfe, B.M.; Ali, M.R.; O’Keeffe, M.; St-Onge, M.P.; Ravussin, E.; Havel, P.J. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. J. Clin. Endocrinol. Metab., 2012, 97(10), 3783-3791.
[http://dx.doi.org/10.1210/jc.2012-2194] [PMID: 22872690]
[36]
Soltani, S.; Kolahdouz-Mohammadi, R.; Aydin, S.; Yosaee, S.; Clark, C.C.T.; Abdollahi, S. Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies. Hormones (Athens), 2022, 21(1), 15-22.
[http://dx.doi.org/10.1007/s42000-021-00331-0] [PMID: 34897581]
[37]
Guillemot-Legris, O.; Mutemberezi, V.; Cani, P.D.; Muccioli, G.G. Obesity is associated with changes in oxysterol metabolism and levels in mice liver, hypothalamus, adipose tissue and plasma. Sci. Rep., 2016, 6(1), 19694.
[http://dx.doi.org/10.1038/srep19694] [PMID: 26795945]
[38]
Jasaszwili, M.; Wojciechowicz, T.; Billert, M.; Strowski, M.Z.; Nowak, K.W.; Skrzypski, M. Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Mol. Cell. Endocrinol., 2019, 496, 110532.
[http://dx.doi.org/10.1016/j.mce.2019.110532] [PMID: 31400396]
[39]
Topuz, M.; Celik, A.; Aslantas, T.; Demir, A.K.; Aydin, S.; Aydin, S. Plasma adropin levels predict endothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus. J. Investig. Med., 2013, 61(8), 1161-1164.
[http://dx.doi.org/10.2310/JIM.0000000000000003] [PMID: 24113736]
[40]
Kocaoglu, C.; Buyukinan, M.; Erdem, S.S.; Ozel, A. Are obesity and metabolic syndrome associated with plasma adropin levels in children? J. Pediatr. Endocrinol. Metab., 2015, 28(11-12), 1293-1297.
[http://dx.doi.org/10.1515/jpem-2015-0117] [PMID: 26226125]
[41]
Bousmpoula, A.; Kouskouni, E.; Benidis, E.; Demeridou, S.; Kapeta-Kourkouli, R.; Chasiakou, A.; Baka, S. Adropin levels in women with polycystic ovaries undergoing ovarian stimulation: correlation with lipoprotein lipid profiles. Gynecol. Endocrinol., 2018, 34(2), 153-156.
[http://dx.doi.org/10.1080/09513590.2017.1379498] [PMID: 28937295]
[42]
Soltani, S.; Beigrezaei, S.; Malekahmadi, M.; Clark, C.C.T.; Abdollahi, S. Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocr. Disord., 2023, 23(1), 73.
[http://dx.doi.org/10.1186/s12902-023-01327-0] [PMID: 37029398]
[43]
Mansour, H.K.; Makboul, K.; Elhalawany, S.H.; Ibrahim, B.E.; Marawan, D.A. Marawan. D.A. A study of the assessment of serum adropin level as a risk factor of ischaemic heart disease in type 2 diabetes mellitus cases. Georgian Med. News, 2022, 328-329(328-329), 115-117.
[http://dx.doi.org/10.1093/qjmed/hcad069.397] [PMID: 36318853]
[44]
Celik, E.; Yilmaz, E.; Celik, O.; Ulas, M.; Turkcuoglu, I.; Karaer, A.; Simsek, Y.; Minareci, Y.; Aydin, S. Maternal and fetal adropin levels in gestational diabetes mellitus. jpme, 2013, 41(4), 375-380.
[http://dx.doi.org/10.1515/jpm-2012-0227] [PMID: 23314506]
[45]
Dąbrowski, F.A.; Jarmużek, P.; Gondek, A.; Cudnoch-Jędrzejewska, A.; Bomba-Opoń, D.; Wielgoś, M. First and third trimester serum concentrations of adropin and copeptin in gestational diabetes mellitus and normal pregnancy. Ginekol. Pol., 2016, 87(9), 629-634.
[http://dx.doi.org/10.5603/GP.2016.0057] [PMID: 27723069]
[46]
Adamczak, L.; Mantaj, U.; Gutaj, P.; Skrypnik, D.; Ozegowski, S.; Bogdanski, P.; Wender-Ozegowska, E. Adropin as a potential protective factor of metabolic complications in obese pregnant women with hyperglycaemia diagnosed in early pregnancy. J. Physiol. Pharmacol., 2023, 74(1)
[http://dx.doi.org/10.26402/jpp.2023.1.02] [PMID: 37245229]
[47]
Vivek, K.; Reddy, E.P.; Thangappazham, B.; Raj, H.; Pérez-López, F.R.; Varikasuvu, S.R. Maternal adropin levels in patients with gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol. Endocrinol., 2022, 38(2), 105-109.
[http://dx.doi.org/10.1080/09513590.2021.1963703] [PMID: 34378485]
[48]
Chen, X.; Chen, S.; Shen, T.; Yang, W.; Chen, Q.; Zhang, P.; You, Y.; Sun, X.; Xu, H.; Tang, Y.; Mi, J.; Yang, Y.; Ling, W. Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes. FASEB J., 2020, 34(8), 10056-10072.
[http://dx.doi.org/10.1096/fj.202000115RR] [PMID: 32579277]
[49]
Thapa, D.; Xie, B.; Manning, J.R.; Zhang, M.; Stoner, M.W.; Huckestein, B.R.; Edmunds, L.R.; Zhang, X.; Dedousis, N.L.; O’Doherty, R.M.; Jurczak, M.J.; Scott, I. Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiol. Rep., 2019, 7(8), e14043.
[http://dx.doi.org/10.14814/phy2.14043] [PMID: 31004398]
[50]
Gao, S.; McMillan, R.P.; Zhu, Q.; Lopaschuk, G.D.; Hulver, M.W.; Butler, A.A. Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol. Metab., 2015, 4(4), 310-324.
[http://dx.doi.org/10.1016/j.molmet.2015.01.005] [PMID: 25830094]
[51]
Ying, T.; Wu, L.; Lan, T.; Wei, Z.; Hu, D.; Ke, Y.; Jiang, Q.; Fang, J. Adropin inhibits the progression of atherosclerosis in ApoE-/-/Enho-/- mice by regulating endothelial-to-mesenchymal transition. Cell Death Discov., 2023, 9(1), 402.
[http://dx.doi.org/10.1038/s41420-023-01697-3] [PMID: 37903785]
[52]
Wu, L.; Fang, J.; Chen, L.; Zhao, Z.; Luo, Y.; Lin, C.; Fan, L. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clin. Chem. Lab. Med., 2014, 52(5), 1-8.
[http://dx.doi.org/10.1515/cclm-2013-0844] [PMID: 24323892]
[53]
Zhao, L.P.; You, T.; Chan, S.P.; Chen, J.C.; Xu, W.T. Adropin is associated with hyperhomocysteine and coronary atherosclerosis. Exp. Ther. Med., 2016, 11(3), 1065-1070.
[http://dx.doi.org/10.3892/etm.2015.2954] [PMID: 26998038]
[54]
Zheng, J.; Liu, M.; Chen, L.; Yin, F.; Zhu, X.; Gou, J.; Zeng, W.; Lv, Z. Association between serum adropin level and coronary artery disease: a systematic review and meta-analysis. Cardiovasc. Diagn. Ther., 2019, 9(1), 1-7.
[http://dx.doi.org/10.21037/cdt.2018.07.09] [PMID: 30881871]
[55]
Uysal, B.A.; Kuyumcu, M.S. Serum irisin and adropin levels may be predictors for coronary artery ectasia. Clin. Exp. Hypertens., 2022, 44(3), 223-227.
[http://dx.doi.org/10.1080/10641963.2021.2018601] [PMID: 34994255]
[56]
Aydin, S.; Kuloglu, T.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Çakmak, T.; Eren, M.N. Elevated adropin: A candidate diagnostic marker for myocardial infarction in conjunction with troponin-I. Peptides, 2014, 58, 91-97.
[http://dx.doi.org/10.1016/j.peptides.2014.06.001] [PMID: 24932661]
[57]
Altamimi, T.R.; Gao, S.; Karwi, Q.G.; Fukushima, A.; Rawat, S.; Wagg, C.S.; Zhang, L.; Lopaschuk, G.D. Adropin regulates cardiac energy metabolism and improves cardiac function and efficiency. Metabolism, 2019, 98, 37-48.
[http://dx.doi.org/10.1016/j.metabol.2019.06.005] [PMID: 31202835]
[58]
Adıyaman, M.Ş.; Canpolat Erkan, R.E.; Kaya, İ.; Aba Adıyaman, Ö. Serum adropin level in the early period of ST-elevation myocardial infarction and its relationship with cobalamin and folic acid. Cureus, 2022, 14(12), e32748.
[http://dx.doi.org/10.7759/cureus.32748] [PMID: 36686140]
[59]
Meier, P.; Gloekler, S.; Zbinden, R.; Beckh, S.; de Marchi, S.F.; Zbinden, S.; Wustmann, K.; Billinger, M.; Vogel, R.; Cook, S.; Wenaweser, P.; Togni, M.; Windecker, S.; Meier, B.; Seiler, C. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 2007, 116(9), 975-983.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.703959] [PMID: 17679611]
[60]
Vural, A.; Kurt, D.; Karagöz, A.; Emecen, Ö.; Aydin, E. The relationship between coronary collateral circulation and serum adropin levels. Cureus, 2023, 15(2), e35166.
[http://dx.doi.org/10.7759/cureus.35166] [PMID: 36949994]
[61]
Chang, X.; Jin, F.; Wang, L.; Jiang, Y.; Wang, P.; Liu, J.; Zhao, L. Adropin – A new player in energy regulation predicts long-term prognosis of patients with acute myocardial infarction. Heliyon, 2023, 9(7), e17803.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17803] [PMID: 37455994]
[62]
Gulen, B.; Eken, C.; Kucukdagli, O.T.; Serinken, M.; Kocyigit, A.; Kılıc, E.; Uyarel, H. Adropin levels and target organ damage secondary to high blood pressure in the ED. Am. J. Emerg. Med., 2016, 34(11), 2061-2064.
[http://dx.doi.org/10.1016/j.ajem.2016.04.014] [PMID: 27592461]
[63]
Salmanpour, M.; Soori, R.; H’mida, C.; Halouani, J.; Clarck, C.T.; Pournemati, P.; Yari, S.M.; Trabelsi, K.; Ammar, A.; Chtourou, H.; Taheri, M. The effect of 8 weeks of combined interval (resistance-interval training) and combined endurance (endurance-resistance training) on plasma levels of adropin and nitric oxide in males with high blood pressure. Ir. J. Med. Sci., 2022, 191(6), 2559-2568.
[http://dx.doi.org/10.1007/s11845-021-02873-z] [PMID: 35029793]
[64]
Afşin, A.; Bozyılan, E.; Asoğlu, R.; Yavuz, F.; Dündar, A. Effects of eight weeks exercise training on serum levels of adropin in male volleyball players. Horm. Mol. Biol. Clin. Investig., 2021, 42(3), 297-302.
[http://dx.doi.org/10.1515/hmbci-2020-0094] [PMID: 33794077]
[65]
Nergiz, S.; Altinkaya, S.O.; Kurt Ömürlü, İ.; Yuksel, H.; Küçük, M.; Demircan Sezer, S. Circulating adropin levels in patients with endometrium cancer. Gynecol. Endocrinol., 2015, 31(9), 730-735.
[http://dx.doi.org/10.3109/09513590.2015.1065480] [PMID: 26172926]
[66]
Stelcer, E.; Milecka, P.; Komarowska, H.; Jopek, K.; Tyczewska, M.; Szyszka, M.; Lesniczak, M.; Suchorska, W.; Bekova, K.; Szczepaniak, B.; Ruchala, M.; Karczewski, M.; Wierzbicki, T.; Szaflarski, W.; Malendowicz, L.K.; Rucinski, M. Adropin stimulates proliferation and inhibits adrenocortical steroidogenesis in the human adrenal carcinoma (HAC15) cell line. Front. Endocrinol. (Lausanne), 2020, 11, 561370.
[http://dx.doi.org/10.3389/fendo.2020.561370] [PMID: 33133015]
[67]
Hu, J.; Wu, Q.; Ding, Q.; Wu, W.; Li, Q.; Zheng, Z. High level of adropin promotes the progression of pancreatic ductal adenocarcinoma. Curr. Cancer Drug Targets, 2023. Online ahead of print
[http://dx.doi.org/10.2174/0115680096267203231024093601] [PMID: 37990897]
[68]
Jia, L.; Liao, L.; Jiang, Y.; Hu, X.; Lu, G.; Xiao, W.; Gong, W.; Jia, X. Low-dose adropin stimulates inflammasome activation of macrophage via mitochondrial ROS involved in colorectal cancer progression. BMC Cancer, 2023, 23(1), 1042.
[http://dx.doi.org/10.1186/s12885-023-11519-5] [PMID: 37904094]
[69]
Yolbas, S.; Kara, M.; Yilmaz, M.; Aydin, S.; Koca, S.S. Serum adropin level and ENHO gene expression in systemic sclerosis. Clin. Rheumatol., 2016, 35(6), 1535-1540.
[http://dx.doi.org/10.1007/s10067-016-3266-1] [PMID: 27079850]
[70]
Gunraj, R.E.; Yang, C.; Liu, L.; Larochelle, J.; Candelario-Jalil, E. Protective roles of adropin in neurological disease. Am. J. Physiol. Cell Physiol., 2023, 324(3), C674-C678.
[http://dx.doi.org/10.1152/ajpcell.00318.2022] [PMID: 36717106]
[71]
Yang, C.; DeMars, K.M.; Hawkins, K.E.; Candelario-Jalil, E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides, 2016, 81, 29-37.
[http://dx.doi.org/10.1016/j.peptides.2016.03.009] [PMID: 27020249]
[72]
Cinkir, U.; Bir, L.S.; Topsakal, S.; Avci Cicek, E.; Tekin, S. Investigation of blood leptin and adropin levels in patients with multiple sclerosis. Medicine (Baltimore), 2021, 100(37), e27247.
[http://dx.doi.org/10.1097/MD.0000000000027247] [PMID: 34664869]
[73]
Demi̇rdöğen, F.; Akdağ, T.; Gündüz, Z.B.; Odabaş, F.Ö. Investigation of serum adropin levels and its relationship with hypothalamic atrophy in patients with multiple sclerosis. Mult. Scler. Relat. Disord., 2022, 66, 103948.
[http://dx.doi.org/10.1016/j.msard.2022.103948] [PMID: 35843143]
[74]
Algul, S.; Ozcelik, O. Evaluating the energy regulatory hormones of nesfatin-1, irisin, adropin and preptin in multiple sclerosis. Mult. Scler. Relat. Disord., 2022, 68, 104221.
[http://dx.doi.org/10.1016/j.msard.2022.104221] [PMID: 36228401]
[75]
Aggarwal, G.; Morley, J.E.; Vellas, B.; Nguyen, A.D.; Butler, A.A.; Guyonnet, S.; Carrié, I.; Brigitte, L.; Faisant, C.; Lala, F.; Delrieu, J.; Villars, H.; Combrouze, E.; Badufle, C.; Zueras, A.; Andrieu, S.; Cantet, C.; Morin, C.; Van Kan, G.A.; Dupuy, C.; Rolland, Y.; Caillaud, C.; Ousset, P-J.; Lala, F.; Willis, S.; Belleville, S.; Gilbert, B.; Fontaine, F.; Dartigues, J-F.; Marcet, I.; Delva, F.; Foubert, A.; Cerda, S.; Marie-Noëlle-Cuffi; Costes, C.; Rouaud, O.; Manckoundia, P.; Quipourt, V.; Marilier, S.; Franon, E.; Bories, L.; Pader, M-L.; Basset, M-F.; Lapoujade, B.; Faure, V.; Tong, M.L.Y.; Malick-Loiseau, C.; Cazaban-Campistron, E.; Desclaux, F.; Blatge, C.; Dantoine, T.; Laubarie-Mouret, C.; Saulnier, I.; Clément, J-P.; Picat, M-A.; Bernard-Bourzeix, L.; Willebois, S.; Désormais, I.; Cardinaud, N.; Bonnefoy, M.; Livet, P.; Rebaudet, P.; Gédéon, C.; Burdet, C.; Terracol, F.; Pesce, A.; Roth, S.; Chaillou, S.; Louchart, S.; Sudres, K.; Lebrun, N.; Barro-Belaygues, N.; Touchon, J.; Bennys, K.; Gabelle, A.; Romano, A.; Touati, L.; Marelli, C.; Pays, C.; Robert, P.; Le Duff, F.; Gervais, C.; Gonfrier, S.; Gasnier, Y.; Bordes, S.; Begorre, D.; Carpuat, C.; Khales, K.; Lefebvre, J-F.; El Idrissi, S.M.; Skolil, P.; Salles, J-P.; Dufouil, C.; Lehéricy, S.; Chupin, M.; Mangin, J-F.; Bouhayia, A.; Allard, M.; Ricolfi, F.; Dubois, D.; Martel, M.P.B.; Cotton, F.; Bonafé, A.; Chanalet, S.; Hugon, F.; Bonneville, F.; Cognard, C.; Chollet, F.; Payoux, P.; Voisin, T.; Delrieu, J.; Peiffer, S.; Hitzel, A.; Allard, M.; Zanca, M.; Monteil, J.; Darcourt, J.; Molinier, L.; Derumeaux, H.; Costa, N.; Perret, B.; Vinel, C.; Caspar-Bauguil, S.; Olivier-Abbal, P.; Andrieu, S.; Cantet, C.; Coley, N. Low circulating adropin concentrations predict increased risk of cognitive decline in community-dwelling older adults. Geroscience, 2023, 46(1), 897-911. Online ahead of print
[http://dx.doi.org/10.1007/s11357-023-00824-3] [PMID: 37233882]
[76]
Banerjee, S.; Ghoshal, S.; Girardet, C.; DeMars, K.M.; Yang, C.; Niehoff, M.L.; Nguyen, A.D.; Jayanth, P.; Hoelscher, B.A.; Xu, F.; Banks, W.A.; Hansen, K.M.; Zhang, J.; Candelario-Jalil, E.; Farr, S.A.; Butler, A.A. Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. NPJ Aging Mech. Dis., 2021, 7(1), 23.
[http://dx.doi.org/10.1038/s41514-021-00076-5] [PMID: 34462439]
[77]
Ghoshal, S.; Banerjee, S.; Zhang, J.; Niehoff, M.L.; Farr, S.A.; Butler, A.A. Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides, 2021, 146, 170678.
[http://dx.doi.org/10.1016/j.peptides.2021.170678] [PMID: 34695512]
[78]
Yang, C.; Liu, L.; Lavayen, B.P.; Larochelle, J.; Gunraj, R.E.; Butler, A.A.; Candelario-Jalil, E. Therapeutic benefits of adropin in aged mice after transient ischemic stroke via reduction of blood-brain barrier damage. Stroke, 2023, 54(1), 234-244.
[http://dx.doi.org/10.1161/STROKEAHA.122.039628] [PMID: 36305313]
[79]
Saçmacı, H.; Çakır, M.; Özcan, S.S. Adropin and MOTS‐c as new peptides: Do levels change in neurodegenerative diseases and ischemic stroke? J. Biochem. Mol. Toxicol., 2023, 37(2), e23246.
[http://dx.doi.org/10.1002/jbt.23246] [PMID: 36303331]
[80]
Sayın, O.; Tokgöz, Y.; Arslan, N. Investigation of adropin and leptin levels in pediatric obesity-related nonalcoholic fatty liver disease. J. Pediatr. Endocrinol. Metab., 2014, 27(5-6), 479-484.
[http://dx.doi.org/10.1515/jpem-2013-0296] [PMID: 24468600]
[81]
Kutlu, O.; Altun, Ö.; Dikker, O.; Aktaş, Ş.; Özsoy, N.; Arman, Y.; Özgün Çil, E.; Özcan, M.; Aydın Yoldemir, Ş.; Akarsu, M.; Toprak, İ.D.; Kırna, K.; Kutlu, Y.; Toprak, Z.; Eruzun, H.; Tükek, T. Serum Adropin levels are reduced in adult patients with nonalcoholic fatty liver disease. Med. Princ. Pract., 2019, 28(5), 463-469.
[http://dx.doi.org/10.1159/000500106] [PMID: 30995640]
[82]
Li, N.; Xie, G.; Zhou, B.; Qu, A.; Meng, H.; Liu, J.; Wang, G. Serum adropin as a potential biomarker for predicting the development of type 2 diabetes mellitus in individuals with metabolic dysfunction-associated fatty liver disease. Front. Physiol., 2021, 12, 696163.
[http://dx.doi.org/10.3389/fphys.2021.696163] [PMID: 34366886]
[83]
Inal, Z.O.; Erdem, S.; Gederet, Y.; Duran, C.; Kucukaydin, Z.; Kurku, H.; Sakarya, D.K. The impact of serum adropin and ischemia modified albumin levels based on BMI in PCOS. Endokrynol. Pol., 2015, 69(2), 135-141.
[http://dx.doi.org/10.5603/EP.a2018.0002] [PMID: 29465156]
[84]
Ke, Y.; Hu, J.; Zhu, Y.; Wang, Y.; Chen, S.; Liu, S. Correlation between circulating adropin levels and patients with PCOS: an updated systematic review and meta-analysis. Reprod. Sci., 2022, 29(12), 3295-3310.
[http://dx.doi.org/10.1007/s43032-022-00841-1] [PMID: 35015289]
[85]
Varikasuvu, S.R.; Reddy, E.P.; Thangappazham, B.; Varshney, S.; Das, V.L.; Munikumar, M. Adropin levels and its associations as a fat-burning hormone in patients with polycystic ovary syndrome: a correlational meta-analysis. Gynecol. Endocrinol., 2021, 37(10), 879-884.
[http://dx.doi.org/10.1080/09513590.2021.1950136] [PMID: 34241553]
[86]
Ye, Z.; Zhang, C.; Zhao, Y. Potential effects of adropin on systemic metabolic and hormonal abnormalities in polycystic ovary syndrome. Reprod. Biomed. Online, 2021, 42(5), 1007-1014.
[http://dx.doi.org/10.1016/j.rbmo.2021.01.020] [PMID: 33612434]
[87]
Majeed, A.A.; Al-Qaisi, A.H.J.; Ahmed, W.A. The comparison of irisin, subfatin, and adropin in normal-weight and obese polycystic ovary syndrome patients. Iran. J. Med. Sci., 2024, 49(6), 350-358.
[http://dx.doi.org/10.30476/ijms.2023.99130.3117] [PMID: 38952638]
[88]
Rizk, F.H.; El Saadany, A.A.; Elshamy, A.M.; Abd Ellatif, R.A.; El-Guindy, D.M.; Helal, D.S.; Hamama, M.G.; El-Sharnoby, J.A.E.H.; Abdel Ghafar, M.T.; Faheem, H. Ameliorating effects of adropin on letrozole-induced polycystic ovary syndrome via regulating steroidogenesis and the microbiota inflammatory axis in rats. J. Physiol., 2024, 602(15), 3621-3639. Epub ahead of print
[http://dx.doi.org/10.1113/JP285793] [PMID: 38980987]
[89]
Karumanchi, S.A. Angiogenic factors in preeclampsia: From diagnosis to therapy. Hypertension, 2016, 67(6), 1072-1079.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.06421] [PMID: 27067718]

© 2024 Bentham Science Publishers | Privacy Policy