Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications

Author(s): Jiana Fang, Jingru Huang, Jiazhong Zhang, Lin Chen and Jin Deng*

Volume 21, Issue 4, 2024

Published on: 29 August, 2024

Page: [230 - 250] Pages: 21

DOI: 10.2174/0115701646317271240821071544

Open Access Journals Promotions 2
Abstract

Purpose: The molecular properties of TLSs in pancreatic cancer are still not well comprehended. This research delved into the molecular properties of intratumoral TLSs in pancreatic cancer through the exploration of multi-omics data.

Methods: Seven key genes were identified through Cox regression analysis and random survival forest analysis from a total of 5908 genes related to TLSs. These genes were utilized to construct a prognosis model, which was subsequently validated in two independent cohorts. Additionally, the study investigated the molecular features of different populations of TLSs from multiple perspectives. The model’ s forecasting accuracy was verified by analyzing nomogram and decision curves, taking into account the patients’ clinical traits.

Results: The analysis of immune cell infiltration showed a notably greater presence of Macrophage M0 cells in the group at high risk than in the low-risk group. The pathway enrichment analysis demonstrated the activation among common cancer-related pathways, including ECM receptor interaction, pathways in cancer, and focal adhesion, in the high-risk group. Additionally, the methylation study revealed notable disparities in DNA methylation between two TLS groups across four regions: TSS200, 5’ UTR, 1stExon, and Body. A variety of notably distinct sites were linked with PVT1. Furthermore, by constructing a competing endogenous RNA network, several mRNAs and lncRNAs were identified that compete for the binding of hsa-mir-221.

Conclusion: Overall, this research sheds light on the molecular properties of TLSs across various pancreatic cancer stages and suggests possible focal points for the treatment of pancreatic cancer.

Keywords: Pancreatic cancer, tertiary lymphoid structures, immune cell infiltration, methylation of genes, pathway, prognosis model.

Graphical Abstract
[1]
Schumacher Ton, N. Tertiary lymphoid structures in cancer. Science, 2022, 375(6576), eabf9419.
[http://dx.doi.org/10.1126/science.abf9419]
[2]
Pitzalis, C.; Jones, G.W.; Bombardieri, M.; Jones, S.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol., 2014, 14(7), 447-462.
[http://dx.doi.org/10.1038/nri3700] [PMID: 24948366]
[3]
Dieu-Nosjean, M.C.; Goc, J.; Giraldo, N.A.; Sautès-Fridman, C.; Fridman, W.H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol., 2014, 35(11), 571-580.
[http://dx.doi.org/10.1016/j.it.2014.09.006] [PMID: 25443495]
[4]
Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer, 2019, 19(6), 307-325.
[http://dx.doi.org/10.1038/s41568-019-0144-6] [PMID: 31092904]
[5]
Sato, Y.; Silina, K.; van den Broek, M.; Hirahara, K.; Yanagita, M. The roles of tertiary lymphoid structures in chronic diseases. Nat. Rev. Nephrol., 2023, 19(8), 525-537.
[http://dx.doi.org/10.1038/s41581-023-00706-z] [PMID: 37046081]
[6]
Colbeck, E.J.; Ager, A.; Gallimore, A.; Jones, G.W. Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease? Front. Immunol., 2017, 8, 1830.
[http://dx.doi.org/10.3389/fimmu.2017.01830] [PMID: 29312327]
[7]
Zhu, G.; Nemoto, S.; Mailloux, A.W.; Perez-Villarroel, P.; Nakagawa, R.; Falahat, R.; Berglund, A.E.; Mulé, J.J. Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal Cell Line. Front. Immunol., 2018, 9, 1609.
[http://dx.doi.org/10.3389/fimmu.2018.01609] [PMID: 30061886]
[8]
Cabrita, R.; Lauss, M.; Sanna, A.; Donia, M.; Skaarup Larsen, M.; Mitra, S.; Johansson, I.; Phung, B.; Harbst, K.; Vallon-Christersson, J.; van Schoiack, A.; Lövgren, K.; Warren, S.; Jirström, K.; Olsson, H.; Pietras, K.; Ingvar, C.; Isaksson, K.; Schadendorf, D.; Schmidt, H.; Bastholt, L.; Carneiro, A.; Wargo, J.A.; Svane, I.M.; Jönsson, G. Author Correction: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature, 2020, 580(7801), E1.
[http://dx.doi.org/10.1038/s41586-020-2155-6] [PMID: 32238929]
[9]
Zhang, Y.; Xu, M.; Ren, Y.; Ba, Y.; Liu, S.; Zuo, A.; Xu, H.; Weng, S.; Han, X.; Liu, Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol. Cancer, 2024, 23(1), 75-75.
[http://dx.doi.org/10.1186/s12943-024-01980-6] [PMID: 38582847]
[10]
Helmink, B.A.; Reddy, S.M.; Gao, J.; Zhang, S.; Basar, R.; Thakur, R.; Yizhak, K.; Sade-Feldman, M.; Blando, J.; Han, G.; Gopalakrishnan, V.; Xi, Y.; Zhao, H.; Amaria, R.N.; Tawbi, H.A.; Cogdill, A.P.; Liu, W.; LeBleu, V.S.; Kugeratski, F.G.; Patel, S.; Davies, M.A.; Hwu, P.; Lee, J.E.; Gershenwald, J.E.; Lucci, A.; Arora, R.; Woodman, S.; Keung, E.Z.; Gaudreau, P.O.; Reuben, A.; Spencer, C.N.; Burton, E.M.; Haydu, L.E.; Lazar, A.J.; Zapassodi, R.; Hudgens, C.W.; Ledesma, D.A.; Ong, S.; Bailey, M.; Warren, S.; Rao, D.; Krijgsman, O.; Rozeman, E.A.; Peeper, D.; Blank, C.U.; Schumacher, T.N.; Butterfield, L.H.; Zelazowska, M.A.; McBride, K.M.; Kalluri, R.; Allison, J.; Petitprez, F.; Fridman, W.H.; Sautès-Fridman, C.; Hacohen, N.; Rezvani, K.; Sharma, P.; Tetzlaff, M.T.; Wang, L.; Wargo, J.A. B cells and tertiary lymphoid structures promote immunotherapy response. Nature, 2020, 577(7791), 549-555.
[http://dx.doi.org/10.1038/s41586-019-1922-8] [PMID: 31942075]
[11]
Trüb, M.; Zippelius, A. Tertiary Lymphoid Structures as a Predictive Biomarker of Response to Cancer Immunotherapies. Front. Immunol., 2021, 12, 674565.
[http://dx.doi.org/10.3389/fimmu.2021.674565] [PMID: 34054861]
[12]
Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.W.; Sun, C.M.; Calderaro, J.; Jeng, Y.M.; Hsiao, L.P.; Lacroix, L.; Bougoüin, A.; Moreira, M.; Lacroix, G.; Natario, I.; Adam, J.; Lucchesi, C.; Laizet, Y.; Toulmonde, M.; Burgess, M.A.; Bolejack, V.; Reinke, D.; Wani, K.M.; Wang, W.L.; Lazar, A.J.; Roland, C.L.; Wargo, J.A.; Italiano, A.; Sautès-Fridman, C.; Tawbi, H.A.; Fridman, W.H. B cells are associated with survival and immunotherapy response in sarcoma. Nature, 2020, 577(7791), 556-560.
[http://dx.doi.org/10.1038/s41586-019-1906-8] [PMID: 31942077]
[13]
Lauss, M.; Donia, M.; Svane, I.M.; Jönsson, G. B Cells and Tertiary Lymphoid Structures: Friends or Foes in Cancer Immunotherapy? Clin. Cancer Res., 2022, 28(9), 1751-1758.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1130] [PMID: 34965949]
[14]
Germain, C.; Gnjatic, S.; Tamzalit, F.; Knockaert, S.; Remark, R.; Goc, J.; Lepelley, A.; Becht, E.; Katsahian, S.; Bizouard, G.; Validire, P.; Damotte, D.; Alifano, M.; Magdeleinat, P.; Cremer, I.; Teillaud, J.L.; Fridman, W.H.; Sautès-Fridman, C.; Dieu-Nosjean, M.C. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am. J. Respir. Crit. Care Med., 2014, 189(7), 832-844.
[http://dx.doi.org/10.1164/rccm.201309-1611OC] [PMID: 24484236]
[15]
Yang, J.; Xu, Y.; Chen, Y. Therapeutic perspectives for adult soft tissue sarcoma-updates from the 2022 ASCO annual meeting. Cancer Biol. Med., 2022, 19(10), 1496-1502.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0394]
[16]
Gu, J.; Wang, J.; Sun, Y.; Mao, X.; Qian, C.; Tang, X.; Wang, J.; Xie, H.; Ling, L.; Zhao, Y.; Liu, X.; Zhang, K.; Pan, H.; Wang, S.; Wang, C.; Zhou, W. Immune cells within tertiary lymphoid structures are associated with progression‐free survival in patients with locoregional recurrent breast cancer. Cancer Med., 2024, 13(1), e6864.
[http://dx.doi.org/10.1002/cam4.6864] [PMID: 38133211]
[17]
Ladányi, A.; Kiss, J.; Mohos, A.; Somlai, B.; Liszkay, G.; Gilde, K.; Fejős, Z.; Gaudi, I.; Dobos, J.; Tímár, J. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol. Immunother., 2011, 60(12), 1729-1738.
[http://dx.doi.org/10.1007/s00262-011-1071-x] [PMID: 21779876]
[18]
Yang, J.; Xu, J.; Liu, H.; Xiao, W.; Zhang, G. Deep insight into the B-cell associated tertiary lymphoid structure and tumor immunotherapy. Cancer Biol. Med., 2023, 21(2), 1-7.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2023.0308] [PMID: 38038337]
[19]
Pimenta, E.; Barnes, B. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers. Cancers (Basel), 2014, 6(2), 969-997.
[http://dx.doi.org/10.3390/cancers6020969] [PMID: 24762633]
[20]
Fremd, C.; Schuetz, F.; Sohn, C.; Beckhove, P.; Domschke, C. B cell-regulated immune responses in tumor models and cancer patients. OncoImmunology, 2013, 2(7), e25443.
[http://dx.doi.org/10.4161/onci.25443] [PMID: 24073382]
[21]
Hong, F.; Fujun, Y.; Lihong, Q. Prognostic significance of gene signature of tertiary lymphoid structures in patients with lung adenocarcinoma. Front. Oncol., 2021, 11, 693234.
[http://dx.doi.org/10.3389/fonc.2021.693234]
[22]
Fridman, W.H.; Meylan, M.; Petitprez, F.; Sun, C.M.; Italiano, A.; Sautès-Fridman, C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol., 2022, 19(7), 441-457.
[http://dx.doi.org/10.1038/s41571-022-00619-z] [PMID: 35365796]
[23]
Martinet, L.; Filleron, T.; Le Guellec, S.; Rochaix, P.; Garrido, I.; Girard, J.P. High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β-producing dendritic cells in human breast cancer. J. Immunol., 2013, 191(4), 2001-2008.
[http://dx.doi.org/10.4049/jimmunol.1300872] [PMID: 23825314]
[24]
Barmpoutis, P.; Di Capite, M. Tertiary lymphoid structures (TLS) identification and density assessment on H and E-stained digital slides of lung cancer. PLoS One, 2021, 16(9), e0256907.
[http://dx.doi.org/10.1371/journal.pone.0256907]
[25]
Sun, H.; Shi, Y.; Ran, H.; Peng, J.; Li, Q.; Zheng, G.; He, Y.; Liu, S.; Chang, W.; Xiao, Y. Prognostic value of tertiary lymphoid structures (TLS) in digestive system cancers: a systematic review and meta-analysis. BMC Cancer, 2023, 23(1), 1248.
[http://dx.doi.org/10.1186/s12885-023-11738-w] [PMID: 38110876]
[26]
Bergomas, F.; Grizzi, F.; Doni, A.; Pesce, S.; Laghi, L.; Allavena, P.; Mantovani, A.; Marchesi, F. Tertiary intratumor lymphoid tissue in colo-rectal cancer. Cancers (Basel), 2011, 4(1), 1-10.
[http://dx.doi.org/10.3390/cancers4010001] [PMID: 24213222]
[27]
Wirsing, A.M.; Rikardsen, O.G.; Steigen, S.E.; Uhlin-Hansen, L.; Hadler-Olsen, E. Characterisation and prognostic value of tertiary lymphoid structures in oral squamous cell carcinoma. BMC Clin. Pathol., 2014, 14(1), 38.
[http://dx.doi.org/10.1186/1472-6890-14-38] [PMID: 25177210]
[28]
Hui, Z.; Zhang, J.; Ren, Y.; Li, X.; Yan, C.; Yu, W.; Wang, T.; Xiao, S.; Chen, Y.; Zhang, R.; Wei, F.; You, J.; Ren, X. Single-cell profiling of immune cells after neoadjuvant pembrolizumab and chemotherapy in IIIA non-small cell lung cancer (NSCLC). Cell Death Dis., 2022, 13(7), 607.
[http://dx.doi.org/10.1038/s41419-022-05057-4] [PMID: 35831283]
[29]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[30]
Qian, S.; Wen, Y.; Mei, L.; Zhu, X.; Zhang, H.; Xu, C. Development and validation of a novel anoikis-related gene signature for predicting prognosis in ovarian cancer. Aging (Albany NY), 2023, 15(9), 3410-3426.
[http://dx.doi.org/10.18632/aging.204634] [PMID: 37179119]
[31]
Wang, D.; Zhang, Y.; Wang, X.; Zhang, L.; Xu, S. Construction and validation of an aging-related gene signature predicting the prognosis of pancreatic cancer. Front. Genet., 2023, 14, 1022265.
[http://dx.doi.org/10.3389/fgene.2023.1022265] [PMID: 36741321]
[32]
Liu, Y.; Zhu, D.; Xing, H.; Hou, Y.; Sun, Y.A. 6 gene risk score system constructed for predicting the clinical prognosis of pancreatic adenocarcinoma patients. Oncol. Rep., 2019, 41(3), 1521-1530.
[http://dx.doi.org/10.3892/or.2019.6979] [PMID: 30747226]
[33]
Zhang, M.J. Cox proportional hazards regression models for survival data in cancer research. Cancer Treat. Res., 2002, 113, 59-70.
[http://dx.doi.org/10.1007/978-1-4757-3571-0_4] [PMID: 12613350]
[34]
Liu, X.; Morelli, D.; Littlejohns, T.J.; Clifton, D.A.; Clifton, L. Combining machine learning with Cox models to identify predictors for incident post-menopausal breast cancer in the UK Biobank. Sci. Rep., 2023, 13(1), 9221.
[http://dx.doi.org/10.1038/s41598-023-36214-0] [PMID: 37286615]
[35]
Ribatti, D. Chapter 1 - Tumor microenvironment. 2021.
[http://dx.doi.org/10.1016/B978-0-12-822803-6.00008-9]
[36]
Penet, M.F. Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment, Molecular Imaging, 2nd ed; Academic Press, 2021, pp. 1007-1029.
[http://dx.doi.org/10.1016/B978-0-12-816386-3.00069-7]
[37]
Deng, J.; Li, K.; Luo, W. Singular Value Decomposition-Driven Non-negative Matrix Factorization with Application to Identify the Association Patterns of Sarcoma Recurrence. Interdiscip. Sci., 2024.
[http://dx.doi.org/10.1007/s12539-024-00606-1] [PMID: 38424397]
[38]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[39]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. Gene Ontology: tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[40]
Kanehisa, M.; Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[41]
Subramanian, A.; Tamayo, P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceed. Nat. Acad. Sci. Am., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[42]
Li, H.Y.; Jin, N.; Han, Y.P.; Jin, X.F. Pathway crosstalk analysis in prostate cancer based on protein-protein network data. Neoplasma, 2017, 64(1), 22-31.
[http://dx.doi.org/10.4149/neo_2017_103] [PMID: 27881001]
[43]
Yu, G.; Wang, L.G.; Yan, G.R.; He, Q.Y. DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics, 2015, 31(4), 608-609.
[http://dx.doi.org/10.1093/bioinformatics/btu684] [PMID: 25677125]
[44]
Laird, P.W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet., 2010, 11(3), 191-203.
[http://dx.doi.org/10.1038/nrg2732] [PMID: 20125086]
[45]
Mahmoodi Chalbatani, G.; Gharagouzloo, E.; Malekraeisi, M.A.; Azizi, P.; Ebrahimi, A.; Hamblin, M.R.; Mahmoodzadeh, H.; Elkord, E.; Miri, S.R.; Sanati, M.H.; Panahi, B. The integrative multi-omics approach identifies the novel competing endogenous RNA (ceRNA) network in colorectal cancer. Sci. Rep., 2023, 13(1), 19454-19454.
[http://dx.doi.org/10.1038/s41598-023-46620-z] [PMID: 37945594]
[46]
Wu, J.; Jin, S.; Gu, W.; Wan, F.; Zhang, H.; Shi, G.; Qu, Y.; Ye, D. Construction and Validation of a 9-Gene Signature for Predicting Prognosis in Stage III Clear Cell Renal Cell Carcinoma. Front. Oncol., 2019, 9, 152. [J].
[http://dx.doi.org/10.3389/fonc.2019.00152]
[47]
Wang, X.X.; Wu, L.H.; Ai, L.; Pan, W.; Ren, J.Y.; Zhang, Q.; Zhang, H.M. Construction of an HCC recurrence model based on the investigation of immune-related lncRNAs and related mechanisms. Mol. Ther. Nucleic Acids, 2021, 26, 1387-1400.
[http://dx.doi.org/10.1016/j.omtn.2021.11.006] [PMID: 34900397]
[48]
Wu, J.; Zhou, J.; Chai, Y.; Qin, C.; Cai, Y.; Xu, D.; Lei, Y.; Mei, Z.; Li, M.; Shen, L.; Fang, G.; Yang, Z.; Cai, S.; Xiong, N. Novel prognostic features and personalized treatment strategies for mitochondria-related genes in glioma patients. Front. Endocrinol. (Lausanne), 2023, 14, 1172182.
[http://dx.doi.org/10.3389/fendo.2023.1172182]
[49]
Luo, Y.; Liu, L.; Cheng, Z. Identification and analysis of diverse cell death patterns in diabetic kidney disease using microarray-based transcriptome profiling and single-nucleus RNA sequencing. Comput. Biol. Med., 2024, 169, 107780.
[http://dx.doi.org/10.1016/j.compbiomed.2023.107780]
[50]
Koch, A.; De Meyer, T.; Jeschke, J.; Van Criekinge, W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics, 2015, 16(1), 636.
[http://dx.doi.org/10.1186/s12864-015-1847-z] [PMID: 26306699]
[51]
Hu, Z.I.; O’Reilly, E.M. Therapeutic developments in pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol., 2024, 21(1), 7-24.
[http://dx.doi.org/10.1038/s41575-023-00840-w] [PMID: 37798442]
[52]
Kim, J.H.; Kim, H.S.; Kim, B.J.; Lee, J.; Jang, H.J. Prognostic value of c-Met overexpression in pancreatic adenocarcinoma: a meta-analysis. Oncotarget, 2017, 8(42), 73098-73104.
[http://dx.doi.org/10.18632/oncotarget.20392] [PMID: 29069852]
[53]
Hu, L.P.; Zhang, X.X.; Jiang, S.H.; Tao, L.Y.; Li, Q.; Zhu, L.L.; Yang, M.W.; Huo, Y.M.; Jiang, Y.S.; Tian, G.A.; Cao, X.Y.; Zhang, Y.L.; Yang, Q.; Yang, X.M.; Wang, Y.H.; Li, J.; Xiao, G.G.; Sun, Y.W.; Zhang, Z.G. Targeting Purinergic Receptor P2Y2 Prevents the Growth of Pancreatic Ductal Adenocarcinoma by Inhibiting Cancer Cell Glycolysis. Clin. Cancer Res., 2019, 25(4), 1318-1330.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2297] [PMID: 30420446]
[54]
Ren, T.; Xue, X.; Wang, X.; Zhou, X. Bioinformatic and experimental analyses of key biomarkers in pancreatic cancer. Exp. Ther. Med., 2021, 22(6), 1359.
[http://dx.doi.org/10.3892/etm.2021.10794]
[55]
Aughton, K.; Elander, N.O. hENT1 Predicts Benefit from Gemcitabine in Pancreatic Cancer but Only with Low CDA mRNA. Cancers, 2021, 13(22), 5758.
[http://dx.doi.org/10.3390/cancers13225758]
[56]
Li, X.; Li, Z.; Zhu, H.; Yu, X. Autophagy Regulatory Genes MET and RIPK2 Play a Prognostic Role in Pancreatic Ductal Adenocarcinoma: A Bioinformatic Analysis Based on GEO and TCGA. BioMed Res. Int., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/8537381] [PMID: 33204717]
[57]
Mao, Y.; Shen, J.; Lu, Y.; Lin, K.; Wang, H.; Li, Y.; Chang, P.; Walker, M.G.; Li, D. RNA sequencing analyses reveal novel differentially expressed genes and pathways in pancreatic cancer. Oncotarget, 2017, 8(26), 42537-42547.
[http://dx.doi.org/10.18632/oncotarget.16451] [PMID: 28418924]
[58]
Xu, C.; Sui, S.; Shang, Y.; Yu, Z.; Han, J.; Zhang, G.; Ntim, M.; Hu, M.; Gong, P.; Chen, H.; Zhang, X. The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma. J. Adv. Res., 2020, 24, 139-148.
[http://dx.doi.org/10.1016/j.jare.2020.03.009] [PMID: 32322419]
[59]
Tullia, C. Antigen-presenting intratumoral b cells affect cd4+til phenotypes in non-small cell lung cancer patients. Cancer Immunol. Res., 2017, 5(10), 898-907.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0075]
[60]
Sangwoo, S. Role of B cells in responses to checkpoint blockade immunotherapy and overall survival of cancer patients. Clin. Cancer Res., 2021, 15(22), 6075-6082.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0697]
[61]
Zhang, J.; Sun, H.; Liu, S.; Huang, W.; Gu, J.; Zhao, Z.; Qin, H.; Luo, L.; Yang, J.; Fang, Y.; Ge, J.; Ni, B.; Wang, H. Alteration of tumor-associated macrophage subtypes mediated by KRT6A in pancreatic ductal adenocarcinoma. Aging (Albany NY), 2020, 12(22), 23217-23232.
[http://dx.doi.org/10.18632/aging.104091] [PMID: 33221741]
[62]
Ebrahimi, S.; Hosseini, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Ghayour-Mobarhan, M.; Hassanian, S.M.; Avan, A. Targeting the Akt/PI3K Signaling Pathway as a Potential Therapeutic Strategy for the Treatment of Pancreatic Cancer. Curr. Med. Chem., 2017, 24(13), 1321-1331.
[http://dx.doi.org/10.2174/0929867324666170206142658] [PMID: 28176634]
[63]
Guan, Y.; Kuo, W.L.; Stilwell, J.L.; Takano, H.; Lapuk, A.V.; Fridlyand, J.; Mao, J.H.; Yu, M.; Miller, M.A.; Santos, J.L.; Kalloger, S.E.; Carlson, J.W.; Ginzinger, D.G.; Celniker, S.E.; Mills, G.B.; Huntsman, D.G.; Gray, J.W. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin. Cancer Res., 2007, 13(19), 5745-5755.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2882] [PMID: 17908964]
[64]
Sun, C.; Wang, P.; Dong, W.; Liu, H.; Sun, J.; Zhao, L. LncRNA PVT1 promotes exosome secretion through YKT6, RAB7, and VAMP3 in pancreatic cancer. Aging (Albany NY), 2020, 12(11), 10427-10440.
[http://dx.doi.org/10.18632/aging.103268] [PMID: 32499447]
[65]
Ilboudo, A.; Chouhan, J.; McNeil, B.; Osborne, J.; Ogunwobi, O. PVT1 Exon 9: A Potential Biomarker of Aggressive Prostate Cancer? Int. J. Environ. Res. Public Health, 2015, 13(1), 12.
[http://dx.doi.org/10.3390/ijerph13010012] [PMID: 26703666]
[66]
Zhou, Q.; Chen, J.; Feng, J.; Wang, J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour Biol., 2016, 37(3), 3105-3113.
[http://dx.doi.org/10.1007/s13277-015-4149-9] [PMID: 26427660]
[67]
Li, R.; Wang, X.; Zhu, C.; Wang, K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell. Mol. Biol. Lett., 2022, 27(1), 84.
[http://dx.doi.org/10.1186/s11658-022-00385-x] [PMID: 36195846]
[68]
Xie, Z.; Chen, X.; Li, J.; Guo, Y.; Li, H.; Pan, X.; Jiang, J.; Liu, H.; Wu, B. Salivary HOTAIR and PVT1 as novel biomarkers for early pancreatic cancer. Oncotarget, 2016, 7(18), 25408-25419.
[http://dx.doi.org/10.18632/oncotarget.8323] [PMID: 27028998]
[69]
Zhao, L.; Kong, H.; Sun, H.; Chen, Z.; Chen, B.; Zhou, M. LncRNA‐PVT1 promotes pancreatic cancer cells proliferation and migration through acting as a molecular sponge to regulate miR‐448. J. Cell. Physiol., 2018, 233(5), 4044-4055.
[http://dx.doi.org/10.1002/jcp.26072] [PMID: 28657147]
[70]
Shi, Y.; Wang, Y.; Qian, J.; Yan, X.; Han, Y.; Yao, N.; Ma, J. MGMT expression affects the gemcitabine resistance of pancreatic cancer cells. Life Sci., 2020, 259, 118148.
[http://dx.doi.org/10.1016/j.lfs.2020.118148] [PMID: 32721465]
[71]
Wu, X.; Huang, J.; Yang, Z. MicroRNA-221-3p is related to survival and promotes tumour progression in pancreatic cancer. Compreh. Stud. Funct. Clinicopathol., 2020, 20(1), 443.
[http://dx.doi.org/10.1186/s12935-020-01529-9]
[72]
Zhang, Z.; Zhao, W.; Li, Y.; Li, Y.; Cheng, H.; Zheng, L.; Sun, X.; Liu, H.; Shao, R. YOD1 serves as a potential prognostic biomarker for pancreatic cancer. Cancer Cell Int., 2022, 22(1), 203.
[http://dx.doi.org/10.1186/s12935-022-02616-9] [PMID: 35642058]
[73]
Yao, W.; Yao, Y.; He, W.; Zhao, C.; Liu, D.; Wang, G.; Wang, Z. PABPC1 promotes cell proliferation and metastasis in pancreatic adenocarcinoma by regulating COL12A1 expression. Immun. Inflamm. Dis., 2023, 11(7), e919.
[http://dx.doi.org/10.1002/iid3.919] [PMID: 37506150]
[74]
Iwatate, Y.; Yokota, H.; Hoshino, I.; Ishige, F.; Kuwayama, N.; Itami, M.; Mori, Y.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Takayama, W.; Uno, T.; Lin, J.; Nakamura, Y.; Tatsumi, Y.; Shimozato, O.; Nagase, H. Transcriptomic analysis reveals high ITGB1 expression as a predictor for poor prognosis of pancreatic cancer. PLoS One, 2022, 17(6), e0268630.
[http://dx.doi.org/10.1371/journal.pone.0268630] [PMID: 35648752]
[75]
Zhu, C.; Wang, C.; Wang, X.; Dong, S.; Xu, Q.; Zheng, J. PABPC1 silencing inhibits pancreatic cancer cell proliferation and EMT, and induces apoptosis via PI3K/AKT pathway. Cytotechnology, 2024, 76(3), 351-361.
[http://dx.doi.org/10.1007/s10616-024-00626-1] [PMID: 38736728]
[76]
Fei, H.; Shi, X.; Sun, D.; Yang, H.; Wang, D.; Li, K.; Si, X.; Hu, W. Integrated analysis identified the role of three family members of ARHGAP in pancreatic adenocarcinoma. Sci. Rep., 2024, 14(1), 11790.
[http://dx.doi.org/10.1038/s41598-024-62577-z] [PMID: 38783033]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy