Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Molecular Docking, Pharmacophore Mapping, and Virtual Screening of Novel Glucokinase Activators as Antidiabetic Agents

Author(s): Anuradha Mehra, Amit Mittal* and Divya Thakur

Volume 21, Issue 4, 2024

Published on: 04 September, 2024

Page: [251 - 276] Pages: 26

DOI: 10.2174/0115701646323264240821072359

Abstract

Background: A pivotal impetus has led to the development of numerous small molecules to develop therapeutic strategies for type 2 diabetes. Novel heterocyclic derivatives are now available with expansive pharmacological activity designed specifically to activate Glucokinase (GK) in the body. This target is of particular significance in antidiabetic drug design since it is a newly validated target. Individuals with type 2 diabetes are unable to maintain blood glucose homeostasis due to impaired glucokinase function. The novel approach to managing type 2 diabetes relies on utilizing heterocyclic derivatives to activate the GK enzyme, also known as a metabolic enzyme.

Objective: In this research endeavor, the primary objective was to improve drug delivery while minimizing adverse effects by using molecules that activate glucokinase.

Methods: There are 53,000 compounds included in Maybridge's online repository, which has been subjected to rigorous scrutiny. Eight two compounds that encompass the specific oxadiazole core were selectively extracted from this extensive collection. ChemBioDraw Ultra was used for structural drawing, and AutoDock Vina 1.5.6 was used to perform docking analysis. For the online prediction of log P, the SwissADME algorithm was employed. A PKCSM software program was used to predict toxicity for leading compounds.

Results: Among all of the compounds, AD80 and AD27 displayed the highest affinity for GK receptors. These compounds, by adhering to Lipinski’s Rule of Five, exhibited good absorption and excretion profiles through the gastrointestinal (GI) tract. Lipinski’s Rule of Five refers to physicochemical properties that favor good oral bioavailability, and these specifications are zero to five hydrogen bond donors, zero to ten hydrogen bond acceptors, molecular weight below 500, and log P no more than five. These criteria ensure that the compounds of the invention have acceptable solubility and permeability, which are vital prerequisites when given orally, to be absorbed via the gastrointestinal wall, metabolized, and found in the urine. Therefore, the chance of drug candidates exhibiting favorable pharmacokinetic characteristics is increased, enhancing their chances of being developed for oral administration. In comparison with standard drugs Dorzagliatin as a glucokinase activator (GKA) and MRK (co-crystallized ligand), these compounds exhibit no skin sensitization, AMES toxicity, or hepatotoxicity.

Conclusion: The recently designed lead molecules exhibit an improved pharmacokinetic profile, enhanced binding affinity, and minimal toxicity based on the computational study, potentially making them suitable candidates for further optimization as glucokinase activators.

Keywords: Glucokinase activators, diabetes, docking, oxadiazole derivatives, binding affinity, drug design, virtual screening, pharmacophore, molecular docking, AutoDock Vina.

Graphical Abstract
[1]
Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine (Abingdon), 2022, 50(10), 638-643.
[http://dx.doi.org/10.1016/j.mpmed.2022.07.005]
[2]
Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother., 2020, 131, 110708.
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[3]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[4]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[5]
Kumar, A.; Gangwar, R.; Ahmad Zargar, A.; Kumar, R.; Sharma, A. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Curr. Diabetes Rev., 2024, 20(1), e130423215752.
[http://dx.doi.org/10.2174/1573399819666230413094200] [PMID: 37069712]
[6]
Anjana, R.M.; Deepa, M.; Pradeepa, R.; Mahanta, J.; Narain, K.; Das, H.K.; Adhikari, P.; Rao, P.V.; Saboo, B.; Kumar, A.; Bhansali, A.; John, M.; Luaia, R.; Reang, T.; Ningombam, S.; Jampa, L.; Budnah, R.O.; Elangovan, N.; Subashini, R.; Venkatesan, U.; Unnikrishnan, R.; Das, A.K.; Madhu, S.V.; Ali, M.K.; Pandey, A.; Dhaliwal, R.S.; Kaur, T.; Swaminathan, S.; Mohan, V.; Anjana, R.M.; Deepa, M.; Pradeepa, R.; Mahanta, J.; Narain, K.; Das, H.K.; Adhikari, P.; Rao, P.V.; Saboo, B.; Kumar, A.; Bhansali, A.; John, M.; Luaia, R.; Reang, T.; Ningombam, S.; Jampa, L.; Budnah, R.O.; Elangovan, N.; Subashini, R.; Venkatesan, U.; Unnikrishnan, R.; Das, A.K.; Madhu, S.V.; Ali, M.K.; Pandey, A.; Dhaliwal, R.S.; Kaur, T.; Swaminathan, S.; Mohan, V.; Sudha, V.; Parvathi, S.J.; Jayashri, R.; Velmurugan, K.; Borah, P.K.; Rao, S.B.; Padhiyar, J.M.; Sharma, S.; Lalramenga, P.; Das, S.K.; Singh, T.B.; Kaki, T.; Basaiawmoit, M.R.; Shukla, D.K.; Rao, M.N.; Joshi, P.P.; Dhandania, V.K.; Joshi, S.R.; Yajnik, C.S. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR–INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol., 2017, 5(8), 585-596.
[http://dx.doi.org/10.1016/S2213-8587(17)30174-2] [PMID: 28601585]
[7]
Public Health Agency of Canada. Diabetes in Canada: Facts and figures from a public health perspective; Public Health Agency of Canada: Ottawa, Ontario, 2011.
[8]
King, R.; Thomson, M. The Southern European model of immigration: Do the cases of Malta, Cyprus and Slovenia fit? J. Southern Europe Balkans, 2008, 10(3), 265-291.
[http://dx.doi.org/10.1080/14613190802493550]
[9]
Ramachandran, A.; Snehalatha, C.; Shetty, A.S.; Nanditha, A. Trends in prevalence of diabetes in Asian countries. World J. Diabetes, 2012, 3(6), 110-117.
[http://dx.doi.org/10.4239/wjd.v3.i6.110] [PMID: 22737281]
[10]
Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; Wang, L.; Zhou, M.; Wu, J.; Wang, Y. Prevalence and treatment of diabetes in China, 2013-2018. JAMA, 2021, 326(24), 2498-2506.
[http://dx.doi.org/10.1001/jama.2021.22208] [PMID: 34962526]
[11]
Sherif, S.; Sumpio, B.E. Economic development and diabetes prevalence in MENA countries: Egypt and Saudi Arabia comparison. World J. Diabetes, 2015, 6(2), 304-311.
[http://dx.doi.org/10.4239/wjd.v6.i2.304] [PMID: 25789111]
[12]
Tuei, V.C.; Maiyoh, G.K.; Ha, C.E. Type 2 diabetes mellitus and obesity in sub‐Saharan Africa. Diabetes Metab. Res. Rev., 2010, 26(6), 433-445.
[http://dx.doi.org/10.1002/dmrr.1106] [PMID: 20641142]
[13]
Haider, S.; Thayakaran, R.; Subramanian, A.; Toulis, K.A.; Moore, D.; Price, M.J.; Nirantharakumar, K. Disease burden of diabetes, diabetic retinopathy and their future projections in the UK: Cross-sectional analyses of a primary care database. BMJ Open, 2021, 11(7), e050058.
[http://dx.doi.org/10.1136/bmjopen-2021-050058] [PMID: 34253675]
[14]
Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
[15]
Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Invest., 2017, 127(1), 1-4.
[http://dx.doi.org/10.1172/JCI92035] [PMID: 28045402]
[16]
Oguntibeju, O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: Examining the links. Int. J. Physiol. Pathophysiol. Pharmacol., 2019, 11(3), 45-63.
[PMID: 31333808]
[17]
Xu, J.; Lin, S.; Myers, R.W.; Addona, G.; Berger, J.P.; Campbell, B.; Chen, H.; Chen, Z.; Eiermann, G.J.; Elowe, N.H.; Farrer, B.T.; Feng, W.; Fu, Q.; Kats-Kagan, R.; Kavana, M.; Malkani, S.; McMasters, D.R.; Mitra, K.; Pachanski, M.J.; Tong, X.; Trujillo, M.E.; Xu, L.; Zhang, B.; Zhang, F.; Zhang, R.; Parmee, E.R. Novel, highly potent systemic glucokinase activators for the treatment of Type 2 Diabetes Mellitus. Bioorg. Med. Chem. Lett., 2017, 27(9), 2069-2073.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.085] [PMID: 28284804]
[18]
Gao, Q.; Zhang, W.; Li, T.; Yang, G.; Zhu, W.; Chen, N.; Jin, H. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus. Medicine (Baltimore), 2021, 100(40), e27476.
[http://dx.doi.org/10.1097/MD.0000000000027476] [PMID: 34622877]
[19]
Dzyurkevich, M.S.; Babkov, D.A.; Shtyrlin, N.V.; Mayka, O.Y.; Iksanova, A.G.; Vassiliev, P.M.; Balakin, K.V.; Spasov, A.A.; Tarasov, V.V.; Barreto, G.; Shtyrlin, Y.G.; Aliev, G. Pyridoxine dipharmacophore derivatives as potent glucokinase activators for the treatment of type 2 diabetes mellitus. Sci. Rep., 2017, 7(1), 16072.
[http://dx.doi.org/10.1038/s41598-017-16405-2] [PMID: 29167582]
[20]
Ashcroft, F.M.; Lloyd, M.; Haythorne, E.A. Glucokinase activity in diabetes: Too much of a good thing? Trends Endocrinol. Metab., 2023, 34(2), 119-130.
[http://dx.doi.org/10.1016/j.tem.2022.12.007] [PMID: 36586779]
[21]
Altan, V. The pharmacology of diabetic complications. Curr. Med. Chem., 2003, 10(15), 1317-1327.
[http://dx.doi.org/10.2174/0929867033457287] [PMID: 12871132]
[22]
Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2016, 12(10), 566-592.
[http://dx.doi.org/10.1038/nrendo.2016.86] [PMID: 27339889]
[23]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[http://dx.doi.org/10.1016/j.cmet.2012.03.015] [PMID: 22521878]
[24]
Walker, D.G.; Holland, G. The development of hepatic glucokinase in the neonatal rat. Biochem. J., 1965, 97(3), 845-854.
[http://dx.doi.org/10.1042/bj0970845] [PMID: 5883129]
[25]
Chakera, A.J.; Steele, A.M.; Gloyn, A.L.; Shepherd, M.H.; Shields, B.; Ellard, S.; Hattersley, A.T. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care, 2015, 38(7), 1383-1392.
[http://dx.doi.org/10.2337/dc14-2769] [PMID: 26106223]
[26]
Matschinsky, F.M. Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J. Clin. Invest., 2008, 92(5), 2092-2098.
[27]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol., 2012, 8(4), 228-236.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[28]
Gomes, M.B.; Rathmann, W.; Charbonnel, B.; Khunti, K.; Kosiborod, M.; Nicolucci, A.; Pocock, S.J.; Shestakova, M.V.; Shimomura, I.; Tang, F.; Watada, H.; Chen, H.; Cid-Ruzafa, J.; Fenici, P.; Hammar, N.; Surmont, F.; Ji, L. Treatment of type 2 diabetes mellitus worldwide: Baseline patient characteristics in the global DISCOVER study. Diabetes Res. Clin. Pract., 2019, 151, 20-32.
[http://dx.doi.org/10.1016/j.diabres.2019.03.024] [PMID: 30904743]
[29]
Zimmet, P.Z. Diabetes and its drivers: The largest epidemic in human history? Clin. Diabetes Endocrinol., 2017, 3(1), 1-8.
[http://dx.doi.org/10.1186/s40842-016-0039-3] [PMID: 28702255]
[30]
Ginter, E.; Simko, V. Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol., 2012, 771, 42-50.
[31]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[32]
Cox, M.E.; Edelman, D. Tests for screening and diagnosis of type 2 diabetes. Clin. Diabetes, 2009, 27(4), 132-138.
[http://dx.doi.org/10.2337/diaclin.27.4.132]
[33]
Yang, W.; Wu, H.; Cai, X.; Lin, C.; Jiao, R.; Ji, L. Evaluation of efficacy and safety of glucokinase activators—a systematic review and meta-analysis. Front. Endocrinol. (Lausanne), 2023, 14, 1175198.
[http://dx.doi.org/10.3389/fendo.2023.1175198] [PMID: 37223016]
[34]
Santos-Ballardo, C.L.; Montes-Ávila, J.; Rendon-Maldonado, J.G.; Ramos-Payan, R.; Montaño, S.; Sarmiento-Sánchez, J.I.; Acosta-Cota, S.J.; Ochoa-Terán, A.; Bastidas-Bastidas, P.J.; Osuna-Martínez, U. Design, synthesis, in silico, and in vitro evaluation of benzylbenzimidazolone derivatives as potential drugs on α-glucosidase and glucokinase as pharmacological targets. RSC Advances, 2023, 13(31), 21153-21162.
[http://dx.doi.org/10.1039/D3RA02916F] [PMID: 37449031]
[35]
Kaur, A.; Thakur, S.; Deswal, G.; Chopra, B.; Dhingra, A.K.; Guarve, K.; Grewal, A.S. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase. J. Diabetes Metab. Disord., 2022, 22(1), 547-570.
[http://dx.doi.org/10.1007/s40200-022-01176-z] [PMID: 37255832]
[36]
Thilagavathi, R.; Hosseini-Zare, M.S.; Malini, M.; Selvam, C. A comprehensive review on glucokinase activators: Promising agents for the treatment of Type 2 diabetes. Chem. Biol. Drug Des., 2022, 99(2), 247-263.
[http://dx.doi.org/10.1111/cbdd.13979] [PMID: 34714587]
[37]
Sharma, S.; Wadhwa, K.; Choudhary, M.; Budhwar, V. Ethnopharmacological perspectives of glucokinase activators in the treatment of diabetes mellitus. Nat. Prod. Res., 2022, 36(11), 2962-2976.
[http://dx.doi.org/10.1080/14786419.2021.1931187] [PMID: 34044681]
[38]
Singh, S.; Ghosh, P.; Sharma, S.; Bhargava, S.; Kumar, A.R. Tetrahydropalmatine from medicinal plants activates human glucokinase to regulate glucose homeostasis. Biotechnol. Appl. Biochem., 2023, 71(2), 295-313.
[PMID: 38037220]
[39]
Ren, Y.; Li, L.; Wan, L.; Huang, Y.; Cao, S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 606-615.
[http://dx.doi.org/10.1080/14756366.2021.2025362] [PMID: 35067153]
[40]
Nakamura, A. Glucokinase as a therapeutic target based on findings from the analysis of mouse models. Endocr. J., 2022, 69(5), 479-485.
[http://dx.doi.org/10.1507/endocrj.EJ21-0742] [PMID: 35418527]
[41]
Khan, A.; Unnisa, A.; Sohel, M.; Date, M.; Panpaliya, N.; Saboo, S.G.; Siddiqui, F.; Khan, S. Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus. In Silico Pharmacol., 2021, 10(1), 1-6.
[http://dx.doi.org/10.1007/s40203-021-00116-8] [PMID: 34926125]
[42]
Rajas, F.; Gautier-Stein, A.; Mithieux, G. Glucose-6 phosphate, a central hub for liver carbohydrate metabolism. Metabolites, 2019, 9(12), 282.
[http://dx.doi.org/10.3390/metabo9120282] [PMID: 31756997]
[43]
Ježek, P.; Holendová, B.; Jabůrek, M.; Tauber, J.; Dlasková, A.; Plecitá-Hlavatá, L. The pancreatic β-cell: The perfect redox system. Antioxidants, 2021, 10(2), 197.
[http://dx.doi.org/10.3390/antiox10020197] [PMID: 33572903]
[44]
Sternisha, S.M.; Miller, B.G. Molecular and cellular regulation of human glucokinase. Arch. Biochem. Biophys., 2019, 663, 199-213.
[http://dx.doi.org/10.1016/j.abb.2019.01.011] [PMID: 30641049]
[45]
Perseghin, G. Exploring the in vivo mechanisms of action of glucokinase activators in type 2 diabetes. J. Clin. Endocrinol. Metab., 2010, 95(11), 4871-4873.
[http://dx.doi.org/10.1210/jc.2010-2049] [PMID: 21051584]
[46]
Matschinsky, F.M. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov., 2009, 8(5), 399-416.
[http://dx.doi.org/10.1038/nrd2850] [PMID: 19373249]
[47]
Coghlan, M.; Leighton, B. Glucokinase activators in diabetes management. Expert Opin. Investig. Drugs, 2008, 17(2), 145-167.
[http://dx.doi.org/10.1517/13543784.17.2.145] [PMID: 18230050]
[48]
Pal, M. Recent advances in glucokinase activators for the treatment of type 2 diabetes. Drug Discov. Today, 2009, 14(15-16), 784-792.
[http://dx.doi.org/10.1016/j.drudis.2009.05.013] [PMID: 19520181]
[49]
Haddad, D.; Dsouza, V.S.; Al-Mulla, F.; Al Madhoun, A. New-generation glucokinase activators: Potential game-changers in type 2 diabetes treatment. Int. J. Mol. Sci., 2024, 25(1), 571.
[http://dx.doi.org/10.3390/ijms25010571] [PMID: 38203742]
[50]
Paliwal, A.; Paliwal, V.; Jain, S.; Paliwal, S.; Sharma, S. Current insight on the role of glucokinase and glucokinase regulatory protein in diabetes. Mini Rev. Med. Chem., 2024, 24(7), 674-688.
[http://dx.doi.org/10.2174/1389557523666230823151927] [PMID: 37612862]
[51]
Sharma, P.; Thakur, A.; Goyal, A.; Singh Grewal, A. Molecular docking, 2D-QSAR and ADMET studies of 4-sulfonyl-2-pyridone heterocycle as a potential glucokinase activator. Results in Chemistry, 2023, 6, 101105.
[http://dx.doi.org/10.1016/j.rechem.2023.101105]
[52]
Hamid, A.A.; Abdul-Rasheed, O.F.; Mahdi, M.F.; Atia, A.J. Design, synthesis, characterization, and biological evaluation of new diazole-benzamide derivatives as glucokinase activators with antihyperglycemic activity. Egypt. J. Chem., 2022, 65(8), 451-469.
[53]
Kazi, A.A.; Chatpalliwar, V.A. Design, synthesis, molecular docking and in vitro biological evaluation of benzamide derivatives as novel glucokinase activators. Curr. Enzym. Inhib., 2022, 18(1), 61-75.
[http://dx.doi.org/10.2174/1573408018666220218093451]
[54]
Arora, S.; Grewal, A.S.; Sharma, N.; Arora, K.; Dhalio, E.; Singh, S. Design, synthesis, and evaluation of some novel N-benzothiazol-2-yl benzamide derivatives as allosteric activators of human glucokinase. J. Appl. Pharm. Sci., 2021, 11(1), 38-47.
[55]
Khadse, S.C.; Amnerkar, N.D.; Dighole, K.S.; Dhote, A.M.; Patil, V.R.; Lokwani, D.K.; Ugale, V.G.; Charbe, N.B.; Chatpalliwar, V.A. Hetero-substituted sulfonamido-benzamide hybrids as glucokinase activators: Design, synthesis, molecular docking and in-silico ADME evaluation. J. Mol. Struct., 2020, 1222, 128916.
[http://dx.doi.org/10.1016/j.molstruc.2020.128916]
[56]
Khadse, S.C.; Amnerkar, N.D.; Dave, M.U.; Lokwani, D.K.; Patil, R.R.; Ugale, V.G.; Charbe, N.B.; Chatpalliwar, V.A. Quinazolin-4-one derivatives lacking toxicity-producing attributes as glucokinase activators: Design, synthesis, molecular docking, and in-silico ADMET prediction. Future J. Pharm. Sci., 2019, 5(1), 11.
[http://dx.doi.org/10.1186/s43094-019-0012-y]
[57]
Grewal, A.S.; Kharb, R.; Prasad, D.N.; Dua, J.S.; Lather, V.N. ‐pyridin‐2‐yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation. Chem. Biol. Drug Des., 2019, 93(3), 364-372.
[http://dx.doi.org/10.1111/cbdd.13423] [PMID: 30369030]
[58]
Charaya, N.; Pandita, D.; Grewal, A.S.; Lather, V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput. Biol. Chem., 2018, 73, 221-229.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.018] [PMID: 29518630]
[59]
Kohn, T.J.; Du, X.; Lai, S.; Xiong, Y.; Komorowski, R.; Veniant, M.; Fu, Z.; Jiao, X.; Pattaropong, V.; Chow, D.; Cardozo, M.; Jin, L.; Conn, M.; DeWolf, W.E., Jr; Kraser, C.F.; Hinklin, R.J.; Boys, M.L.; Medina, J.C.; Houze, J.; Dransfield, P.; Coward, P. 5-Alkyl-2-urea-substituted pyridines: Identification of efficacious glucokinase activators with improved properties. ACS Med. Chem. Lett., 2016, 7(7), 666-670.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00145] [PMID: 27437074]
[60]
Cadila Healthcare Limited. Disubstituted benzamide derivatives as glucokinase (gk) activators WO Patent 2010150280, 2010.
[61]
Cadila Healthcare Limited. Substituted benzamide derivatives as glucokinase (gk) activators. WO Patent 201101314, 2011.
[62]
Şenol, H.; Ağgül, A.G.; Atasoy, S.; Güzeldemirci, N.U. Synthesis, characterization, molecular docking and in vitro anti-cancer activity studies of new and highly selective 1,2,3-triazole substituted 4-hydroxybenzohyrdazide derivatives. J. Mol. Struct., 2023, 1283, 135247.
[http://dx.doi.org/10.1016/j.molstruc.2023.135247]
[63]
Tokalı, F.S.; Taslimi, P.; Sadeghi, M.; Şenol, H. Synthesis and evaluation of Quinazolin‐4(3 H)‐one derivatives as multitarget metabolic enzyme inhibitors: A biochemistry‐oriented drug design. ChemistrySelect, 2023, 8(25), e202301158.
[http://dx.doi.org/10.1002/slct.202301158]

© 2024 Bentham Science Publishers | Privacy Policy